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Abstract. This paper proposes an extrapolation cascadic multigrid (EXCMG) method
to solve elliptic problems in domains with reentrant corners. On a class of λ-graded
meshes, we derive some new extrapolation formulas to construct a high-order approx-
imation to the finite element solution on the next finer mesh using the numerical so-
lutions on two-level of grids (current and previous grids). Then, this high-order ap-
proximation is used as the initial guess to reduce computational cost of the conjugate
gradient method. Recursive application of this idea results in the EXCMG method
proposed in this paper. Finally, numerical results for a crack problem and an L-shaped
problem are presented to verify the efficiency and effectiveness of the proposed EX-
CMG method.
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1 Introduction

It is well known that when an elliptic boundary value problem is solved by the finite
element (FE) method on a quasi-uniform grid, the convergence rate is determined by the
regularity of the solution [18]. Solutions of elliptic boundary value problems on domains
with reentrant corners have singular behavior near the corners. This occurs even when
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the data of the underlying problem are very smooth. Such singular behavior significantly
affects the accuracy of the FE method throughout the whole domain. For simplicity, we
consider the Poisson equations with homogeneous Dirichlet boundary conditions:

{

−∆u= f in Ω,
u=0 on ∂Ω,

(1.1)

where f is a given function in the L2(Ω) and Ω is an open, bounded domain in R
2 with

at least one reentrant corner.
The unique solution of problem (1.1) belongs to H1+π/ω−ǫ for any ǫ> 0 where ω is

the maximum of the reentrant angles, and the standard continuous piecewise linear FE
on a quasi-uniform grid yields O(hπ/ω−ǫ) and O(h2π/ω−ǫ) accuracy in the H1 and the
L2 norms, respectively. There are several approaches (such as conformal transformation
methods, local mesh refinement and singular function methods) in the literature to over-
come this difficulty (see [1–3, 7–12, 19] and references therein).

Locally refined grid for singular solutions was first studied by Babuska [1, 2]. Then,
Schatz and Wahlbin [34] introduced a more general, locally refined grid to handle sin-
gularity. With this grid, optimal order convergence rate can be obtained. Huang and
Lin [28,29] proposed a radial shrinkage transformation method, which greatly simplifies
the error analysis of FE approximations. The advantage of the local mesh refinement is
that the knowledge of the exact form of the singular functions is not needed, so it be-
comes one of the most important methods to solve singular problems. However, when
the singularity of solutions is intensive or a high accuracy is required, the number of grid
points increases significantly. In these circumstance, classical iterative methods fail to be
effective.

The multigrid (MG) method is regarded as one of the most effective methods for
solving Poisson problems. In [27], Huang and Mu studied the extrapolation and MG
algorithms for stress intensity factors on reentrant domains. Brenner [7–9] successfully
applied the classical MG methods to compute the regular part of singular solutions on
corner domains. Cai and Kim developed a new FE method based MG solvers by using
singular functions for the Poisson equation on a polygonal domain with reentrant an-
gles [10,11]. However, classical MG methods have to cycle between coarse and fine grids
to accelerate their rate of convergence. The cascadic multigrid (CMG) method proposed
in 1996 by Deuflhard and Bornemann is a simpler multi-level method without coarse-
grid correction [5]. Since then, many scholars have carried out extensive studies on the
theoretical analysis and application of the method [6, 35, 36, 38, 39]. In 2008, we proposed
an extrapolation cascadic multigrid method (EXCMG) for solving elliptic boundary value
problems [14, 15]. The algorithm is based on the idea of CMG, while the linear interpo-
lation on the coarse grid is modified as extrapolation and quadratic interpolation, which
enable us to obtain a better initial guess for the iterative solution on the next finer grid.
Then the conjugate gradient (CG) method is used to solve the resulting linear system
with the good initial guess. After several years’ development, the EXCMG algorithm
has been successfully applied to non-smooth problems [22], parabolic problems [21], and
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some other related problems [17, 25, 26, 30, 31]. Recently, Pan et al. further improved and
generalized the EXCMG method to solve three dimensional (3D) elliptic boundary value
problems [32], obtained the super-optimality of the EXCMG method under the energy
norm for H2+α-regular (0< α≤ 1) problems in both two and three dimensions [23], and
proposed an EXCMG method to solve 3D Poisson equation combined with a fourth-order
compact difference scheme [33].

