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Abstract. In this paper, a Chebyshev-collocation spectral method is developed for
Volterra integral equations (VIEs) of second kind with weakly singular kernel. We first
change the equation into an equivalent VIE so that the solution of the new equation
possesses better regularity. The integral term in the resulting VIE is approximated by
Gauss quadrature formulas using the Chebyshev collocation points. The convergence
analysis of this method is based on the Lebesgue constant for the Lagrange interpola-
tion polynomials, approximation theory for orthogonal polynomials, and the operator
theory. The spectral rate of convergence for the proposed method is established in the
L∞-norm and weighted L2-norm. Numerical results are presented to demonstrate the
effectiveness of the proposed method.
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1 Introduction

Integro-differential equations provide an important tool for modeling physical phenom-
ena in various fields of science and engineering. This work is concerned with applying
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Chebyshev spectral methods to solve Volterra integral equations (VIEs) of second kind
with a weakly singular kernel

y(t)= g(t)+
∫ t

0
(t−s)−

1
2 K(t,s)y(s)ds, 0≤ t≤T, (1.1)

where the function y(t) is the unknown function whose value is to be determined in the
interval 0≤ t≤T<∞. Here, g(t) is a given smooth function and K(t,s) is a given kernel,
which is also assumed to be smooth.

For any positive integer m, if g and K have continuous derivatives of order m, then
there exists a function Z=Z(t,v) possessing continuous derivatives of order m, such that
the solution of (1.1) can be written as y(t) = Z(t,

√
t), see, e.g., [3, 23, 24]. This implies

that near t = 0 the first derivative of the solution y(t) behaves like y′(t)∼ t−
1
2 . Several

methods have been proposed to recover high order convergence properties for (1.1) using
collocation type methods, see, e.g., [1, 2, 5, 8, 18, 19, 21, 22] and using multi-step method,
see, e.g., [10, 25–27]. For spectral methods, the singular behavior of the exact solution
makes the direct application of the spectral approach difficult. More precisely, for any

positive integer m, we have y(m)(t)∼t
1
2−m, which indicates that y 6∈Hm

ω (0,T), where Hm
ω is

a standard Soblev space associated with a weight ω. To overcome this difficulty, we first
apply the transformation

ỹ(t)= t
1
2 [y(t)−y(0)]= t

1
2 [y(t)−g(0)] (1.2)

to change (1.1) to the equation

ỹ(t)= g̃(t)+t
1
2

∫ t

0
s−

1
2 (t−s)−

1
2 K(t,s)ỹ(s)ds, 0≤ t≤T, (1.3)

where

g̃(t)= t
1
2 [g(t)−g(0)]+t

1
2 g(0)

∫ t

0
(t−s)−

1
2 K(t,s)ds. (1.4)

It is easy to see that the solution of (1.3) is a regular function

ỹ(t)∈Cm([0,T]). (1.5)

For the sake of applying the theory of orthogonal polynomials, we use the change of
variable

t=
T

2
(1+x), x=

2

T
t−1, (1.6)

to rewrite the weakly singular problem (1.3) as follows

u(x)= f (x)+

[
T

2
(1+x)

] 1
2
∫ T

2 (1+x)

0
s−

1
2

(
T

2
(1+x)−s

)− 1
2

K

(
T

2
(1+x),s

)
ỹ(s)ds, (1.7)
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where x∈ [−1,1], and

u(x)= ỹ

(
T

2
(1+x)

)
, f (x)= g̃

(
T

2
(1+x)

)
. (1.8)

Furthermore, to transfer the integral interval [0, T
2 (1+x)] to the interval [−1,x], we make

a linear transformation:

s=
T

2
(1+τ), τ∈ [−1,x]. (1.9)

Then Eq. (1.7) becomes

u(x)= f (x)+

[
T

2
(1+x)

] 1
2
∫ x

−1
(1+τ)−

1
2 (x−τ)−

1
2 K̃(x,τ)u(τ)dτ, (1.10)

where x∈ [−1,1], and

K̃(x,τ)=K

(
T

2
(1+x),

T

2
(1+τ)

)
.

In [19], a Legendre-collocation method is proposed to solve the Volterra integral equa-
tions of the second kind whose kernel and solutions are sufficiently smooth. The main
purpose of this work is to use Chebyshev collocation methods to numerically solve the
VIE (1.10). We will provide a rigorous error analysis which theoretically justify the spec-
tral rate of convergence of the proposed method. This paper is organized as follows. In
Section 2, we introduce the Chebyshev-collocation spectral approaches for (1.10). Some
preliminaries and useful lemmas are provided in Section 3. The convergence analysis is
given in Section 4. We prove the error estimates in L∞ norm and weighted L2 norm for the
method. The numerical experiments are carried out in Section 5, which will be used to
verify the theoretical results obtained in Section 4. The final section contains concluding
remarks.

