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Abstract. We propose an efficient and robust algorithm to solve the steady Euler equa-

tions on unstructured grids. The new algorithm is a Newton-iteration method in which

each iteration step is a linear multigrid method using block lower-upper symmetric

Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of

Newton-iteration, we adopted a local residual dependent regularization as the replace-

ment of the standard time-stepping relaxation technique based on the local CFL number.

The proposed method can be extended to high order approximations and three spatial

dimensions in a nature way. The solver was tested on a sequence of benchmark prob-

lems on both quasi-uniform and local adaptive meshes. The numerical results illustrated

the efficiency and robustness of our algorithm.
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1. Introduction

In the last decades, one of the most active research areas in computational aerodynam-

ics has been concerned with the numerical simulation of the complex flow field of aircrafts

with practical configuration. Nowadays its rapid development and daily improvement play

an important part in accelerating the revolution of aerofoil designing strategies and meth-

ods. Because of the hyperbolic nature of Euler equations in the subsonic, transonic and

supersonic regimes, many numerical schemes can be chosen to solve the unsteady Euler

equations. The finite volume method [11] is one of the most widely used schemes. The

nonlinear algebraic system obtained from the finite volume discretization of Euler equa-

tions was often solved by certain Newton-iteration. It is a main challenge to develop

efficient and robust iterative algorithms for solving the nonlinear algebraic system, espe-

cially on unstructured grids. In spite of the difficulties of this problem, remarkable progress
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has been made. The solver developed by Jameson, with a series of customized numerical

techniques including multigrid acceleration, local time stepping, implicit residual smooth-

ing and enthalpy damping, on structured grids demonstrated great efficiency with a lot

of impressive numerical examples [6–8, 10, 11]. Such highly nonlinear system can now

be solved with residual convergent to machine accuracy on current desktop computers

within minutes. Among these acceleration techniques, the local preconditioning can be

quite effective [13, 14], too, with a judiciously chosen precondition matrix. For the sys-

tem discretized on unstructured grids, the implicit LU-SGS iterative algorithm has been

extensively adopted since it was first introduced by Jameson and Turkel [12]. The LU-SGS

method was used as a relaxation method for solving the unfactorized implicit scheme by

Yoon and Jameson [22–24]. It was further developed and applied to 3D viscous flow fields

by Riger and Jameson [17]. Since then, many authors have applied the LU-SGS method to

viscous flows on both structured and unstructured grids [2,4,18,25]. Noticing the special

formation of the equations, it is more appropriate to solve the linearized Jacobian matrix

block by block. Therefore as a further development of the LU-SGS iteration, Wang [5]

proposed a block LU-SGS method together with some numerical examples, converged at a

satisfactory speed as expected.

In this paper, we developed a multigrid solver using the block LU-SGS iteration as its

smoother. On the unstructured grids, we first discretized the steady Euler equations to

obtain the nonlinear algebraic system. Then the nonlinear system was linearized with the

standard Newton-iteration. It is popular to regularize the linearized system by adding a

local artificial time relaxation. The weight of this time relaxation term was calculated dy-

namically using a local CFL number. This CFL number is different from the CFL number

used in solving a time-dependent conservation law. For a time-dependent conservation

law, the essential role of the CFL number is to keep the stability of the numerical schemes.

Therefore, it is an O (1) number to make the time stepping length to be the ratio of the typ-

ical mesh size and the maximal wave propagation speed. As one of the basic differences in

solving the steady Euler equations, the intermediate state of the solution is out of the main

concerns. Only if the iterative algorithm can converge, the CFL number can be chosen as

large as possible to achieve a faster convergence rate. Generally, the CFL number should be

about O (1) at the beginning of the iteration as a bootstrap of the total algorithm, and then

it can be dynamically increased for better efficiency. A balance between the magnitude of

the CFL number and the convergence of the iteration is generally required by maximiz-

ing the total convergence rate. Based on such a understanding of the local CFL number

choosing strategy, we will not use the standard regularization in which a local artificial

time relaxation term is added into the Jacobian matrix of the Newton-iteration. Instead,

we used a residual related regularization,i.e. α‖RHS‖l1 , where RHS is the residual of the

linearized system on each grid cell. The magnitude of the cell residual can locally quantify

how close to the steady state the flow field is. Therefore it is quite natural to require the

local CFL number to be dependent on the local residual. Due to the same scaling between

a norm of the local residual and local grid cell size, the regularization term can be simply

set as a constant times of a norm of the local residual. With this local residual dependent

regularization, our algorithm can automatically choose a moderate local CFL number so as
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to achieve a subtle balance between the stability of the iterative procedure and a satisfac-

tory rate of convergence. It can be seen in the numerical examples that our algorithm with

such regularization behaved very robust. For a sequence of very different configurations

in terms of far field free-stream conditions and domain geometry, the solver converged

without any modification to the parameter α.