The λ-graded grid [13] can not only ensure optimal convergence rate of FE solutions,
but also maintain the superconvergence and extrapolation. Furthermore, the generation
of the graded grid is trivial. The goal of this paper is to extend the EXCMG method to
elliptic problems on domains with reentrant corners by using piecewise λ-graded grid.

The rest of the paper is organized as follows. Section 2 contains singularities on reen-
trant domains and the weighted regularity estimate of singular problems. In Section 3,
we presents some error estimates of FE approximations based on λ-graded grid. Some
new extrapolation formulas and the EXCMG algorithm for elliptic problems on reentran-
t domains are introduced in Section 4. Numerical examples are provided to verify the
effectivity of the method in Section 5. And conclusions are given in the final section.

In the following discussion, the symbol C denotes a generic positive constant which
may vary with the context, but is always independent of the mesh size.

2 Singularity on reentrant domains

Suppose that the maximum interior angle on the domains is ω=απ, 1<α<2. Without loss
of generality, assume that the corresponding vertex is at the origin. Let polar coordinates
(r,θ) be chosen at the origin so that the internal angle ω is spanned by the two half lines
θ = 0 and θ = ω. Then the unique solution of problem (1.1) has the singular function
representation of the form

u=w+λr
1
α sin

( θ

α

)

, (2.1)

where λ∈R is the so-called stress intensity factor and w∈H2(Ω) is the regular part of the
solution. Moreover, the following regularity estimate holds:

|Dku|≤Cr
1
α−|k|. (2.2)

It is well known that the solution u of the problem (1.1) is in H1+1/α−ǫ(Ω) for any ǫ>0.
For a crack domain (α=2), the solution merely belongs to H1.5−ǫ, see [20] for details. Such
lack of regularity affects the accuracy of the FE approximation.

When the problem (1.1) is solved by linear FE method on a quasi-uniform grid, we
have the following error estimates [18]:

‖u−uh‖=O(h2γ) (2.3)

and
‖u−uh‖1=O(hγ), (2.4)
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for γ = 1
α −ǫ < 1. The error estimate (2.3) will be verified in Table 1 and Table 5 in the

numerical results. However, optimal convergence rates O(h2) and O(h) cannot be ob-
tained.

It is well known that the success of the extrapolation technique relies on the exis-
tence of asymptotic error expansions. Huang [24] and Blum [4] studies the extrapolation
method for the numerical solution of elliptic boundary value problems on reentrant do-
mains. The main result of above mentioned two papers is presented in the following
theorem.

Theorem 2.1 (see [4,24]). Assume Ω is a polygon, and ωj (1≤ j≤n) are its internal angels. Let

uh be the linear FE solution to the Dirichlet problem for Poisson’s equation. Under the assumption
on the smoothness of the given data, at every nodal point x, there is an asymptotic error expansion,

uh(x)=u(x)+
n

∑
j=1

Aj(x)h2π/ωj+O(h2|logh|), (2.5)

which holds on the quasi-uniform mesh with mesh size h. Here, n is the number of reentrant
corners, Aj(x) are suitable smooth functions.

3 Weighted error estimate on λ-graded grid

3.1 λ-graded grid

Consider the graded grid on a sector domain Ω, the step size is set as h=1/N, and grid
points are set on radius vector r:

rj =(jh)λ, j=0,1,2,··· ,N. (3.1)

Several arcs Sj are drawn and each Sj is divided into j equal parts. By connecting these
partition points using straight line segments, a λ-graded grid is generated (see Fig. 1).
Obviously, when λ> 1, there is a locally refined grid at origin O, and for element τj on
the j-th layer between arcs Sj−1 and Sj, the step size along the radial direction is

hj = rj−rj−1=(jh)λ
(

1−
(

1−
1

j

)λ)

≈λrj/j=λhr1−1/λ
j .