Throughout the paper C will denote a generic positive constant that is independent
of N but which will depend on T and on the bounds for the given functions g and K.

2 Chebyshev-collocation methods

Let ω(x)=(1−x2)−
1
2 be a weight function in the usual sense. As defined in [4,17], the set

of Chebyshev polynomials {Tn(x)}∞
n=0 forms a complete L2

ω(−1,1)-orthogonal system,
where L2

ω(−1,1) is a weighted space defined by

L2
ω(−1,1)=

{
v : v is measurable and ||v||L2

ω (−1,1)<∞
}

,

equipped with the norm

||v||L2
ω (−1,1)=

(∫ 1

−1
|v(x)|2ω(x)dx

) 1
2

.
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and the inner product

(u,v)ω =
∫ 1

−1
u(x)v(x)ω(x)dx, ∀u,v∈L2

ω(−1,1).

Now, for given positive integer N, we denote the collocation points by {xi}N
i=0, which

is the set of (N+1) Chebyshev Gauss, or Chebyshev Gauss-Radau, or Chebyshev Gauss-
Lobatto points, and by {wi}N

i=0 the corresponding weights. Let PN denote the space of all
polynomials of degree ≤N. For any v∈C[−1,1], from [4,17], we can define the Lagrange
interpolating polynomial INv∈PN , satisfying

INv(xi)=v(xi), 0≤ i≤N.

It can be written as an expression of the form

INv(x)=
N

∑
i=0

v(xi)Fi(x),

where {Fi(x)} is the Lagrange interpolation polynomial associated with {xi}N
i=0.

Firstly, the Eq. (1.10) holds at the collocation points {xi}N
i=0 on [−1,1], namely,

u(xi)= f (xi)+

[
T

2
(1+xi)

] 1
2
∫ xi

−1
(1+τ)−

1
2 (xi−τ)−

1
2 K̃(xi,τ)u(τ)dτ (2.1)

for 0≤ i≤N.

In order to obtain high order accuracy of the approximated solution for the equation
(1.10), we use the Gauss-type quadrature formula relative to the Chebyshev weight to
compute the integral term in (2.1). Based on this idea, we need to transfer the integral
interval [−1,xi] to a fixed interval [−1,1]

∫ xi

−1
(1+τ)−

1
2 (xi−τ)−

1
2 K̃(xi,τ)u(τ)dτ=

∫ 1

−1
(1−θ2)−

1
2 K̃(xi,τi(θ))u(τi(θ))dθ, (2.2)

by using the following variable change

τ=τi(θ)=
1+xi

2
θ+

xi−1

2
, θ∈ [−1,1]. (2.3)

Next, using a (N+1)-point Gauss quadrature formula relative to the Chebyshev weight
{wi}N

i=0, the integral term in (2.2) can be approximated by

∫ 1

−1
(1−θ2)−

1
2 K̃(xi,τi(θ))u(τi(θ)))dθ∼

N

∑
k=0

K̃(xi,τi(θk))u(τi(θk))wk, (2.4)
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where the set {θk}N
k=0 coincides with the collocation points {xi}N

i=0 on [−1,1]. We use ui,
0≤ i≤N, to indicate the approximate value for u(xi), and use

uN(x)=
N

∑
j=0

ujFj(x) (2.5)

to approximate the function u(x), namely,

u(xi)∼ui,u(x)∼uN(x),u(τi(θk))∼
N

∑
j=0

ujFj(τi(θk)).

Then the Chebyshev collocation method is to seek uN(x) such that {ui}N
i=0 satisfies the

following collocation equations:

ui = f (xi)+

[
T

2
(1+xi)

] 1
2 N

∑
j=0

uj

(
N

∑
k=0

K̃(xi,τi(θk))Fj(τi(θk))wk

)
(2.6)

for 0≤ i≤N. We denote the error function by

e(x) :=(u−uN)(x), x∈ [−1,1]. (2.7)

It follows from (1.2) and (1.8) that

y(t)= g(0)+

[
T

2
(1+x)

]− 1
2

u(x). (2.8)

Consequently, the approximate solution to (1.1) is given by

yN(t)= g(0)+

[
T

2
(1+x)

]− 1
2

uN(x). (2.9)

Then the corresponding error functions have the following relations

ǫ(t) :=(y−yN )(t)=

[
T

2
(1+x)