In our algorithm, the regularized linear system for every Newton-iteration was solved

by a linear multigrid method in which the block LU-SGS proposed by Wang was utilized as

the smoother. For the implementation of the multigrid solver, we first developed a mesh

aggregation program to get a sequence of coarse mesh grids from the finest one by follow-

ing the idea of the sketchy mesh aggregation algorithm in Section 9.4 in [3]. Numerical

results showed that our codes worked quite robustly, and can generate quite high quality

coarse meshes, both from the quasi-uniform and the local refined background meshes. The

coarse meshes generated were used to construct the projection operator from finer mesh

grids to coarser mesh grids, which is then applied on both the sparse matrix and the right

hand side of the regularized linear system. The block LU-SGS iteration, as the smoother of

the multigrid solver, can contribute a piecewise constant correction on every cell patch on

the coarse meshes. We adopted a V-cycle type multigrid iteration in our implementation

since the best performance based on extensive numerical experiments. It should be noted

that due to the highly nonlinear nature of the original problem, the multigrid iteration was

only applied one or two steps for the linearized system; otherwise the convergence of the

nonlinear iteration may be slowed down or even impeded occasionally.

The remaining of the paper is organized as follows. In the next section, we described

the main algorithm in detail, including the discretization of Euler equations, the new reg-

ularization for the Jacobian matrix, the linear multigrid method with the revised block

LU-SGS iteration as the smoother, the reconstruction and the limiter adopted, and some

standard technique details. In Section 3, we presented some numerical examples to illus-

trate the robustness and efficiency of our algorithm. Some concluding remarks were made

in the final section.

2. Discretization and algorithm

We consider the compressible inviscid Euler equations in two space dimensions:

∂U

∂ t
+∇ · F(U) = 0, (2.1)

where U and F are the vectors of the conservative variables and the inviscid flux, respec-

tively. For ideal flows, its components are as

U=




ρ

ρu

ρv

E


 , F(U) =




ρu ρv

ρu2 + p ρuv

ρuv ρv2+ p

u(E + p) v(E + p)


 ,
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where ρ is the density, u= (u, v) is the velocity vector, p is the pressure, and E is the total

energy. The closure of the system is achieved by the equation of state

E =
p

γ− 1
+

1

2
ρ(u2 + v2),

where γ = 1.4 is the ratio of specific heats for air, which is mainly composed of diatomic

molecules: nitrogen and oxygen. For the stationary solution, we are solving the system

(2.1) without the time derivative term; thus the equations under consideration are

∇ · F(U) = 0. (2.2)

In our algorithm, the extensively used artificial time-derivative regularization method was

replaced by a residual dependent regularization. Therefore, we will discretize (2.2) di-

rectly instead of using (2.1).

In this paper, the domain Ω of the Euler equations (2.1) is R2\Ωc, where Ωc is the area

occupied by the airfoil, i.e., the body of the aircraft in 2D case. Due to the unboundedness

of the solution domain, we adopted the current popular strategy, which is to solve the

equations in a bounded domain as Ω
⋂
{|x| < R}, where R is a certain times of the airfoil

chord length, and made use of the far field vortex correction technique to remedy the error

introduced by the abrupt domain truncation. Therefore, before the end of the paper, we

took the problem domain Ω directly as the truncated bounded domain with the truncation

radius R in terms of the chord length.