The step size of element τ1 on the first layer near to the origin O is the smallest, that is,
h1 = h; while the step size of the element τN close to the unit arc is hN ≈λh. The ratio of
two adjacent points rj+1 to rj is (rj+1)/rj=(1+1/j)λ≤2λ, which is uniformly bounded.
Then the step size difference between two adjacent elements is

hj+1−hj =(jh)λ
((

1+
1

j

)λ
+
(

1−
1

j

)λ
−2

)

≈λ(λ−1)
rj

j2
≈ (λ−1)

hj

j
. (3.2)
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Figure 1: λ-graded grid on a sector (λ=2, N=6).

3.2 Weighted error estimate

Weighted regularity estimate can be obtained by using the weighted space proposed
in [13]. The solution of (1.1) shows the following weighted regularity estimate:

‖rsD2u‖+‖rs−1Du‖+‖rs−2u‖≤C‖rs f‖ (3.3)

for 1− 1
α < s<1+ 1

α .

It should be noted that λ-graded grid can automatically generate the required weight
function. Based on such graded grid, the following error estimations of linear FE approx-
imation hold.

Theorem 3.1 (see [13]). Suppose that sector Ω contains central angle απ and a λ-graded grid
is generated in Ω. Let u be the solution of boundary problem (1.1) and uh be the linear FE
approximation. If λ>α, then the following optimal order error estimates hold:

‖u−uh‖≤Ch2‖rsD2u‖ (3.4)

and

‖u−uh‖1≤Ch‖rs D2u‖. (3.5)

4 EXCMG based on a graded grid

4.1 Extrapolation for true solution

Suppose that u is the exact solution of the differential equation, and uh is the linear (or
bilinear) FE solution on grid Zh. Denote eh =u−uh and eh

k = eh(xk). For elliptic problems
in domains with reentrant corners, we already have error estimates of FE approximations
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(2.3), (3.4) and (3.5) in the L2 norm, and further assume that the truncation error at node
x has the form

eh(x)=A(x)hα+O(hβ), 0<α<β, (4.1)

where A(x) is the suitably smooth function. When we use quasi-uniform meshes, we
already have the asymptotic error expansion (2.5). For the L-shape domain, α=4/3 and
β=2, see [24] for details.

If the grid is refined, a grid Zh/2 with step size h/2 is obtained. On each node x, the
FE solution uh/2 shows:

eh/2(x)=A(x)hα/2α+O(hβ). (4.2)

Then on grid point xk, A(xk) on the right-hand side of the equation can be easily elimi-
nated to obtain a high-precision extrapolation formula,

Euh/2
k :=

2αuh/2
j −uh

k

2α−1
=uk+O(hβ), k= j, j+1. (4.3)

Some scholars have applied the extrapolation formula in MG, although the results
are unsatisfactory. The authors found that the extrapolation value of the above formula
was excessively accurate when it was used as the initial guess of the iterative solution on
the next finer grid. This is because the FE solution on next finer grid Zh/4 should have an
error A(xj)h

α/4α. If an over-accurate initial guess with error O(hβ) is adopted, additional
iterations need to be performed. Such iterations play a negligible role.

4.2 Extrapolation for FE solution

A new extrapolation formula is designed to approximate the FE solution uh/4, rather than
the exact solution u.

Taking a one-dimensional grid as an example, for the three embedded grids Zi with
mesh size hi = h0/2i, i = 0,1,2 in Fig. 2, the corresponding linear FE solution is ui. The
coarse element τj+1 =(x0

j ,x0
j+1) of Z0 is refined to two elements of Z1 and four elements
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1 x
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Figure 2: Three levels of embedded graded grid (λ=2).
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of Z2. By adding a midpoint and two quartiles (when the local refinement index λ> 1,
they are not actual midpoints and quartiles), a set of five points is obtained:

{

x2
4j, x2

4j+1, x2
4j+2, x2

4j+3, x2
4j+4

}

.

Suppose that the FE solutions on two groups of nodes are known:

Z0 : {u0
j , u0

j+1}; Z1 : {u1
2j, u1

2j+1, u1
2j+2}.

Next, we will explain how to construct a good initial guess for the iterative solution by
using extrapolation and quadratic interpolation.

From Eq. (4.1) we have

ei
k =(u−ui)(xk)=A(xk)h

α
i +O(h

β
i ). (4.4)

Here, if i=0, then k= j, j+1 for grid Z0; and if i=1, then k=2j,2j+1,2j+2 for grid Z1.