]− 1
2

e(x)= t−
1
2 e(x). (2.10)

3 Some preliminaries and useful lemmas

In our subsequent analysis, some preliminary results are needed.
The weighted Sobolev norms in which to measure approximation errors for the Cheby-

shev system involve the Chebyshev weight in the quadratic averages of the error and its
derivatives over the interval (−1,1). Thus, for non-negative integer m we set

Hm
ω (−1,1) :=

{
v : ∂k

xv∈L2
ω(−1,1), 0≤ k≤m

}
(3.1)
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with the norm

||v||Hm
ω (−1,1)=

(
m

∑
k=0

|∂k
xv|2L2

ω(−1,1)

) 1
2

.

In bounding some approximation error, only some of the L2-norms appearing on the
right-hand side of above norm enter into play. Thus, it is convenient to introduce the
semi-norms

|v|Hm;N
ω (−1,1)=

(
m

∑
k=min(m,N+1)

|∂k
xv|2L2

ω(−1,1)

) 1
2

.

We now introduce the orthogonal projection PN : L2
ω(−1,1)→PN, which is a mapping

such that for any v∈L2
ω(−1,1),

(v−PNv,φ)ω =0, ∀φ∈PN .

By using in [4, (5.5.9) and (5.5.22)], we have the estimates

||v−PNv||L2
ω(−1,1)≤CN−m|v|

Hm;N
ω (−1,1), (3.2a)

||v− IN v||L2
ω(−1,1)≤CN−m|v|

Hm;N
ω (−1,1), (3.2b)

||v− IN v||L∞(−1,1)≤CN1/2−m|v|
Hm;N

ω (−1,1), (3.2c)

for any v∈Hm
ω (−1,1).

Define a discrete inner product, for any continuous functions u, v on [−1,1] by

(u,v)N =
N

∑
j=0

u(xj)v(xj)wj. (3.3)

By (3.2a) and (3.2b) we can obtain an estimate for the integration error produced by a
Gauss-type quadrature formula relative to the Chebyshev weight.

Lemma 3.1. If v∈Hm
ω (−1,1) for some m≥1 and φ∈PN , then we have

|(v,φ)ω−(v,φ)N |≤CN−m|v|
Hm;N

ω (−1,1)||φ||L2
ω(−1,1). (3.4)

From the result (9) in [11], we have the following result on the Lebesgue constant for
Lagrange interpolation based on the zeros of the Chebyshev polynomials.

Lemma 3.2. Assume that {Fj(x)}N
j=0 are Lagrange interpolation polynomials with the Cheby-

shev Gauss, or Gauss-Radau, or Gauss-Lobatto points {xj}. Then

||IN ||∞ := max
x∈(−1,1)

N

∑
j=0

|Fj(x)|=O(logN). (3.5)
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In our analysis, we shall apply the Gronwall’s lemma. We call such a function v=v(t)

locally integrable on the interval [0,T] if for each t∈ [0,T], its Lebesgue integral
∫ t

0 v(s)ds
is finite.

Lemma 3.3. Assume that a non-negative and locally integrable function v satisfies

v(t)≤b(t)+c(t)
∫ t

0
s−

1
2 (t−s)−

1
2 v(s)ds, t∈ [0,T],

where b(t)≥0 and c(t)≥0 are upper bounded. Then there exists a constant C such that

v(t)≤b(t)+C
∫ t

0
s−

1
2 (t−s)−

1
2 b(s)ds, t∈ [0,T].

From now on, for r ≥ 0 and κ ∈ [0,1], Cr,κ([0,T]) will denote the space of functions
whose r-th derivatives are Hölder continuous with exponent κ, endowed with the usual
norm ||·||r,κ . When κ = 0, Cr,0([0,T]) denotes the space of functions with r continuous
derivatives on [0,T], also denote by Cr([0,T]), and with norm ||·||r .

We shall make use of a result of Ragozin [13, 14] (see also [7]), which states that, for
each non-negative integer r and κ∈ [0,1], there exists a constant Cr,κ>0 such that for any
function v∈Cr,κ([0,T]), there exists a polynomial function TNv∈PN such that

||v−TN v||∞ ≤Cr,κ N−(r+κ)||v||r,κ , (3.6)

where ||·||∞ is the norm of the space L∞(0,T), and when the function v ∈ C([0,T]) we
also denote ||v||∞ = ||v||C([0,T]). Actually, as stated in [13, 14], TN is a linear operator from
Cr,κ([0,T]) to PN . For convenience, we define a linear, weakly singular integral operator
M:

(Mv)(t)= t
1
2

∫ t

0
s−

1
2 (t−s)−

1
2 K(t,s)v(s)ds, t∈ [0,T]. (3.7)

We shall need the fact that M is compact as an operator from C([0,T]) to C0,κ([0,T]) for
any 0<κ< 1

2 .

