
Advances in Applied Mathematics and Mechanics April 2009
Adv. Appl. Math. Mech., Vol. 1, No. 2, pp. 201-214 (2009)

Discrete Maximum Principle for Poisson Equation
with Mixed Boundary Conditions Solved by
hp-FEM
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Abstract. We present a proof of the discrete maximum principle (DMP) for the
1D Poisson equation −u′′= f equipped with mixed Dirichlet-Neumann boundary
conditions. The problem is discretized using finite elements of arbitrary lengths
and polynomial degrees (hp-FEM). We show that the DMP holds on all meshes
with no limitations to the sizes and polynomial degrees of the elements.
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1 Introduction

It is well known that the finite element solutions to elliptic and parabolic PDEs some-
times exhibit behavior which is incompatible with the corresponding maximum prin-
ciples and, consequently, incompatible with the underlying physics. Most frequently
this happens when a finite element mesh contains large dihedral angles, but also in
other situations. Discrete maximum principles (DMP) provide additional restrictions
on finite element meshes under which the maximum principles are preserved on the
discrete level.

Up to our knowledge the first DMP were introduced in the 1960s [16]. In the 1970s
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DMP were used to prove the convergence of finite differences and lowest-order fi-
nite element methods (see, e.g., [3, 4]). Nowadays the DMP play an important role in
computational PDEs by guaranteeing that approximation of physically nonnegative
quantities such as the density, temperature, concentration, or electric charge remains
nonnegative. Due to the difficulty of the topic, current research in the area of DMP al-
most exclusively deals with lowest-order elements (see, e.g., [2,7–10,17,18,20]). How-
ever, in the last decades, significant progress has been made in the development of
the hp-FEM (finite element methods with variable size and polynomial degree of el-
ements) and their applications to challenging large-scale problems in computational
science and engineering (see, e.g., [1,11,12,15]). These methods are substantially more
efficient compared to standard lowest-order schemes, and an increasing demand for
them implies a need for the corresponding generalizations of the DMP.

However, the generalization of the DMP to higher-order approximations is quite
demanding and there only are a few known results in this direction. We mention paper
[21] concerning the high-order collocation method and a negative result [6] showing
that a nonstandard version of DMP is not valid for quadratic and higher-order FEM
in 2D.

It was shown in [14] that the DMP cannot be extended from the lowest-order FEM
to hp-FEM in a straightforward manner, and a weak DMP was introduced. Recently,
a maximum principle for one-dimensional Poisson equation equipped with Dirichlet
boundary conditions and discretized by hp-FEM was presented in [19]. The result
was proved under a mild sufficient condition stating that the length of the longest
element in the mesh must be less than 90% of the length of the entire domain. In
this paper we investigate the case of mixed Neumann-Dirichlet boundary conditions.
using different analytical methods. Interestingly, it turns out that in this case, the DMP
holds true with no restrictions.

In general, the analysis of the DMP for mixed boundary conditions follows the
same steps as the analysis for the Dirichlet conditions presented in [19]. Nevertheless,
the stiffness matrices in both cases differ. Fortunately, even in the case of the mixed
boundary conditions there exists an explicit formula for entries of the inverse stiffness
matrix, see Lemma 4.1. Naturally, this formula differs from the case of the pure Dirich-
let conditions. Consequently, the corresponding discrete Green’s functions differ and,
hence, we had to develop a new proof of its nonnegativity in the case of the mixed
boundary conditions, see Section 5. Interestingly, the same quantity H∗

rel(p), where p
stands for the polynomial degree, plays the crucial role in both cases. However, this
role differs. While in the case of Dirichlet conditions the DMP is satisfied if the relative
length of all elements is at most H∗

rel(p), in the case of mixed conditions it suffices for
the validity of DMP to have H∗

rel(p)≥0.
Furthermore, the nature of the maximum principle for the Dirichlet and for the

mixed boundary conditions differs. In both cases the maximum principle is equivalent
to the conservation of nonnegativity, see Definitions 2.1-2.3. However, in the case of
Dirichlet conditions this equivalence is trivial and in the case of the mixed conditions
the maximum principle implies the conservation of nonnegativity in a nontrivial way.
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2 The model problem and its discretization

We solve the one dimensional Poisson equation with mixed Dirichlet-Neumann bound-
ary conditions,

−u′′ = f , in Ω,
u(α) = 0, u′(β) = g(β).