2.1. Finite volume discretization

Let T be a partition of Ω with its cells denoted as T ∈ T , that Ω̄ =
⋃

T∈T T̄ , and

any two different cells have no common interior parts. The intersection of two different

cells T̄ j and T̄k can be either an edge e jk, a vertex in the partition or empty set. The unit

out normal on the edge e jk, pointing from T j to Tk is denoted as n jk. Let hT denote the

diameter of cell T . After applying the Green’s formula on a cell T j for (2.2), we have

∮

∂ T j

F(Uh) · n ds = 0, (2.3)

where n is the unit out normal of T j . The numerical solution Uh is approximated on every

cell by a polynomial. By taking the cells in the partition as the control volumes, the flux in

the integral form (2.3) of (2.2) was approximated as

∮

∂ T j

F(Uh) · n ds ≈
∑

e jk∈∂ T j

∫

e jk

F̄(U j,Uk) ·n jkdl, (2.4)

where F̄ is the numerical flux. Several numerical fluxes have been verified to be effective

for the transonic flow problem, including CUSP flux [9], HLLC flux [1] and Lax-Wendroff

flux, in our numerical experiments.
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2.2. Newton-iteration and regularization

The system (2.4) is nonlinear and the corresponding Newton-iteration can be written

as

∑

e jk∈∂ T j

∫

e jk

F̄(n) · n jkdl +
∑

e jk∈∂ T j

∫

e jk

�
∂ F̄(n)

∂U j

δU
(n)

j

�
·n jkdl

+
∑

e jk∈∂ T j

∫

e jk

�
∂ F̄(n)

∂Uk

δU
(n)

k

�
·n jkdl = 0, (2.5)

where

F̄(n) = F̄
�

U
(n)

j
,U
(n)

k

�
and U

(n+1)

j
= U

(n)

j
+τ jδU

(n)

j
,

τ j is a relaxation parameter on cell T j . In our finite volume implementation, the increment

δU(n) in the Newton-iteration is piecewise constant on every cell. Since the Jacobian matrix

in the Newton-iteration (2.5) can be singular, the iteration is in fact unable to be carried

out directly. The approach to make the iteration (2.5) work is to add a regularization term

to the Jacobian matrix. Generally, the regularization is formulated as an artificial time

derivative term
∫

T j

δU
(n)

j

∆t j

d x ,

which is added to the left-hand side of (2.5), where ∆t j is the artificial local time step.

The artificial local time step ∆t j is often given as

C F L × hT j
/λ+,

where C F L is the local CFL number, hT j
is the local mesh grid size and λ+ = |u|+ c, with

c the speed of sound, i.e., the maximal local wave propagation speed on T j . The formula

is the same as the one for time-dependent conservation laws except that the CFL number

here is often chosen quite large. For time-dependent conservation laws, the time stepping

length is chosen to make the computation stable; while in solving the stationary solution,

the main concern is to keep the iterative procedure convergent and to accelerate the con-

vergence speed. Numerical experiences showed that the CFL number can be larger when

the solution is closer to the steady state locally. Furthermore, with a larger CFL number,

the convergence can often be accelerated. Based on these observations and noticing that

the local residual

R
(n)

j
¬

∑

e jk∈∂ T j

∫

e jk

F̄(n) · n jkdl

can quantify how close the solutions are to the steady state ones, we directly use the l1

norm of R
(n)

j
as the regularization term to the Jacobian matrix. Consequently, our regular-
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ized version of (2.5) is of the form

α




R(n)j





l1
δU
(n)

j
+
∑

e jk∈∂ T j

∫

e jk

�
∂ F̄(n)

∂U j

δU
(n)

j

�
· n jkdl

+
∑

e jk∈∂ T j

∫

e jk

�
∂ F̄(n)

∂Uk

δU
(n)

k

�
· n jkdl = −R

(n)

j
, (2.6)

where the parameter α is often set as 2 in the numerical examples presented in the next

section.

Now we can write the Newton-iteration algorithm as follows:

Algorithm 2.1: [Newton-iteration]

1. Input U(0) as the initial guess, and set n= 0;

2. Use an approximate solver for the linear system (2.6) to get a δU(n);

3. Update U(n+1) by U(n) +τδU(n);

4. Reconstruct U(n+1) using its cell mean values to get a piecewise polynomial ex-

pression on each cell;

5. Check if the residual R(n+1) is small enough: if yes, stop; otherwise, set n := n+1

and goto step 2.

The steps not clear yet in the above algorithm are the approximate solver for the linear

system (2.6) and the reconstruction procedure, which will be clarified in Sections 2.3 and

2.4 below.