Lemma 3.4. Let κ∈ (0, 1
2) and M be defined by (3.7). Then for any function v(x)∈C([0,T]),

there exists a positive constant C such that

||Mv||0,κ ≤C||v||∞ . (3.8)

Proof. By the definition of Hölder continuity, we need to prove that

|Mv(t′)−Mv(t′′)|
|t′−t′′|κ ≤C||v||∞ (3.9)

for every t′, t′′∈ [0,T] and t′ 6=t′′. Without loss of generality, we assume that 0≤t′<t′′≤T.
Let

k(t,s)= s−
1
2 (t−s)−

1
2 K(t,s). (3.10)
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Then we have

|Mv(t′)−Mv(t′′)|
(t′′−t′)κ

=(t′′−t′)−κ

∣∣∣∣
√

t′
∫ t′

0
k(t′ ,s)v(s)ds−

√
t′′
∫ t′′

0
k(t′′,s)v(s)ds

∣∣∣∣

≤(t′′−t′)−κ
√

t′
∫ t′

0
|k(t′ ,s)−k(t′′ ,s)| |v(s)|ds

+(t′′−t′)−κ(
√

t′′−
√

t′)
∫ t′′

0
|k(t′′,s)||v(s)|ds

+(t′′−t′)−κ
√

t′
∫ t′′

t′
|k(t′′ ,s)||v(s)|ds

=:E1+E2+E3. (3.11)

We now estimate the three terms one by one. Observe

E1≤E(1)+E(2), (3.12)

where

E(1)=(t′′−t′)−κ
√

t′
∫ t′

0
s−

1
2

[
(t′−s)−

1
2 −(t′′−s)−

1
2

]∣∣K(t′,s)
∣∣|v(s)|ds, (3.13a)

E(2)=(t′′−t′)−κ
√

t′
∫ t′

0
s−

1
2 (t′′−s)−

1
2

∣∣K(t′,s)−K(t′′,s)
∣∣|v(s)|ds. (3.13b)

Recall the definition of the Beta function
∫ 1

0
xa−1(1−x)b−1dx=B(a,b), a,b>0, (3.14)

which gives ∫ z

0
τa−1(z−τ)b−1dτ= za+b−1B(a,b) (3.15)

and ∫ t′

0
s−

1
2

[
(t′−s)−

1
2 −(t′′−s)−

1
2

]
ds=

∫ t′′

t′
s−

1
2 (t′′−s)−

1
2 ds. (3.16)

The above observation, together with (3.13), yields

E
(1)
1 ≤C‖v‖∞(t′′−t′)−κ

∫ t′′

t′

(
t′

s

) 1
2

(t′′−s)−
1
2 ds

≤C‖v‖∞(t′′−t′)−κ
∫ t′′

t′
(t′′−s)−

1
2 ds

≤C‖v‖∞(t′′−t′)
1
2−κ ≤C‖v‖∞. (3.17)
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Furthermore, we have

E
(2)
1 ≤C||v||∞

∫ t′

0
s−

1
2 (t′′−s)−

1
2
|K(t′,s)−K(t′′,s)|

(t′′−t′)κ
ds

≤C||v||∞ ||K||0,κ

∫ t′

0
s−

1
2 (t′′−s)−

1
2 ds

≤C||v||∞
∫ t′′

0
s−

1
2 (t′′−s)−

1
2 ds≤C||v||∞ , (3.18)

where we have used the fact t′< t′′ and (3.15). Using the fact that

√
t′′−

√
t′√

t′′−t′
≤C, ∀0≤ t′< t′′<T,

we have for κ∈ (0, 1
2),

E2≤C(t′′−t′)
1
2−κ ||v||∞

∫ t′′

0
s−

1
2 (t′′−s)−

1
2 ds≤C||v||∞ . (3.19)

Finally, we have

E3≤C||v||∞(t′′−t′)−κ
√

t′
∫ t′′

t′
s−

1
2 (t′′−s)−

1
2 ds≤C||v||∞ , (3.20)

where we have used the estimate for E
(1)
1 , i.e., (3.17). The desired result (3.8) is established

by combining (3.11) with the estimates for E1, E2 and E3 above.

To prove the error estimate in weighted L2 norm, we need the generalized Hardy’s
inequality with weights (see, e.g., [6, 9, 16]).