Extrapolation of the initial guess requires the use of the linear combination of the FE
solutions u0 and u1 to approximate to the FE solution u2, rather than to approximate the
exact solution u of the problem.

Extrapolation at nodes: for a common node x0
k ∈Z0, (k= j, j+1), let the constant c satisfy

the following equation:

cu0
k+(1−c)u1

2k =u2
4k+O(h

β
0 ). (4.5)

When formula (4.5) is subtracted from the exact solution u(x0
k), we obtain

ce0
k+(1−c)e1

2k = e2
4k+O(h

β
0 ). (4.6)

Substituting (4.4) into formula (4.6) yields

(

c+
1−c

2α

)

A(x0
k)h

α
0+O(h

β
0 )=

1

4α
A(x0

k)h
α
0+O(h

β
0 ). (4.7)

That is, c=−1/2α is calculated. Then the extrapolation formula for a coarse grid node is

ũ2
4k :=u1

2k+
u1

2k−u0
k

2α
=u2

4k+O(h
β
0 ), k= j, j+1. (4.8)

Extrapolation at midpoints: it follows from the asymptotic error expansion (4.4) that we
have

u0
k−u1

2k =
2α−1

2α
A(x0

k)h
α
0+O(h

β
0 ), k= j, j+1, (4.9a)

u1
2j+1−u2

4j+2=
2α−1

4α
A(x1

2j+1)h
α
0+O(h

β
0 ). (4.9b)
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Using its Taylor expansion, we find

A(x0
j )=A(x1

2j+1)−A′(x1
2j+1)h

1
2j+1+O(h2

0), (4.10a)

A(x0
j+1)=A(x1

2j+1)+A′(x1
2j+1)h

1
2j+2+O(h2

0). (4.10b)

After eliminating A′(x2j+1) by linearly combining formulae (4.10a) and (4.10b), then us-
ing formula (4.9a) we get

A(x1
2j+1)=

h1
2j+1 A(x0

j+1)+h1
2j+2 A(x0

j )

h0
j+1

+O(h2
0)

=
2α

(2α−1)hα
0

h1
2j+1(u

0
j+1−u1

2j+2)+h1
2j+2(u

0
j −u1

2j)

h0
j+1

+O(h2
0). (4.11)

Substituting (4.11) into (4.9b) gives the high-precision extrapolation formula for the mid-
point

ũ2
4j+2 :=u1

2j+1+
h1

2j+1(u
1
2j+2−u0

j+1)+h1
2j+2(u

1
2j−u0

j )

2αh0
j+1

=u2
4j+2+O(h

β
0 ). (4.12)

Extrapolation at quartiles: by performing quadratic interpolation with the three ob-
tained values, the high-precision initial values of the other two quartiles can be calculat-
ed. The relevant quadratic Lagrange polynomial is:

L2(x)=ũ2
4j

(x−x1
2j+1)(x−x1

2j+2)

h1
2j+1h0

j+1

+ũ2
4j+2

(x−x1
2j)(x−x1

2j+2)

−h1
2j+1h1

2j+2

+ũ2
4j+4

(x−x1
2j)(x−x1

2j+1)

h1
2j+2h0

j+1

. (4.13)

By substituting x= x2
4j+1,x2

4j+3 into formula (4.13) and using (4.8) and (4.12), the extrapo-

lation formula for the quartile is obtained.
For 2D problems, using a similar technique in [30] we can also obtain a good initial

guess on finer mesh for the iterative solver. We omit the details here.

Remark 4.1. If uniform division is applied, that is, h1
2j+1=h1

2j+2=h0
j+1/2, and the asymp-

totic error expansion (4.1) is replaced by

eh
j =(u−uh)(xj)=A(xj)h

2+O(h4
0), (4.14)

then (4.8) and (4.12) coincide with the node extrapolation formula and the midpoint ex-
trapolation formula in [14]:

ũ2
4k :=u1

2k+
u1

2k−u0
k

4
+O(h4

0), k= j, j+1, (4.15)
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and

ũ2
4j+2 :=u1

2j+1+
(u1

2j+2−u0
j+1)+(u1

2j−u0
j )

8
=u2

4j+2+O(h4
0). (4.16)

And in this case, from Eq. (4.13) we have the following quartile extrapolation formulas:

ũ2
4j+1 :=

1

16

[

(9u1
2j+12u1

2j+1−u1
2j+2)−(3u0

j +u0
j+1)

]

=u2
4j+1+O(h3

0) (4.17)

and

ũ2
4j+3 :=

1

16

[

(9u1
2j+2+12u1

2j+1−u1
2j)−(3u0

j+1+u0
j )
]

=u2
4j+3+O(h3

0), (4.18)

which mean that the quartile extrapolation formulas (4.17) and (4.18) provide a third-
order approximation to the FE solution at x4j+1 and x4j+3, see [15] for details.