Here, Ω=(α, β)⊂R is an interval.
The corresponding weak formulation reads: Find u∈V such that

a(u, v) = ( f , v) + g(β)v(β), ∀v ∈ V, (2.1)

where V={v∈H1(Ω); v(α)=0}, f∈L2(Ω) is a right-hand side, g(β)∈R, (·, ·) stands for
an L2(Ω) inner product, and a(u, v)=(u′, v′).

In a standard way we create a partition α=x0<x1<. . .<xM=β of the domain Ω
consisting of M elements Ki=[xi−1, xi], i=1, 2, . . . , M. Every element Ki is assigned an
arbitrary polynomial degree pi≥1. The corresponding finite element space Vh⊂V of
piecewise-polynomial and continuous functions has the form

Vhp =
{

vhp ∈ V; vhp|Ki ∈ Ppi(Ki), i = 1, 2, . . . , M
}

.

Here Ppi(Ki) stands for the space of polynomials of degree at most pi on the element
Ki. The space Vhp has the dimension N = ∑M

i=1 pi. There exists a unique finite element
solution uhp∈Vhp satisfying

a(uhp, vhp) = ( f , vhp) + g(β)v(β), ∀vhp ∈ Vhp. (2.2)

Definition 2.1. Problem (2.2) satisfies the discrete maximum principle (DMP) if

f ≤ 0 a.e. in Ω and g(β) ≤ 0, ⇒ max
Ω

uhp = max
∂Ω

uhp,

where ∂Ω is the boundary of the domain Ω.

Definition 2.2. Problem (2.2) satisfies the discrete minimum principle if

f ≥ 0 a.e. in Ω and g(β) ≥ 0, ⇒ min
Ω

uhp = min
∂Ω

uhp.

Definition 2.3. Problem (2.2) conserves nonnegativity if

f ≥ 0 a.e. in Ω and g(β) ≥ 0, ⇒ uhp ≥ 0 in Ω.

Clearly, the discrete maximum and minimum principles are equivalent for prob-
lem (2.2). We will use this equivalence and the following lemma to prove the DMP
via conservation of nonnegativity.
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Lemma 2.1. If problem (2.2) conserves nonnegativity then it satisfies the discrete minimum
principle.

Proof. Since uhp≥0 in Ω and uhp(α)=0, we conclude min
∂Ω

uhp=0=min
Ω

uhp.

Remark 2.1. For the sake of simplicity, we formulated problem (2.2) with a homoge-
neous Dirichlet boundary condition u(α)=0. However, all results of this study hold
for a nonhomogeneous condition of the form u(α)=uα. Indeed, the Dirichlet lift is
constant in this case and every solution ûhp to problem (2.2) with nonhomogeneous
condition u(α)=uα can be decomposed to

ûhp = uα + uhp,

where uhp vanishes at the endpoint α.

Remark 2.2. The Neumann boundary condition at the point β can be replaced by the
more general Robin’s boundary condition

u′(β) + γu(β) = g(β), with γ ≥ 0.

The presented analysis can be generalized to this case as well.†

3 Discrete Green’s function

The discrete Green’s function (DGF) is defined in analogy to the standard Green’s
function:

Definition 3.1. For an arbitrary z∈Ω, the unique solution Ghp,z∈Vhp to the problem

a(vhp, Ghp,z) = vhp(z), ∀vhp ∈ Vhp, (3.1)

is called the discrete Green’s function (DGF) corresponding to the point z.