2.3. Linear multigrid solver for the Jacobian matrix

A linear multigrid solver is mainly composed of two ingredients: the projection op-

erator and the smoother. To construct the projection operator, we utilized the idea of

aggregated multigrid method as in [3] and reference therein to generate a sequence of

coarse meshes. We denote the original partition on Ω as T0 = T . The mesh aggregation

algorithm can give a sequence of coarse meshes denoted as Tm, m = 1,2, · · · , in which

every cell Tm, j is the union of some cells in mesh Tm−1, i.e.,

Tm, j =
⋃

k∈I (m, j)

Tm−1,k,

where I (m, j) is the set of the indices of cells in Tm−1 of which Tm, j is composed.

We reformulated (2.6) into matrix form, added a subscript 0 to the variables to denoted

the mesh level and removed the superscript (n) for simplicity as

∑

k

A0, jkδU0, j = −R0, j, (2.7)
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where

A0, j j = α




R(n)j





l1
+
∑

e jk∈∂ T j

∫

e jk

∂ F̄(n)

∂U j

· n jkdl,

A0, jk =
∑

e jk∈∂ T j

∫

e jk

∂ F̄(n)

∂Uk

· n jkdl, j 6= k,

R0, j = R
(n)

j
, δU0, j = δU

(n)

j
.

Then the projected linear system on mesh level m from level m− 1 is as
∑

k

Am, jkδUm, j = −Rm, j, (2.8)

where
Am, jk =
∑

ξ∈I (m, j)

∑

η∈I (m,k)

Am−1,ξη,

Rm, j =
∑

k∈I (m, j)


Rm−1,k +
∑

ξ

Am−1,kξδUm−1,ξ


 .

The corrections obtained from the mesh level m, δUm, j are added back to the solution on

the mesh level m− 1 as

δUm−1,k← δUm−1,k+ δUm, j, if k ∈ I (m, j).

The smoother adopted for our multigrid method is the block LU-SGS iteration, which

can be formulated into two symmetric loops as

1. for Tm, j ∈ Tm, loop for j increasingly

δUm, j← A−1
m, j j


−Rm, j −
∑

k 6= j

Am, jkδUm,k


 ;

2. for Tm, j ∈ Tm, loop for j decreasingly

δUm, j← A−1
m, j j


−Rm, j −
∑

k 6= j

Am, jkδUm,k


 .

The V-cycle type iteration was adopted in the implementation of our linear multigrid

solver after carrying out extensive numerical experiments for efficiency comparison. The

smoother was symmetrically applied before the projection and after the coarse grid cor-

rections. It is known the multigrid iteration here, as the inner iterations of the complete

Newton-iteration in Algorithm 2.1, should be used for only a few steps in every Newton-

iteration step. As the result of the balance between the inner iterations and the outer

iterations, the number of multigrid iteration steps was set to be 2 or 3 in our computa-

tions.
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T

Figure 1: The 
ell pat
hes eωT used for the least square re
onstru
tion, whi
h is 
omposed by all the
ells in the partition have at least one 
ommon vertex with T .
2.4. Reconstruction and limiter

As mentioned above, the step 3 in Algorithm 2.1 only updated the cell mean values

of the solutions. In order to obtain second-order accuracy solutions, reconstruction of

the numerical solutions based on the updated cell mean values into piecewise linear so-

lutions was applied. The reconstruction techniques have been extensively considered for

the solver of the stationary solution since the methods used for the time dependent prob-

lems, especially those highly diffusive reconstruction, generally destroy the convergence of

the Newton-iteration. We followed the least square reconstruction method (see [21] and

references therein) which was designed for the steady solution solver. The details of this

method are briefly described here for completeness. Let N (T ) denote the set of control

volume T ’s vertices, the least square reconstruction for the gradient on cell T is taken on

the cell patch

eωT :=
⋃

N (T)∩N (T ′)6=;

T ′. (2.9)

See Fig. 1 for the profile of eωT . Let P(x) denote the linear function will be reconstructed

on eωT , Q=∇xP and P0 is the cell mean value of P(x) on T . For triangle cell, the value of a

linear function at the barycenter x0 of T is the same as the cell mean. Then, Q is obtained

as the optimal solution of the following problem

arg min
Q

∑

∀Tk∈ eωT








�
Pk − P0 −Q · (xk − x0)

�
��xk − x0

��








2

2

, (2.10)

where Pk is the mean value of P(x) on Tk.

From the formation of the least square reconstruction, it can be seen that some numer-

ical oscillations will be introduced, especially around the discontinuities of the solutions.