Remark 4.2. It is also worth pointing out that, even though the extrapolation formulas
(4.8) and (4.12) are needed to be derived from pointwise asymptotic error expansions,
such as Eqs. (2.5) and (4.1), our EXCMG algorithm is still effective even for crack prob-
lems (u∈H1.5−ǫ), in which case using λ-graded meshes we have only the error estimates
(3.4) and (3.5) in the L2 norm, while extrapolation can also help us to obtain a higher-order
approximation to the FE solution on the next finer grid in the L2 norm, see numerical ver-
ification in Section 5: the last columns in Tables 1-7.

4.3 Steps of EXCMG algorithm

The key ingredients of the EXCMG method are extrapolation and quadratic interpolation,
which are used to provide a better initial guess for the iterative solver on the next finer
grid than one obtained by using linear interpolation in CMG. The algorithm steps are as
follows:

Algorithm 1 EXCMG : uh ⇐ EXCMG(Ah, fh,L,mi).

1: uH ⇐ DSOLVE (AHuH = fH)
2: uH/2 ⇐ DSOLVE (AH/2uH/2= fH/2)
3: h=H/2
4: for i=1 to L do

5: h=h/2
6: uh =EXP(u2h,u4h) ⊲ Calculate the initial guess for CG solver
7: uh ⇐ CG(Ah,uh, fh,mi) ⊲ Perform mi CG iterations with the initial guess
8: end for

In Algorithm 1, a direct solver DSOLVE is used on the first two coarse grids since the
sizes of the linear systems are not large. The procedure EXP(u2h, u4h) denotes a higher-
order approximation to the FE solution uh obtained by Richardson extrapolation and
quadratic interpolation.
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Generally, the number of CG iteration mi is

mi =⌊m∗βL−i⌋, (4.19)

where m∗ refers to the number of iterations on the finest grid ZL and is generally between
4 and 20: ⌊x⌋ denotes the greatest integer less than or equal to x. It is well known that
multigrid complexity of the EXCMG method is obtained if and only if β≤2d, where d is
the dimension of the problem [5]. In our numerical experiments, we set m∗=16 and β=4.

It should be noted that once high-precision FE solutions on several fine grids are
obtained, the extrapolation formulae (4.3) can be used to improve their precisions fur-
ther [16]. The high-precision post-processing is one of the most significant advantages of
this algorithm.

5 Numerical examples

In this section, some numerical experiments to verify the efficiency and effectiveness of
our algorithm were computed.

5.1 A crack problem

Example 5.1. Consider a crack problem
{

−∆u=0 in Ω={0< r<1, 0< θ<2π},
u= g(r,θ) on ∂Ω,

(5.1)

where Ω is a crack domain with maximum interior angle 2π, and the function g(r,θ) is
determined from the exact solution

u= r1/2sin(θ/2).

The exact solution u has a removable singularity at the origin and has only finite regular-
ity in H3/2−ε(Ω) for any small ǫ>0.

We first divide the crack domain Ω into six sectors with central angle π
3 , then a λ-

graded grid can be used in each sector. By doing so, a piecewise λ-graded grid is obtained
on the computational domain and all nodes lie on the arc Sj whose radius is rj =(jh)λ ,
(j = 0,1,··· ,N,h = 1/N), as shown in Fig. 3(a). We then use 7 embedded graded grids
(including first two coarse grids where a direct linear solver is used) with the coarsest
grid N=15, and the iteration number of the i-th level of the grid is set to be mi=16×45−i,
which means that only 16 CG iterations are performed on the finest grid with N = 960
(the total number of grid points is (3N+1)(N+1), nearly 3 million).