In the following, we will use the notation

Ghp(x, z) = Ghp,z(x), for (x, z) ∈ Ω
2
,

where Ω
2=Ω × Ω. A combination of (2.2) and (3.1) yields the so-called Kirchhoff-

Helmholtz representation

uhp(z) =
∫

Ω
Ghp(x, z) f (x) dx + g(β)Ghp(β, z), ∀z ∈ Ω. (3.2)

The following lemma shows that the DGF can easily be expressed using any basis
of Vhp, cf. [5]. We use the Kronecker symbol

δik =
{ 1 for i = k,

0 for i 6= k.

†We thank Sergey Korotov from the Helsinki University of Technology for pointing this out.
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Lemma 3.1. Let {ϕ1, ϕ2, . . . , ϕN} be a basis of Vhp. If the stiffness matrix Aij=a(ϕj, ϕi),
1≤i, j≤N is nonsingular, then

Ghp(x, z) =
N

∑
j=1

N

∑
k=1

A−1
jk ϕk(x)ϕj(z). (3.3)

Here, A−1
jk are the entries of the inverse stiffness matrix, i.e.,

N
∑

j=1
Aij A−1

jk = δik, 1 ≤ i, k ≤ N.

Proof. Substitute

Ghp(x, z) =
N

∑
i=1

ci(z)ϕi(x), (3.4)

into (3.1) with vhp=ϕj. It follows that

N

∑
i=1

ci(z) a(ϕj, ϕi)︸ ︷︷ ︸
Aij

= ϕj(z).

The coefficients ci(z) are expressed as ck(z)=∑N
j=1 ϕj(z)A−1

jk in terms of the inverse
matrix, and they are substituted back into (3.4). This finishes the proof.

Theorem 3.1. Problem (2.2) conserves nonnegativity if and only if the corresponding discrete
Green’s function Ghp(x, z)=Ghp,z(x) defined by (3.1) is nonnegative in Ω

2.

Proof. By (3.3), the discrete Green’s function Ghp(x, z) is continuous up to the
boundary of Ω. The rest follows immediately from (3.2).

This theorem is a useful tool for the analysis of discrete maximum principles. In
the rest of this paper we will show that the discrete Green’s function corresponding to
the problem (2.2) is nonnegative.

4 DGF for the model problem

4.1 Lowest-order case

In this section we will construct the DGF for problem (2.2). We begin with the case
p1=p2=. . .=pM=1. Let us define hi=xi − xi−1. By BL={φ1, φ2, . . . , φM}we denote the
standard lowest-order basis consisting of the piecewise-linear “hat functions” such
that φj(xi)=δij, 1 ≤ i, j ≤ M. In this case the stiffness matrix AL∈RM×M is tridiagonal,

AL
ij =





1/hi + 1/hi+1, for i = j < M,
1/hM, for i = j = M,
−1/hi+1, for i = j− 1,
−1/hi−1, for i = j + 1,
0, otherwise,

for i, j = 1, 2, . . . , M.
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Lemma 4.1. The inverse matrix (AL)−1 ∈ RM×M has the form

(AL)−1 =




x1 − α x1 − α x1 − α . . . x1 − α
x1 − α x2 − α x2 − α . . . x2 − α
x1 − α x2 − α x3 − α . . . x3 − α

...
...

...
. . .

...
x1 − α x2 − α x3 − α . . . xM − α




,

i.e., (AL)−1
ij =xi − α for 1≤i≤j≤M and (AL)−1

ij =xj − α for 1≤j<i≤M.

Proof. We want to show that zij=δij, where

zij =
M

∑
k=1

(AL)−1
ik AL

kj =
M

∑
k=1

(AL)−1
ik a(φj, φk),

for all i, j=1, 2, . . . , M. We fix i and j, and consider the bilinear forms

a1(u, v) =
∫ xi

α
u′v′ dx and a2(u, v) =

∫ β

xi

u′v′ dx.

We use the explicit formulae for (AL)−1
ik to get

zij = a
(

φj,
i−1

∑
k=1

(xk − α)φk

)
+ (xi − α)a(φj, φi) + (xi − α)a

(
φj,

M

∑
k=i+1

φk

)
.