The numerical oscillation should be removed from the solution, since it not only induces

some non-physical data into the numerical solution, but also impedes the convergence of

the iteration. To remove the numerical oscillations from the reconstructed solutions, a

certain type of limiter should be applied, such as the ones used in the high order discon-

tinuous Galerkin method for conservation laws. A limiter with moderate diffusive effects
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should be chosen to take account of the convergence of the iterative procedure as well as

removing the numerical oscillations. In [20], the Venkatakrishnan type limiter was pro-

posed to reconstruct the gradients of the numerical solutions to reduce the adverse effects

of the least square reconstruction. A modified version of the Venkatakrishnan limiter [21],

which is robuster than the original one, was adopted in our implementation.

2.5. Some technical details

Local mesh refinement. Appearance of discontinuities in the stationary solutions is

the basic character of the transonic flows. The capacity to resolve such discontinuities is

one of the key criterions as effective judgement of the numerical method. Since the loca-

tions of the discontinuities are not known beforehand, it is impossible to get satisfactory

numerical solutions on a single set of mesh grids. Hence mesh adaptivity techniques should

be considered. The basic idea of mesh adaptivity is to add, remove, or redistribute grid

points according to the numerical solutions obtained on the mesh in hand, so that the grid

points were concentrated in regions with complex solution structure. The adaptive mesh

method we used is the so-called h-method that the mesh is modified by local refinement

and coarsening. The gradient of the pressure was used as the indicator of mesh adaptation

heuristically. More precisely, on the control volume Ti , the indicator I is calculated as

Ii =
∑

∀eik∈∂ Ti

��pi − pk

��
��xi − xk

�� |eik|, (2.11)

where xi and xk are the barycenters of Ti and Tk, and pi and pk are the cell mean pressure

on Ti and Tk, respectively. The procedure of the mesh adaptation was as

1. Solve the stationary solutions on current mesh using the solver proposed in Sec-

tion 2;

2. Calculate the indicator using (2.11);

3. Adapt the mesh based on the indicator and go to 1.

Far field boundary conditions for subsonic flow. Due to the abrupt truncation of

the solution domain, the far field boundary conditions are essential to the well-posedness,

convergence and accuracy of the problem. For well-posedness it is necessary to impose

additional boundary conditions on the artificial boundary to reduce the negative influence

of the reflection of any outgoing disturbances back into the computational region [3]. Let

subscripts ∞ and e denote free-stream values and values from the interior cells adjacent

to the boundary, respectively. Let un and c =
p
γp/ρ be the velocity component normal to

the boundary and the speed of sound. The one dimensional Riemann invariants along the

out normal vector of the boundary are

R1 = un +
2c

γ− 1
, R2 = un−

2c

γ− 1
, (2.12)
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(a)Figure 2: Initial mesh grids generated using Easymesh around NACA 0012 airfoil, 
ontaining 2402triangular 
ells. By setting suitable parameters in the input �le for Easymesh, the mesh generated 
anbe �ner around the airfoil body. (a) The entire grid; (b) Grid near the body of the airfoil.
which are correspond to the eigenvalues λ1 = un− c and λ2 = un+ c. By assuming the far

field flow is subsonic (|un| < c), the far field boundary conditions can be classified into the

following category:

1. At the inflow boundary un < 0,

λ1 < 0, λ2 > 0, R1 = R1∞, R2 = R2e, S = S∞, ut = ut∞,

where S is the entropy, S = p/ργ and ut is the tangential velocity along the boundary.

2. At the outflow boundary un > 0,

λ2 > 0, λ1 < 0, R1 = R1∞, R2 = R2e, S = Se, ut = ute.

Far field vortex correction. As suggested by Usab and Murman [19], the components

of the free-stream conditions should be corrected after every iteration. The details of the

far field vortex correction can be found in [3].

3. Numerical results

In this section, we presented a sequence of numerical examples to illustrate the robust-

ness and efficiency of the algorithm described above. In all the numerical examples below,

the parameters in the algorithms were not changed at all. More precisely, we always set

α= 2, τ= 1 and the smoothing steps in the multigrid solver is 2.

We first tested our algorithm on quasi-uniform meshes, and then on local adaptive

meshes. It was interesting to see that for three free-stream conditions with essential dif-

ferences, our algorithm converged without difficulties. At last, the numerical results on

different geometric configurations were presented.