Lemma 3.5. For all measurable function f ≥0, the following generalized Hardy’s inequality

(∫ b

a
|(K f )(x)|qu(x)dx

)1/q

≤C

(∫ b

a
| f (x)|pv(x)dx

)1/p

holds if and only if

sup
a<x<b

(∫ b

x
u(t)dt

)1/q(∫ x

a
v1−p′(t)dt

)1/p′

<∞, p′=
p

p−1
,

for the case 1< p≤q<∞. Here, K is an operator of the form

(K f )(x)=
∫ x

a
k(x,t) f (t)dt

with k(x,t) a given kernel, u, v weight functions, and −∞≤ a<b≤∞.
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From [12, Theorem 1], we have the following estimate for the Lagrange interpolation
associated with the Chebyshev Gaussian collocation points.

Lemma 3.6. For each bounded function v(x), there exists a constant C independent of v such
that

sup
N

∥∥∥∥∥
N

∑
j=0

v(xj)Fj(x)

∥∥∥∥∥
L2

ω(−1,1)

≤C||v||∞ ,

where Fj(x) is the Lagrange interpolation polynomial associated with the Chebyshev collocation

points {xj}N
j=0.

4 Convergence analysis

The objective of this section is to analyze the approximation scheme (2.6). Firstly, we
derive the error estimate in L∞ norm of the Chebyshev collocation method.

Theorem 4.1. Let u be the exact solution of the Volterra integral equation (1.10). Assume the
approximated solution uN of the form (2.5) is given by the spectral collocation scheme (2.6) with
the Chebyshev Gauss, or Gauss-Radau, or Gauss-Lobbatto collocation points. If the given data
g(t) and K(t,s) in (1.1) belong to Cm([0,T]), then

||u−uN ||∞ ≤CN1/2−m|u|Hm;N
ω (−1,1)+CK∗N−m logN||u||∞ (4.1)

for sufficiently large N, where

K∗= max
0≤i≤N

|K̃(xi,τi(·))|Hm;N
ω (−1,1). (4.2)

Proof. Since the given data g(t) and K(t,s) in (1.3) belong to Cm([0,T]), based on the
analysis in Section 1 we have u∈Cm([−1,1]). Consequently, u∈ Hm

ω (−1,1)∩L∞(−1,1).
We first observe that the solution u of (1.10) satisfies (2.1):

u(xi)= f (xi)+

[
T

2
(1+xi)

] 1
2 (

K̃(xi,τi(·)),u(τi(·))
)

ω
(4.3)

for 0≤ i≤N. Using the definition of the discrete inner product (3.3), we set

(
K̃(xi,τi(·)),φ(τi(·))

)
N
=

N

∑
k=0

K̃(xi,τi(θk))φ(τi(θk))wk.

Then the numerical scheme (2.6) can be written as

ui= f (xi)+

[
T

2
(1+xi)

] 1
2 (

K̃(xi,τi(·)),uN(τi(·))
)

N
(4.4)
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for 0≤i≤N, where uN is defined by (2.5). We now subtract (4.4) from (4.3) to get the error
equation

u(xi)−ui=

[
T

2
(1+xi)

] 1
2 (

K̃(xi,τi(·)),e(τi(·))
)

ω
+

[
T

2
(1+xi)

] 1
2

Ii,2

=
√

ti

∫ xi

0
(1+τ)−

1
2 (xi−τ)−

1
2 K̃(xi,τ)e(τ)dτ+

√
ti Ii,2, (4.5)

for 0≤ i≤N, where ti =T(1+xi)/2, e(x)=u(x)−uN(x) is the error function and

Ii,2=
(

K̃(xi,τi(·)),uN(τi(·))
)

ω
−
(

K̃(xi,τi(·)),uN(τi(·))
)

N
.

In (4.5), the integral transformation (2.2) was used. Applying again the transformation
(1.6) and (1.9), we change (4.5) to

u(xi)−ui=
√

ti

∫ ti

0
(ti−s)−

1
2 K(ti,s)ǫ(s)ds+

√
ti Ii,2

=
√

ti

∫ ti

0
s−

1
2 (ti−s)−

1
2 K(ti,s)ǫ̃(s)ds+

√
ti Ii,2, (4.6)

where ǫ̃(t)= t
1
2 ǫ(t), and ǫ(t) was defined in (2.10). Multiplying Fi(x) on both sides of the

error equation (4.6) and summing up from i=0 to i=N yield

INu−uN =
N

∑
i=0

(Mǫ̃)(ti)Fi(x)+
N

∑
i=0

t
1
2
i Ii,2Fi(x), (4.7)

where M was defined in (3.7). Consequently, recalling the relation of error function (2.10)
to get that

ǫ̃(t)= t
1
2

∫ t

0
s−

1
2 (t−s)−

1
2 K(t,s)ǫ̃(s)ds+ I1+ I2+ I3, (4.8)

where

I1=u− INu, I2=
N

∑
i=0

t
1
2

i Ii,2Fi(x), I3= IN(Mǫ̃)−Mǫ̃.