Now, we split the term a(φj, φi)=a1(φj, φi) + a2(φj, φi) to obtain

zij = a1(φj, x− α) + (xi − α)a2(φj, 1) = a1(φj, x− α) = δij,

where the last equality follows from a straightforward simple computation.
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Figure 1: The lowest-order part GL
hp(x, z)

of the discrete Green’s function Ghp(x, z)
for the Poisson equation with homogeneous
mixed boundary conditions in Ω=(−1, 1)
on a mesh with three elements [−1,−3/4],
[−3/4, 0], and [0, 1].
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Using Lemma 4.1 and identity (3.3), we can write the DGF in the form

GL
hp(x, z) =

M

∑
i=1

(xi − α)φi(x)φi(z)

+
M−1

∑
i=1

M

∑
j=i+1

(xi − α)[φi(x)φj(z) + φj(x)φi(z)]. (4.1)

In particular, we see immediately that

GL
hp(x, z) ≥ 0, ∀(x, z) ∈ Ω

2
. (4.2)

The situation is illustrated in Fig. 1.

4.2 Higher-order case

In this paragraph we return to the original setting with arbitrary polynomial degrees
pi≥1. In order to facilitate the construction of higher-order basis functions of the space
Vhp, let us introduce the Lobatto shape functions l0, l1, l2, . . . on a reference interval
K̂=[−1, 1], see, e.g., [12, 15] and (7.1) in Appendix.

The lowest-order Lobatto shape functions l0 and l1 have the form l0(ξ)=(1− ξ)/2,
l1(ξ)=(1 + ξ)/2, ξ∈K̂. The higher-order shape functions l2, l3, . . . are defined as an-
tiderivatives to the Legendre polynomials. Therefore, they satisfy

∫ 1

−1
l′k(ξ)l′m(ξ) dξ = δkm, k, m = 2, 3, . . . .

Every Lobatto shape function lk, k=2, 3, . . . , is a polynomial of degree k and it vanishes
at ±1. Thus it can be expressed as

lk+2(ξ) = l0(ξ)l1(ξ)κk(ξ), k = 0, 1, 2, . . . ,

where κk is a polynomial of degree k. For reference, a first few kernels κk are listed in
Appendix.

The basis B={φ1, φ2, . . . , φN} of Vhp can be written as B=BL ∪ BB, where BL was
defined above and BB is the higher-order part of the basis comprising functions φM,
φM+1, . . . , φN . These are defined in a standard way as follows:

Consider the standard affine transformations of the reference element K̂ to an ele-
ment Ki=[xi−1, xi], i=1, 2, . . . , M,

χKi(ξ) =
(xi − xi−1)ξ + (xi + xi−1)

2
. (4.3)

On an element Ki of the polynomial degree pi, there are pi − 1 higher-order basis
functions. These vanish outside of Ki and in Ki they are defined as the Lobatto shape
functions l2, l3, . . . , lpi composed with the inverse map χ−1

Ki
(x).
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Lemma 4.2. We have the following orthogonality relations:

a(φL, φB) = 0, ∀φL ∈ BL, ∀φB ∈ BB,
a(φB, ψB) = 0, ∀φB ∈ BB, ∀ψB ∈ BB, φB 6= ψB.

Proof. The proof is straightforward, based on the L2-orthogonality of the Legendre
polynomials.

By Lemma 4.2, both the stiffness matrix A and its inverse have the following block
structure:

A =
(

AL 0
0 D

)
, A−1 =

(
(AL)−1 0

0 D−1

)
,

with
D = diag

( 2
h1

, . . . ,
2
h1︸ ︷︷ ︸

(p1−1) times

,
2
h2

, . . . ,
2
h2︸ ︷︷ ︸

(p2−1) times

, . . . ,
2

hM
, . . . ,

2
hM︸ ︷︷ ︸

(pM−1) times

)
. (4.4)

By (3.3), the DGF can be written as

Ghp(x, z) = GL
hp(x, z) + GB

hp(x, z), (4.5)

where GL
hp(x, z) corresponds to (4.1) and

GB
hp(x, z) =

N

∑
k=M

D−1
jj φj(x)φj(z), ∀(x, z) ∈ Ω

2
. (4.6)

Unfortunately, GB
hp(x, z) defined by (4.6) is not nonnegative in the entire Ω

2
in general.