Let Ek
1/60 denote the difference between the FE solution u1/60 and the k-th CG iterative

solution uk
1/60 with the initial guess obtained by extrapolating and interpolating the FE

solutions u1/15 and u1/30,

Ek
1/60=uk

1/60−u1/60→0, k→∞. (5.2)
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(a) A crack domain (b) An L-shaped domain

Figure 3: Piecewise λ-graded grid with λ=1.5 and N=6.

0 2 4 6 8 10 12 14 16 18 20

10-7

10-6

10-5

10-4

10-3

 ||
E

 k 60
||

 

 

k

 =1
 =2

Figure 4: Convergence curve.

That is to say, E0
1/60 represents the error between the extrapolated initial guess and the FE

solution: it can be used to measure the effect of the extrapolation formula on the initial
value; while E1

1/60 refers to the error between the extrapolation value after performing a
single CG iteration and the FE solution.

Fig. 4 shows the convergence curves of ‖Ek
60‖, (0≤ k≤ 20) versus the number of CG

iterations k for λ=1 and λ=2. Here, ‖·‖ denotes the L2 norm, which is defined by

‖uh‖=

√

√

√

√

ne

∑
j=1

∫∫

e j

u2
hdxdy, (5.3)

where uh is a grid function, ne is the total number of the elements, and ej denotes the j-th
triangular element.

It is easily seen from Fig. 4 that when λ = 1, the L2 error between the initial guess
and FE solution is already less than 10−3; when λ=2, the initial error is further smaller,
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Table 1: Errors and convergence orders of Example 5.1 with λ=1.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 2.51(−3) 3.69(−2) 1.90(−2) 6.88(−4)
120 1.26(−3) 0.99 2.62(−2) 0.49 1.36(−2) 0.49 2.44(−4) 1.50
240 6.34(−4) 1.00 1.86(−2) 0.50 9.62(−3) 0.49 8.63(−5) 1.50
480 3.17(−4) 1.00 1.31(−2) 0.50 6.82(−3) 0.50 3.05(−5) 1.50
960 1.58(−4) 1.01 9.34(−3) 0.49 4.85(−3) 0.49 1.07(−5) 1.51

Table 2: Errors and convergence orders of Example 5.1 with λ=2.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 1.79(−4) 6.39(−3) 2.92(−3) 4.17(−5)
120 5.19(−5) 1.78 3.20(−3) 1.00 1.46(−3) 1.00 7.04(−6) 2.57
240 1.48(−5) 1.81 1.60(−3) 1.00 7.29(−4) 1.00 9.90(−7) 2.83
480 4.20(−6) 1.82 8.00(−4) 1.00 3.65(−4) 1.00 7.96(−8) 3.64
960 1.15(−6) 1.86 4.05(−4) 0.98 1.83(−4) 0.99 5.59(−9) 3.83

achieving a precision of 10−4. These two convergence curves indicate that the errors are
significantly reduced with the growth of the number of CG iterations. As we can see
that after only 3 iterations and the error has decreased one order of magnitude. Through
20 CG iterations, the precision of the iterative solution is improved by three orders of
magnitude. So, as the number of iterations k increases, the required precision can be
rapidly achieved. That’s just the reason why our EXCMG algorithm is highly efficient for
solving these problems.

We present the results of Example 5.1 with λ= 1,2,3 and 4 in Table 1, Table 2, Table
3 and Table 4, respectively. Tables 1-4 list the L2 error ‖u−uh‖ between the numerical
solution uh and the exact solution u, the energy-norm error ‖u−uh‖a, the L∞ error ‖u−
uh‖∞, and the L2 error ‖u0

h−uh‖ between the initial guess u0
h and the numerical solution

uh.

As we can see from Table 1 that the initial guess is a 1.5-th order approximation to the
FE solution in the sense of L2 norm. And the numerical solution converges linearly (that
is, with order 1) to the exact solution in the L2 norm, while it converges only with order
0.5 in the L∞ norm and energy norm, which validates the error estimate (2.3) since here
γ=0.5−ǫ and H1+ǫ(Ω) can be continuously embedded into L∞(Ω) for two dimensional
domain Ω.