From (4.8), we have

|ǫ̃(t)|≤b(t)+Bt
1
2

∫ t

0
s

1
2 (t−s)−

1
2 |ǫ̃(s)|ds, t∈ [0,T], (4.9)

where

b(t)= |I1+ I2+ I3|, B= max
0≤s<t≤T

|K(t,s)|. (4.10)
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Using the generalized Gronwall inequality, i.e., Lemma 3.3, we have

|ǫ̃(t)|≤b(t)+Bt
1
2

∫ t

0
s−

1
2 (t−s)−

1
2 |b(s)|ds, t∈ [0,T]. (4.11)

In fact, from (2.10) we have

e(x)= t
1
2 ǫ(t)= ǫ̃(t). (4.12)

Then it follows from (4.11) and (3.15) that

||e||∞ = ||ǫ̃||∞ ≤C||b||∞ ≤C
(
||I1||∞+||I2||∞+||I3||∞

)
. (4.13)

We now estimate the right-hand-side of (4.13). By (3.2c), we have

||I1||∞ = ||u− INu||∞ ≤CN1/2−m|u|
Hm;N

ω (−1,1). (4.14)

Next, it follows from Lemma 3.1 that

|Ii,2|≤CN−m|K̃(xi,τi(·))|Hm;N
ω (−1,1)||u

N(τi(·))||L2
ω(−1,1). (4.15)

Hence, by using Lemma 3.2 and (4.15), we have

||I2||∞ =
∥∥∥

N

∑
i=0

t
1
2
i Ii,2Fi(x)

∥∥∥
∞
≤C max

0≤i≤N
|Ii,2| max

x∈(−1,1)

N

∑
j=0

|Fj(x)|

≤CK∗N−m logN max
0≤i≤N

||uN(τi(·))||L2
ω(−1,1)

≤CK∗N−m logN||uN ||∞
≤CK∗N−m logN(||e||∞+||u||∞) (4.16)

for sufficiently large N, where K∗ is defined by (4.2). We now estimate the third term I3.
Note that

IN p(x)= p(x), (IN− I)p(x)=0, ∀p(x)∈PN , (4.17)

where I denotes the identical operator. It follows from (4.12) that ǫ̃∈C[0,T]. Consequent-
ly, using (3.6) and Lemma 3.4 that

||Mǫ̃−TNMǫ̃||∞ ≤CN−κ ||ǫ̃||∞, (4.18)

where TNMǫ̃∈PN . It follows from Lemma 3.2, (4.17) and the above estimate that

||I3||∞ =||(IN− I)Mǫ̃||∞ = ||(IN− I)(Mǫ̃−TNMǫ̃)||∞
≤(1+||IN ||∞)||Mǫ̃−TNMǫ̃||∞
≤CN−κ logN||Mǫ̃||0,κ ≤CN−κ logN||ǫ̃||∞ =CN−κ logN||e||∞ (4.19)

for any κ∈(0,1/2). Finally, the desired estimate (4.1) follows from (4.13)-(4.16) and (4.19).
Thus, we complete the proof.
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Our next goal is to derive the error estimate in weighted L2 norm.

Theorem 4.2. Let u and uN be the same as those in Theorem 4.1. If the given data g(t) and
K(t,s) in (1.1) belong to Cm([0,T]), then

||u−uN ||L2
ω(−1,1)

≤CN1/2−κ−m|u|Hm;N
ω (−1,1)+CK∗N−m

(
||u||∞+N−1/2|u|H1

ω(−1,1)

)
(4.20)

for sufficiently large N and for any κ∈ (0,1/2), where K∗ is defined by (4.2).