For instance, in the example shown in Fig. 2, there are small regions near the points
(1, 0) and (0, 1), where the function GB

hp(x, z) is negative.

Notice that any partition of Ω produces a rectangular grid on Ω
2
, and that GB

hp(x, z)
can be nonzero within the diagonal squares of this grid only. In other words,

supp GB
hp ⊂

M⋃

i=1

K2
i . (4.7)
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Figure 2: The higher-order part GB

hp(x, z)
of the discrete Green’s function Ghp(x, z)
for the Poisson equation with homoge-
neous mixed boundary conditions in Ω =
(−1, 1), on a mesh with three elements
[−1,−3/4], [−3/4, 0], and [0, 1] of the
polynomial degrees p1=1, p2=2, p3=3.
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Lemma 4.3. The discrete Green’s function Ghp defined by (4.5) is nonnegative in Ω
2\⋃M

i=1 K2
i .

Proof. Considering (4.7) together with (4.2) leads to the conclusion.

5 The DGF on K2
i

As justified by Lemma 4.3, we only need to continue with the study of the discrete
Green’s function Ghp(x, z) in the union of the diagonal squares

⋃M
i=1 K2

i . Without loss
of generality, let us restrict ourselves to only one square K2

i , 1≤i≤M. Let p=pi be the
polynomial degree assigned to Ki. Notice that only a few terms in (4.1) and (4.6) are
nonzero in K2

i . Hence, by (4.1), (4.4), and (4.6) we obtain

Ghp(x, z)
∣∣
K2

i
= (xi − α)φi(x)φi(z) + (xi−1 − α)φi−1(x)φi−1(z)

+(xi−1 − α) [φi(x)φi−1(z) + φi−1(x)φi(z)]

+
xi − xi−1

2
GB

hp(x, z)|K2
i
, (5.1)

for (x, z)∈K2
i , 1≤i≤M. It is convenient to introduce the notation Ki=[xi−1, xi]=[L, R].

We transform the function Ghp from K2
i to the reference square K̂2=[−1, 1]2 using

the linear transformation (4.3) with x=χKi(ξ) and z=χKi(η),

Ghp(x, z)
∣∣
K2

i
= Ĝhp(ξ, η)

= (R− α)l1(ξ)l1(η) + (L− α)l0(ξ)l0(η)

+(L− α) [l1(ξ)l0(η) + l0(ξ)l1(η)] +
R− L

2
Ĝp,B

hp (ξ, η), (5.2)

for (ξ, η)∈K̂2. Here l0(ξ) and l1(ξ) are the above-defined lowest-order shape functions
on K̂ and

Ĝp,B
hp (ξ, η) =

p

∑
m=2

lm(ξ)lm(η) = l0(ξ)l0(η)l1(ξ)l1(η)
p−2

∑
k=0

κk(ξ)κk(η), (5.3)

is the higher-order part.
Let us modify formula (5.2) in the following way: Divide (5.2) by R − L>0 and

use the identities
R− α

R− L
=

L− α

R− L
+ 1,

and

l0(ξ)l0(η) + l1(ξ)l1(η) + l0(ξ)l1(η) + l1(ξ)l0(η) = 1, ∀(ξ, η) ∈ K̂2.