From Table 2 we can see that the L2 convergence order is near to 2 for λ = 2, the
FE solution converges linearly to the true solution in the L∞ norm, and it achieves full
linear convergence in the energy norm, which confirms the error estimate (3.5) stated in
Theorem 3.1. Again, the initial guess is a higher-order approximation to the FE solution.

When λ=3 and λ=4, a full second order convergence rate in the L2 norm can be seen
from Tables 3-4, which confirms our theoretical results stated in Theorem 3.1 since here
λ>α=2. And the FE solution achieves 1.5-th order convergence in the L∞ norm for λ=3,
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Table 3: Errors and convergence orders of Example 5.1 with λ=3.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 9.11(−5) 1.86(−3) 6.45(−4) 1.86(−05)
120 2.31(−5) 1.98 6.66(−4) 1.48 2.28(−4) 1.50 2.37(−06) 2.97
240 5.82(−6) 1.99 2.37(−4) 1.49 8.08(−5) 1.50 3.00(−07) 2.98
480 1.46(−6) 2.00 8.40(−5) 1.50 2.86(−5) 1.50 3.77(−08) 2.99
960 3.70(−7) 1.98 2.97(−5) 1.50 1.01(−5) 1.50 4.78(−10) 6.30

Table 4: Errors and convergence orders of Example 5.1 with λ=4.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 9.36(−5) 9.08(−4) 2.72(−4) 1.04(−05)
120 2.35(−5) 2.00 2.51(−4) 1.86 7.02(−5) 1.96 8.49(−07) 3.62
240 5.87(−6) 2.00 6.82(−5) 1.88 1.78(−5) 1.98 6.54(−08) 3.70
480 1.47(−6) 2.00 1.83(−5) 1.90 4.49(−6) 1.99 4.03(−09) 4.02
960 3.69(−7) 2.00 4.89(−6) 1.90 1.13(−6) 1.99 4.06(−10) 3.31

while it reaches full second order convergence rate for λ=4. As we can see from Table 3
and Table 4 that the extrapolated initial guess is a third approximation to the FE solution
for λ=3, and a nearly fourth order approximation to the FE solution for λ=4. It should
be worth noting, that the FE solutions converge in the energy norm with an order equal
to or larger than 1.5 for λ=3 and λ=4, which is a superconvergence result.

5.2 An L-shaped problem

Example 5.2. Consider the problem (5.1) over the L-shaped domain shown in Fig. 3(b).
We select the function g so that the solution of the boundary value problem is

u= r2/3 sin(2θ/3), (5.4)

which is the leading singularity associated with an L-shaped corner. The solution u ∈
H5/3−ǫ(Ω) for any small ǫ>0.

Once again, we use 7 embedded grids with the coarsest grid N = 15, and the itera-
tion number mi =16×45−i. We list the numerical results of Example 5.2 obtained by the
EXCMG algorithm with λ=1,2 and 3 in Tables 5, 6 and 7, respectively.

From Table 5, it is easy to see that the initial guess is a 5/3-th order approximation
to the FE solution in the sense of L2 norm. And the numerical solution converges to the
exact solution with order 4/3 in the L2 norm, while it converges only with order 2/3
in the L∞ norm and energy norm, which conforms to the error estimate (2.3) since here
γ=2/3−ǫ and H1+ǫ(Ω) can be continuously embedded into L∞(Ω).

From Table 6 we can see that the L2 convergence order is near to 2 for λ = 2, and
the FE solution converges to the true solution with order 4/3 in the L∞ norm and the
energy norm, which confirms the error estimate (3.5) stated in Theorem 3.1. Again, the
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Table 5: Errors and convergence orders of Example 5.2 with λ=1.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 3.41(−4) 7.10(−3) 3.83(−3) 2.15(−4)
120 1.39(−4) 1.30 4.48(−3) 0.66 2.42(−3) 0.66 6.79(−5) 1.67
240 5.57(−5) 1.31 2.82(−3) 0.67 1.53(−3) 0.67 2.14(−5) 1.67
480 2.24(−5) 1.32 1.78(−3) 0.67 9.61(−4) 0.67 6.74(−6) 1.67
960 9.05(−6) 1.31 1.13(−3) 0.66 6.10(−4) 0.66 2.11(−6) 1.67