Proof. Using the transformations (1.6) and (1.9), we change (4.11) to

|e(x)|≤b(x)+B

(
T

2
(1+x)

) 1
2
∫ x

−1
(1+τ)−

1
2 (x−τ)−

1
2 |b(τ)|dτ, x∈ [−1,1], (4.21)

where b and B are defined by (4.10). It follows from the generalized Hardy’s inequality
Lemma 3.5 that

||e||L2
ω (−1,1)≤C

(
||I1||L2

ω(−1,1)+||I2||L2
ω(−1,1)+||I3||L2

ω(−1,1)

)
. (4.22)

Firstly, by (3.2b), we see that

||I1||L2
ω(−1,1)= ||u− INu||L2

ω(−1,1)≤CN−m|u|Hm;N
ω (−1,1). (4.23)

Next, it follows from Lemma 3.6 and (4.15) that

||I2||L2
ω(−1,1)=

∥∥∥
N

∑
i=0

t
1
2
i Ii,2Fi(x)

∥∥∥
L2

ω(−1,1)
≤C max

0≤i≤N
|Ii,2|

≤CK∗N−m max
0≤i≤N

||uN(τi(·))||L2
ω(−1,1)≤CK∗N−m||uN ||∞. (4.24)

By the convergence result in Theorem 4.1, we have

||uN ||∞ ≤||e||∞+||u||∞ ≤C
(

N−1/2|u|H1
ω(−1,1)+||u||∞

)
, (4.25)

which, together with (4.24), gives

||I2||L2
ω(−1,1)≤CK∗N−m−1/2||u||H1

ω(−1,1)+CK∗N−m||u||∞ (4.26)

for sufficiently large N. Moreover, it follows from (4.17), Lemma 3.6 and (3.6) that

||I3||L2
ω(−1,1)=||(IN− I)Mǫ̃||L2

ω(−1,1)= ||(IN− I)(Mǫ̃−TNMǫ̃)||L2
ω(−1,1)

≤||IN(Mǫ̃−TNMǫ̃)||L2
ω(−1,1)+||(Mǫ̃−TNMǫ̃)||L2

ω(−1,1)

≤C||Mǫ̃−TNMǫ̃||∞ ≤CN−κ ||Mǫ̃||0,κ

≤CN−κ ||ǫ̃||∞ =CN−κ||e||∞ , (4.27)
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where in the last step we have used Lemma 3.4. By the convergence result in Theorem
4.1, we obtain that

||I3||L2
ω(−1,1)≤CN1/2−κ−m|u|Hm;N

ω (−1,1)+CK∗N−κ−m logN||u||∞ (4.28)

for sufficiently large N and for any κ∈(0,1/2). The desired estimate (4.20) is obtained by
combining (4.22) with (4.23), (4.26) and (4.28).

Finally, we state the main result of this paper, i.e., the error estimates for the numerical
solutions to the VIE (1.1).

Theorem 4.3. Let y be the exact solution of the Volterra integral equation (1.1). Assume the
approximated solution yN is given by (2.9) together with the spectral collocation scheme (2.5)-
(2.6) with the Chebyshev Gauss, or Gauss-Radau, or Gauss-Lobbatto collocation points. If the
given data g(t) and K(t,s) in (1.1) belong to Cm([0,T]), then

max
0≤i≤N+1

∣∣∣y(ti)−yN(ti)
∣∣∣≤CN3/2−m|u|

Hm;N
ω (−1,1)+CK∗N1−m logN||u||∞ (4.29)

and

||y−yN ||L2
ω̃(0,T)

≤CN1/2−κ−m|u|Hm;N
ω (−1,1)+CK∗N−m

(
||u||∞+N−1/2|u|H1

ω(−1,1)

)
(4.30)

for any κ∈ (0,1/2), where u∈Cm[−1,1] is defined by (1.2) and (1.8), K∗ is defined by (4.2), and

ω̃(t) :=
√

t. (4.31)

Proof. Using (2.10) we have (y−yN)(t)= t−
1
2 (u−uN)(x). Note that

max
1≤i≤N

t
− 1

2
i ≤ T

2
max

1≤i≤N
(1+xi)

− 1
2 ≤CN.

This, together with (4.1), leads to (4.29). The estimate (4.30) is obtained by using (4.20)
and the observation

∫ T

0
ω̃(t)(y−yN)2dt=

√
2

T

∫ 1

−1
(1+x)−

1
2 (u−uN)2dx

≤C
∫ 1

−1
(1−x2)−

1
2 (u−uN)2dx.

This completes the proof of Theorem 4.3.
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5 Numerical example

Let UN =[u0,··· ,uN]
T and FN =[ f (x0),··· , f (xN)]

T. The numerical scheme (2.6) leads to a
system of equation of the form

UN =FN+AUN, (5.1)

where the entries of the matrix A is given by

aij =

[
T

2
(1+xi)

] 1
2 N

∑
k=0

K̃(xi,τi(θk))Fj(τi(θk)))wk.