All the computations were carried out on a Pentium IV desktop computer with core

speed 3.0G, and Linux as its operating system. The codes were based on the adaptive

finite element package AFEPack [15] developed by R. Li and W.-B. Liu.



102 R. Li, X. Wang and W. Zhao

Figure 3: Ma
h number 
ontours (left) and pressure 
ontours (right) of NACA 0012 airfoil at free-stream
ondition with Ma
h number = 0.8, atta
k angle = 1.0◦ on quasi-uniform mesh.
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Figure 4: Convergen
e history in term of iterations (left) and CPU se
onds (right) of NACA 0012 airfoilat free-stream 
ondition with Ma
h number = 0.8, atta
k angle = 1.0◦ through two uniform meshre�nement. The solver has the similar behaviors on these meshes.
3.1. On quasi-uniform meshes

We first tested our algorithm on the quasi-uniform meshes by using the NACA 0012

airfoil as the geometric configuration. The truncation of the domain was set at the location

of R= 10×chord length. We carried out the computations on a uniform refined mesh series,

with the free-stream Mach number 0.8 and 1.0 attach angle. Fig. 3 plots the contours of

Mach number and pressure on the finest mesh used. The background mesh was plotted

in Fig. 2. With the mesh generation software Easymesh [16], the initial mesh can be finer

around the airfoil body. The convergence history for all three computations were plotted

in Fig. 4, from which it can be seen that the behaviors of our solver on all these uniform
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Figure 5: Pressure 
oe�
ient on the airfoil surfa
e of NACA 0012 airfoil at free-stream 
ondition withMa
h number = 0.8, atta
k angle = 1.0◦ on three 
ontinuously uniform re�ned meshes based on aquasi-uniform mesh.
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Figure 6: Element pat
hes near airfoil body of NACA 0012 generated by our aggregation 
odes froma quasi-uniform mesh. The �gures are the element pat
hes generated on four 
ontinuous levels, withfree-stream 
ondition of Ma
h number = 0.85 and atta
k angle = 1.0◦.
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Figure 7: Same as Fig. 6, ex
ept from the lo
al adaptive mesh obtained.
refined meshes are similar. Pressure coefficients obtained were plotted in Fig. 5 as an

evidence of the numerical convergence of our method.

In Fig. 6, we plotted the coarse meshes generated sequentially by our implementation

of aggregation codes. It can be seen that our codes work well on the quasi-uniform meshes.

3.2. On local adaptive meshes

The following examples are the numerical tests of our algorithm on local adaptive

meshes. The mesh adaptation method used was the one implemented in AFEPack. Af-

ter the adaptation indicator is calculated, AFEPack can provide the local adaptive meshes

automatically. We set a different free-stream condition from the previous subsection to ob-

tain more extensive numerical results. The geometric configuration was NACA 0012 again,

while the free-stream Mach number now was 0.85 with attach angle as 1.0.

In Fig. 8, we plotted the contours of Mach number (left) and pressure (right) on each

of the local adaptive meshes, which were obtained by two times of local adaptive mesh

refinement. The mesh sequence generated by our mesh aggregation codes were plotted in
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Figure 8: The 
ontours of Ma
h number (left 
olumn) and the pressure (right 
olumn) on three 
on-tinuous lo
al adaptive meshes, with the free-stream 
ondition with Ma
h number = 0.85, atta
k angle= 1.0◦. The ba
kground of the �gures were the obtained lo
al adaptive meshes.
Fig. 7. The coarse meshes generated here had the similar quality as the ones generated

from the quasi-uniform mesh in Fig. 6.

It can be observed from Fig. 7 that mesh grids concentrated near the region where the

shocks appear, thus the shocks in the solutions were better resolved on the local adaptive
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Figure 9: Lo
al stru
ture details of the adaptive meshes, obtained in a 
omputation for NACA 0012airfoil with the free-stream 
ondition with Ma
h number = 0.85, atta
k angle = 1.0◦. The top left�gure is the entire mesh. In the �rst and the se
ond rows, the marked part of the previous �gure iszoomed in and shown in the next �gure sequentially. The �gures in the last row are two di�erent partsmarked in the middle right �gure near the upper sho
k (marked in a re
tangle) and the end point ofthe airfoil (marked in a 
ir
le).
mesh. Higher quality shocks were captured by our numerical solutions on the mesh with