We obtain
Ĝhp(ξ, η)

R− L
=

L− α

R− L
+ l1(ξ)l1(η) +

1
2

Ĝp,B
hp (ξ, η). (5.4)
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Table 1: The quantity H∗
rel(p) for p = 1, 2, 3, . . . , 20.

p H∗
rel(p) p H∗

rel(p) p H∗
rel(p) p H∗

rel(p)
1 1 6 1 11 0.953759 16 0.968695
2 1 7 0.935127 12 0.969485 17 0.967874
3 9/10 8 0.987060 13 0.959646 18 0.969629
4 1 9 0.945933 14 0.968378 19 0.970855
5 0.919731 10 0.973952 15 0.964221 20 0.970814

Using (5.3), this formula can be reshaped into

Ĝhp(ξ, η)
R− L

=
L− α

R− L
+ l1(ξ)l1(η)

[
1 +

1
2

l0(ξ)l0(η)
p−2

∑
k=0

κk(ξ)κk(η)
]
. (5.5)

Clearly, (L− α)/(R− L)≥0 and l1(ξ)l1(η)≥0 in K̂2. It remains to verify nonnegativity
of the expression in the square brackets. For this reason we define

H∗
rel(p) = 1, for p = 1,

H∗
rel(p) = 1 +

1
2

min
(ξ,η)∈K̂2

l0(ξ)l0(η)
p−2

∑
k=0

κk(ξ)κk(η), for p ≥ 2.

Hence, if H∗
rel(p)≥0 then Ĝhp(ξ, η)≥0 in K̂2 by (5.5). Transforming (ξ, η) back to (x, z)

by (4.3), we obtain nonnegativity of Ghp(x, z) in K2
i , cf. (5.2), for all i=1, 2, . . . , M.

Thus, in view of Lemma 4.3 we showed that the discrete Green’s function Ghp(x, z)≥0

in Ω
2
, provided H∗

rel(pi)≥0 for all i=1, 2, . . . , M.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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H
* re

l(p
)

Figure 3: The values H∗
rel(p) for p = 1, 2, . . . , 104. Circles indicate the values for p odd and crosses for p

even. The upper dotted line is a graph of 1 + 0.5 ln(1− 1/x) and the bottom line is a shift of this graph
by −0.01.

In [19] it was verified that H∗
rel(p)≥0 for 1≤p≤100. More precisely, the value of

H∗
rel(p) can be found analytically for 2≤p≤4. For 5≤p≤100, it needs to be computed
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numerically. As it is seen from Table 1 and Fig. 3, the smallest value of H∗
rel(p) is

for p=3 and it equals to 9/10. Thus, the crucial quantity H∗
rel(p) was checked to be

nonnegative for 1≤p≤100. This, consequently, shows nonnegativity of the discrete
Green’s function in Ω

2
and validity of the discrete maximum principle.

6 Main result

Let us summarize the conclusions of the previous analysis:

Theorem 6.1. Let α=x0<x1<. . .<xM=β be a partition of the domain Ω=(α, β) and let
pi≥1 be a polynomial degree assigned to the element Ki=[xi−1, xi], i=1, 2, . . . , M. If

H∗
rel(pi) ≥ 0 for all i = 1, 2, . . . , M, (6.1)

then problem (2.2) satisfies the discrete maximum principle

Proof. Let Ki be an element. By (5.2), (5.5), and (6.1) it holds

Ghp(x, z)|K2
i
= Ĝhp(ξ, η) ≥ 0

for all (x, z)∈K2
i with ξ=χ−1

Ki
(x) and η=χ−1

Ki
(z). Thus, Ghp(x, z)≥0 in

⋃M
i=1 K2

i . Lemma 4.3

implies that Ghp(x, z)≥0 also in Ω
2 \ ⋃M

i=1 K2
i . Theorem 3.1 and Lemma 2.1 finish the

proof.

The crucial condition (6.1) was verified analytically for p≤4, therefore Theorem 6.1
proves the discrete maximum principle for problem (2.2) for all meshes and arbitrary
polynomial degrees not exceeding 4. However, numerical calculations of H∗

rel(p) show
that the condition (6.1) is satisfied for 5≤p≤100 as well. Moreover, the steadily grow-
ing trend in H∗

rel for p≥50 observed in Fig. 3 motivates the following conjecture:

Conjecture 1. The problem (2.2) satisfies the discrete maximum principle for arbitrary par-
tition of the domain Ω=(α, β) and for arbitrary distribution of polynomial degrees.