Table 6: Errors and convergence orders of Example 5.2 with λ=2.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 3.44(−5) 9.53(−4) 4.03(−4) 8.32(−6)
120 8.80(−6) 1.97 3.79(−4) 1.33 1.60(−4) 1.33 1.25(−6) 2.73
240 2.23(−6) 1.98 1.51(−4) 1.33 6.35(−5) 1.33 1.92(−7) 2.71
480 5.69(−7) 1.97 5.99(−5) 1.33 2.52(−5) 1.33 2.64(−8) 2.86
960 1.52(−7) 1.90 2.38(−5) 1.33 1.00(−5) 1.33 1.89(−9) 3.81

Table 7: Errors and convergence orders of Example 5.2 with λ=3.

N ‖u−uh‖ order ‖u−uh‖a order ‖u−uh‖∞ order ‖u0
h−uh‖ order

60 3.33(−5) 3.16(−4) 9.31(−5) 2.46(−06)
120 8.35(−6) 2.00 8.68(−5) 1.86 2.38(−5) 1.97 1.90(−07) 3.69
240 2.09(−6) 2.00 2.35(−5) 1.89 6.01(−6) 1.98 1.29(−08) 3.88
480 5.25(−7) 1.99 6.30(−6) 1.90 1.51(−6) 1.99 1.23(−09) 3.39
960 1.34(−7) 1.97 1.69(−6) 1.90 3.89(−7) 1.96 6.28(−11) 4.30

Table 8: Convergence orders of Example 5.1 and Example 5.2.

θ0 λ ‖u−uh‖ ‖u−uh‖a ‖u−uh‖∞ ‖u0
h−uh‖

Crack problem 2π

1 1 1/2 1/2 3/2
2 ≈2 1 1 ≈3
3 2 3/2 3/2 3
4 2 ≈2 2 ≈ 4

L-shaped problem 3π/2
1 4/3 2/3 2/3 5/3
2 2 4/3 4/3 ≈3
3 2 ≈2 2 ≈4

θ0 denotes the maximum interior angle of the domains.

initial guess is a higher-order approximation to the FE solution, which greatly reduces
the number of CG iterations required. For λ = 3, we can see from Table 7 that the FE
solution converges to the true solution with full order 2 in both the L2 norm and the
L∞ norm. Further, the numerical solution uh is a 1.9-th order approximation to the true
solution in the energy norm, which is a superconvergence result. And the initial guess is
a fourth order approximation to the FE solution. It should be noting that, on the finest
mesh N = 960, the maximum absolute error reaches 3.89×10−7, which is much smaller
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than those for λ=1 and 2. This indicates that the λ-graded mesh is very effective to solve
such singular problems.

Table 8 summarizes the convergence orders of Example 5.1 and Example 5.2 for dif-
ferent λ in different norms. It shows that the rate of convergence of in the Crack problem
in the energy norm is 3/2 for λ=3, and nearly 2 for λ=4; the rate of convergence in the
L-shaped problem in the energy norm is 4/3 for λ=2, and nearly 2 for λ=3. These are
superconvergence results of the FE method.

6 Conclusions

This work concerns an extrapolation cascadic multigrid method for solving the ellip-
tic problems in domains with reentrant corners based on λ-graded grid. Based on the
asymptotic error expansions of the FE approximation to the singular solution, a new ex-
trapolation formula based on λ-graded grid is derived to obtain a good initial guess for
the iterative solution on the next finer grid, which is a higher-order approximation to the
FE solution. The obtained good initial guess greatly reduces the number of CG iterations
required to achieve the expected accuracy.

Though the extrapolation formulas should be derived from the pointwise error es-
timates, our EXCMG algorithm is still effective even for crack problems (u∈ H1.5−ǫ), in
which case we have only the error estimate in the L2 norm when using λ-graded meshes,
while Richardson extrapolation can also help us to obtain a higher-order approximation
to the FE solution in the L2 norm on the next finer grid. Numerical experiments for a
crack problem and an L-shaped problem are presented to verify the efficiency and the
effectiveness of the EXCMG method for solving such singular elliptic problems. And the
numerical results confirm the existing theoretical results.

Our method developed in this paper can be extended to solve three dimensional prob-
lems in spherical coordinates. We are currently investigating these extensions.
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