more steps of local adaptive refinement as in Fig. 8. In Fig. 9, we plotted a sequentially

zoomed local mesh structure to show the flexibility and the ability of the adaptive mesh in

resolving local discontinuities. Finally, in Fig. 10, the convergence history on continuous
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Figure 10: The 
onvergen
e history in term of iterations (left) and CPU se
onds (right) of the NACA0012 airfoil 
omputation on three 
ontinuous lo
al adaptive meshes, with the free-stream 
ondition withMa
h number = 0.85, atta
k angle = 1.0◦.
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Figure 11: The 
ontours of Ma
h number (top left) and pressure (top right), and pressure 
oe�
ient(bottom left) and the 
onvergen
e history (bottom right) for the NACA 0012 airfoil with free-stream
ondition with Ma
h number = 0.3 and atta
k angle = 15◦.
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Figure 12: Same as Fig. 11, ex
ept with free-stream 
ondition with Ma
h number = 0.8 and atta
kangle = 1.25◦.
local adaptive meshes were plotted. It can be seen that the algorithm behaved quite stable

on all these meshes.

3.3. On different free-stream configurations

In this subsection, our solver was tested on three very different free-stream configura-

tions:

• Low free-stream Mach number as 0.3 and a big attack angle as 15◦;

• Moderate free-stream Mach number as 0.8 and attack angle as 1.25◦;

• High free-stream Mach number as 0.99 and attack angle as 0.2◦.

The contours of Mach number and pressure of the numerical solutions, the pressure

coefficient and the convergence history in terms of iteration steps were plotted in Figs. 11-

13, respectively. From the convergence history for these three free-stream configurations,

it can be seen that the first case was the most difficult one to converge. But for all three

cases, our algorithm got converged results without changing the parameters involved.
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Figure 13: Same as Fig. 11, ex
ept with free-stream 
ondition with Ma
h number = 0.99 and atta
kangle = 0.2◦.
3.4. On different geometric configurations

Other than the computations on the NACA 0012 airfoil, we tested in this subsection

the geometric configurations on the RAE 2822 airfoil and a combined configuration using

two NACA 0012 airfoils.

For the RAE 2822 case, the free-stream condition is Mach number 0.75 and attack angle

3◦. The contours of Mach number and pressure of the numerical solutions, the pressure

coefficient and the convergence history in term of iteration steps were plotted in Fig. 14.

It can be seen that our algorithm works well for this example.

For the geometric configuration using two NACA 0012 airfoils, we set the truncation

radius R = 20× chord length since for this case the support of the two airfoils occupied

about double size of the domain occupied by the one airfoil case. This computation was

carried out on local refined meshes to check the robustness of our algorithm. We plotted

the contours of Mach number and pressure of the numerical solutions, the pressure coef-

ficient and the convergence history in terms of iteration steps in Fig. 15. Though the flow

field was more complex than that of the one airfoil case, our algorithm can again solve this

example efficiently.
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Figure 14: The 
ontours of Ma
h number (top left) and pressure (top right), and pressure 
oe�
ient(bottom left) and the 
onvergen
e history (bottom right) for the RAE 2822 airfoil with free-stream
ondition with Ma
h number=0.75, atta
k angle=1.0◦.
4. Concluding remarks

In this paper, we devised an effective and robust algorithm for steady Euler equations

on unstructured grids, which is a Newton-iteration method using a multigrid algorithm to

solve the linearized Jacobian matrix. We developed a local residual dependent regulariza-

tion for the linearized Jacobian matrix. The block LU-SGS iteration was adopted as the

smoother of the multigrid algorithm. The numerical examples demonstrated the efficiency

and the robustness of our algorithm.

The algorithm proposed above is now being extended for the second-order reconstruc-

tion and for the three spatial dimension problems. Some preliminary numerical experi-

ments indicate that the algorithm can work quite well for both cases. Similar convergence

history can be obtained as shown in this paper. Those results will be reported elsewhere.

Taken the developing of the algorithm as a beginning step, our long-range research

object is on the aerodynamics design. The aerodynamics design can be studied using the

optimal control theory. Currently, we have deduced the discretized optimal condition for
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Figure 15: Same as Fig. 14, ex
ept for two 
losely set NACA0012 airfoils.
the finite volume discretization adopted in this paper. The solver of the optimal control

problem is under implementation.
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