7 Conclusions and further generalizations

We proved the DMP for the 1D Poisson problem solved by the sophisticated hp-
version of the FEM. The next natural step is to generalize this result for more general
problems in two (or more) dimensions.

Since the key ingredients (Lemma 3.1 and Theorem 3.1) are valid for arbitrary el-
liptic operator in arbitrary dimension, the presented approach can be, in principle,
extended to prove the DMP even in more general settings. However, the conditions
for the mesh and polynomial degrees which would guarantee the DMP are then more
difficult to find.
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More general operators, for example the diffusion-reaction operator, bring diffi-
culties such as (i) the non-existence of a simple formula for the inverse of the stiffness
matrix, cf. Lemma 4.1, and (ii) non-orthogonality of the bubble functions to the ver-
tex ones, cf. Lemma 4.2. These difficulties can be treated for instance in the following
way. In case (i) we have to find suitable lower bounds for the entries of the inverse
stiffness matrix. This can be done by analysing simplified meshes with a few elements
and showing that their refinement leads to an increase of nodal values of the discrete
Green’s function. Difficulty (ii) is not fundamental and it can be treated by orthogo-
nalization of the vertex functions with respect to bubbles (the concept of the discrete
minimum energy extensions).

With no doubts, the significance of the hp-FEM lies in 2D and 3D problems. When
extending the DMP results to higher-order methods in higher spatial dimensions, one
has to overcome not only the two difficulties mentioned above but also (iii) the pres-
ence of the edge (and face) basis functions. These basis functions make the process of
orthogonalization of the vertex functions to the other basis functions non-local which
makes the analysis more demanding but treatable.

The search for suitable conditions for more general and higher dimensional prob-
lems is a challenging task of high practical significance. Generalizations of the pre-
sented results are desirable because conditions guaranteeing the physical admissibil-
ity of hp-FEM approximations are valuable from the practical point of view, and they
are demanded from the engineering community.

Appendix

The Lobatto shape functions are defined by

lm(ξ) =

√
2m− 1

2

∫ ξ

−1
Pm−1(x) dx, m = 2, 3, . . . , (7.1)

where
Pm(x) = dm/dxm(x2 − 1)m/(2mm!),

stands for the mth-degree Legendre polynomial. The kernels are defined by

κk(ξ) = lk+2(ξ)/(l0(ξ)l1(ξ)), k = 0, 1, 2, . . . ,

where
l0(ξ) = (1− ξ)/2, l1(ξ) = (1 + ξ)/2, ξ ∈ [−1, 1].

These kernels can be generated by the recurrence

k + 4√
2k + 7

κk+2(ξ) =
√

2k + 5ξκk+1(ξ)− k + 1√
2k + 3

κk(ξ), k = 0, 1, 2, . . . .
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Interesting observation is that these kernels are scaled derivatives of Legendre poly-
nomials

κk(ξ) = −
√

8(2k + 3)
(k + 2)(k + 1)

P′k+1(ξ), k = 0, 1, 2, . . . .

Hence, they form a system of orthogonal polynomials with weight 1− ξ2 = 4l0(ξ)l1(ξ).
For reference, we list several kernel functions κk (see, e.g., Section 3.1 in [15] or Sec-
tion 1.2 in [13]):

κ0(ξ) = −
√

6, κ1(ξ) = −
√

10ξ,

κ2(ξ) = −1
4

√
14(5ξ2 − 1),

κ3(ξ) = −3
4

√
2(7ξ2 − 3)ξ,

κ4(ξ) = −1
8

√
22(21ξ4 − 14ξ2 + 1),

κ5(ξ) = −1
8

√
26(33ξ4 − 30ξ2 + 5)ξ,

κ6(ξ) = − 1
64

√
30(429ξ6 − 495ξ4 + 135ξ2 − 5),

κ7(ξ) = − 1
64

√
34(715ξ6 − 1001ξ4 + 385ξ2 − 35)ξ,

κ8(ξ) = − 1
128

√
38(2431ξ8 − 4004ξ6 + 2002ξ4 − 308ξ2 + 7).
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