In our numerical tests, we only use the Chebyshev Gauss points

xi=cos
(2i+1)π

2N+2

with the associated weights wi =π/(N+1). The results obtained using the Chebyshev
Gauss-Radau collocation points or the Chebyshev Gauss-Lobatto collocation points are
found of similar convergence behaviors.

Example 5.1. We consider the VIE of the form

y(t)= g(t)−
∫ t

0
(t−s)−

1
2 y(s)ds, 0≤ t≤T, (5.2)

with

g(t)=πsin
t

2
bessell

(
0,

t

2

)
+

sint√
t

,

where bessell(ν,z) is the Bessell function defined by:

bessell(ν,z)=
( z

2

)ν ∞

∑
k=0

(− z2

4 )
k

k!Γ(ν+k+1)
.

The above equation has the exact solution

y(t)=
sint√

t
, t∈ [0,T].

Obviously, y(t) possesses the property presented in the beginning of this paper, i.e.,
y′(t)∼ t−1/2 near t= 0. Table 1 and Fig. 1 present the errors of the computed solutions
using the proposed Chebyshev collocation method. For this example, we choose T=8. It
is seen clearly that the spectral rate of convergence is achieved.

It is pointed out that we need to evaluate f (x) and g̃(t), see, (1.4) and (1.8). The
integral term in (1.4) can be approximated with spectral accuracy if we take u≡1 in (2.2)
and (2.4).



X. Liu and Y. P. Chen / Adv. Appl. Math. Mech., 9 (2017), pp. 1506-1524 1521

Table 1: Example 5.1: the L∞ error and L2
ω error for ỹ(t).

N 2 4 6 8
L∞ Error 6.9287e-001 1.2720e-001 1.1819e-002 6.2614e-004
L2

ω Error 7.7802e-001 1.6573e-001 1.6289e-002 9.0992e-004
N 10 12 14 16

L∞ Error 2.2350e-005 5.5479e-007 1.0379e-008 1.4969e-010
L2

ω Error 3.2840e-005 8.3039e-007 1.5549e-008 2.2448e-010

Table 2: Example 5.2: the L∞ error and L2
ω error for ỹ(t).

N 2 4 6 8
L∞ Error 3.8007e-001 2.7672e-001 3.9601e-002 3.0376e-003
L2

ω Error 4.5430e-001 3.2695e-002 1.6289e-002 2.0592e-003
N 10 12 14 16

L∞ Error 1.4690e-004 9.9979e-006 1.8138e-007 3.5195e-009
L2

ω Error 9.3713e-005 6.2508e-006 1.1140e-007 2.0263e-009

Our second example is concerned with a nonlinear Volterra integral equation with
second kind.

Example 5.2. Consider the following the nonlinear Volterra integral equations of second
kind with weakly singular kernels

y(t)=
∫ t

0
(t−s)−1/2

(
−y2(s)

)
ds+g(t), 0≤ t≤T, (5.3)

with

g(t)=
π

2

(
1+cost besselj (0,t)

)
+

cost

t1/4
, t∈ [0,T].

The above equation has the exact solution

y(t)=
cost

t1/4
, 0≤ t≤T.

For this nonlinear problem, an iterated method is used to treat the nonlinearity, and the
proposed spectral method is used to solve the resulting linear equations. It takes about
3 iterations in obtaining convergent results. Table 2 and Fig. 2 present the errors of com-
puted solutions obtained by using the Chebyshev method at T = 8. Again, exponential
rate of convergence is observed for this example.

6 Summary

This work has been concerned with the error analysis for the Chebyshev-collocation spec-
tral methods for the Volterra integral equations with a weakly singular kernel of the form
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Figure 1: Example 5.1: L∞ and L2
ω errors versus the number of collocation points.

2 4 6 8 10 12 14 16
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

L∞−error

L2−error

Figure 2: Example 5.2: L∞ and L2
ω errors versus the number of collocation points.

(t−s)−
1
2 . The derivative y′(t) of the solution of this equation behaves like t−

1
2 near the

origin and this is expected to cause a loss in the global convergence order. To overcome
this difficulty, the original equation was changed into a new Volterra integral equation
which possesses better solution regularity, by applying some simple function and co-
ordinate transformations. We also presented a discretization scheme for the resulting
Volterra integral equation. It is demonstrated theoretically that both L∞- and L2-errors
decay exponentially. These results were confirmed by numerical experiments.

In our future work, we will consider the Volterra integral equations of the second kind
with a weakly singular kernel of the form (t−s)−µ, where µ∈(0,1). The Jacobi-collocation
spectral analysis will be applied to obtain numerical solutions. Convergence analysis will
be provided. We will also investigate the stability properties of these spectral approaches.
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