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Abstract

In this paper, the following two problems are considered:

Problem I. Given S € R"*?, X, B € R**™, find A € SR, such that AX = B, where
SRsn ={A € R™™zT(A— AT) =0, for all z € R(S)}.

Problem IL Given A* € R"*", find A € Sg such that |4 — A*|| = minaesy ||A— A%,
where SE is the solution set of Problem I.

The necessary and sufficient conditions for the solvability of and the general form of
the solutions of problem I are given. For problem II, the expression for the solution, a
numerical algorithm and a numerical example are provided.
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1. Introduction

Let R™*™ SR™ ™ OR™ "™ denote the set of real n x m matrices, real n x n symmetric
matrices and real n x n orthogonal matrices, respectively. The notation R(A), N(A), A* and
||A]| stand for the column space, the null space, the Moore-Penrose generalized inverse and the
Frobenius norm of a matrix A, respectively. I represents the identity matrix of order k. For
A = (a;;) € R™™ and B = (bj;) € R™™™, define A % B = (a;;b;;) € R™™ as Hardmard
product of A and B.

Inverse problem for nonsymmetric matrices and symmetric matrices have studied in [1-5],
and a series of perfect results have been obtained. However, inverse problem for matrices
between above two kinds of matrices, i.e., inverse problem for part symmetric matrices on a
subspace, have not been considered yet. In this paper, we will discuss this problem.

Let SR, = {A € RV"a2T(A — AT) = 0, for all z € R(S)}. we considered the following
problems:

Problem I. Given S € R"*?, X, B € R"*™, find A € SR, ,, such that AX = B.

Problem II. Given A* € R"*", find A € Sg such that

14 = A%|| = min ||A - A%,
€SE

where Sg is the solution set of Problem I.

In Section 2, the necessary and sufficient conditions for the solvability of Problem I have
been studied, and the general form of Sg has been given. In Section 3, the expression of the
solution of Problem II has been provided, and a numerical algorithm and a numerical example
are included.
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2. The Solution of Problem I

Let us first introduce some lemmas.
Lemma 1. Suppose the Singular- Value Decomposition (SVD) of matriz S in Problem I is

S=0, ( g 8 ) Vil = U AV, (2.1)

where U; = (U11, U12) S ORnxn, Uin € Rnxr’ Vi = (‘/11,V12) S ORpo, Vi1 € Rpxr}
A =diag(o1,09,...,0.) >0, and r =rank(S). Let

T [ A A
“A“‘<@1Am

Then A € SRy, if and only if Aj; € SR™ " and A5 = AY, € R™*(n=7),
Proof. If A € SR, then by z1(A — AT) =0, for all z € R(S), we have
ST(A—- ATy =0. (2.3)
_ AT _ AT
Substitute (2.1) and (2.2) into (2.3), we have V} ( A0 ) < An =y A — Ay ) Ul =o,

0 0 Agy — AT Agy — AL
_ AT _ AT
ie., ( A(Allo A11) A(A120 A12) > = 0. Hence A;; € SR™ " and A5 = Ag“l c Rrx(nfr)_

> ,A11 € R™*", (22)

Conversely, for all z € R(S), there exists y € RP*! such that z = Sy = U, < /S 8 > Vi'y.
By Ay = Af}, Ajp = AJ}, we have
Rl S LA

A O Ay — AT Ay, — AT
— VT T 11 11 12 21>UT
') (0 0><A21—A1T2 Ay — AL, )71
—0.

Hence A € SR; ;..
Lemma 2. Given Z € R™* Y € R™** and the SVD of Z is

Z=U ( ﬁ 8 ) Vi =UnAVE, (2.4)
where 01 = (UH, 012) S ORnxn, UH S Rnxm) ‘71 = (‘711,‘712) S ORka, ‘711 S kam}
A =diag(01,92,...,8r,) > 0,79 =rank(Z). Then there is a matric A € R™*" such that AZ =Y
if and only if YVi, = 0. In that case the general solution can be expressed as A =Y Z+ +C~¥U£,
where G € R™*("=70) s arbitrary matriz.
Lemma 3. Given Z,Y € R"*, and the SVD of Z is of the form (2.4). Then there is a
matriz A € SR™" such that AZ =Y if and only if ZTY =YTZ and YVi» = 0. In that case
the general solution can be expressed as A = YZT + (YZT (I, — ZZT) + Uio MUY, where
M € SR(m=ro)x(n=r0) s arbitrary matriz.

Partition UL X and U B, where U, is the same as (2.1), into the following form

Urx = ( 2 ) UI'B = ( g: ) ,X1,B; € R"™*™ X,, By € Rv—T)xm, (2.5)
Suppose the SVD of X5 is
r o0
X, =U, ( 0 0 ) Vol = Uy TV (2.6)

where Us = (U21,U22) S OR(nir)X(nir),Um S R(nir)Xkl,V2 = (‘/21,‘/22) S ORmxm;VM €
R™ M T =diag(ay,as,...,ax,) > 0,k =rank(X>).
Suppose the SVD of (X;V5,) is

Q 0
&w=%<oo>ﬁéwmﬁ (2.7)
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where Uz = (U31,U32) € ORTXT,UM € RTsz,Vg = (V31,V32) € OR(mikl)X(mikl),Vgl €
R(m—k1)xk2 O —diag(by,ba, ..., bg,) > 0, ky =rank(X;Vas).

Let
Wl - -BIV22(AX1‘/22)+ + [B1V22(X1V22)+]T[Ir - (X1V22)(X1V22)+]7 (28)
Wy = (By — W1 X1) X5 + [UsaUsy Ba Voo (X1 Vag) TT (2.9)
and
W3 = (By — Wi X)X (2.10)

Then we have the following theorem.
Theorem 1. Given X,B € R"*™ S € R"*P, and the SVD of S, X5 and X Va2 separately are
of the form (2.1),(2.6) and (2.7), then Problem I is soluble if and only if

(i). B1Va2Vay =0;

(ii). Vo BY X1Vay = Vb X{ By Vo,

(iil). U, BaVay — UL (X)) T(By — W1 X1)T (X1 Vas) = 0;

(iV). U27;B2‘/22V32 =0.
When the above conditions are satisfied , the general solution of Problem I can be represented
as

Wy +U32MU31; W2+U32NTU21; —U32MU3T2X1X;_

A=U, ul,  (2.11)

W + Uy NUL W3 + HUL — Uss NUL X, XF
-(ULX1 X)) TMUE +UEX X TMULX XS
where M € SRU—k)x(r—k2) N ¢ Rn—r—ki)x(r—k2) [ ¢ R=)x(n=r=k1) gre arbitrary ma-
triz.

Proof. Necessity. Suppose there exists A € SR, j, such that AX = B, then by Lemma 1,
U AU, can be partitioned as

UlTAUl = ( i%ﬂl im > ,AH S SRTXT,AQQ S R(n—r)x(n—r)- (212)
12 22
Hence AX = B is equivalent to
A12X2 = Bl — A11X1 (213)
and
Agp Xy = By — AL X (2.14)
Applying Lemma 2 and (2.6) to (2.13), we get
A X1V = By Vo (2.15)
and
Arz = (B — AuX1) X5 + GUS, (2.16)

where G € R"*("—"=k1) ig arbitrary matrix. Applying Lemma 3, (2.7) and (2.8) to (2.15), we
get
Vs Bl X1Vay = Voh X[ B1Vas, BiVasVsy =0 (2.17)

and
A1 = Wi + Usa MU, (2.18)
where M € SR("—k2)x(r=k2) is arbitrary matrix. Substitute (2.18) into (2.16), and furthermore
into (2.14), we have
ApsXo = By — (X)) (B = Wi X1) "Xy + (UL X1 X)) "MUL X, —UnGTX,. (2.19)
Notice that UL X1 Vas = 0, and using Lemma 2 and (2.6) to (2.19), we get
U22GTX1‘/22 == B2V22 - (X;)T(Bl - Wle)TX1V22 (220)
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and
Agy = [By — (XD T(By - W1 X)X + (ULX, X)) TMUL X, — UsyGT X1 X5 + HUY,, (2.21)
where H € R("»")*(n=r=k1) is arbitrary matrix. But (2.20) is equivalent to

UL ByVay — UL (X (By = Wi X1)T X Vay =0 (2.22)
and
G" X1 Vay = Ujy BaVao. (2.23)
By Lemma 2 and (2.23), we get
Uy By Vas Vs = 0 (2.24)
and
GT = UJ,BaVay (X1 Vo)™ + NUL,, (2.25)
where N € R("—7—k1)x(r=k2) ig arhitrary matrix. Taking (2.18) and (2.25) into (2.16), we have
Ayy = Wy + Uso NTUL, — Uso MUL X, X5, (2.26)
where W5 is the same as (2.9). Taking (2.25) into (2.21), we have
Agy = W3 + HUL — Upa NUL X, X35 + (UL X, X )T MUL X, X5, (2.27)

where W3 is the same as (2.10). Taking (2.18),(2.26) and (2.27) into (2.12), we have (2.11).
Sufficiency. Suppose the conditions (i)-(iv) are satisfied. Let
Ay = Wi = By Voo (X1 Vao) T + [B1Vaa (X1 Vaz) 17 1 — (X1 Va2) (X1 Va2) ],
Ay = (By — A1 X0) X5 + [UsaUdy BoVao (X1 Vag) T

and
Ay = ( A12X1)X )

then we have
AT = [B1Vag (X1 Va2) F]T + (B1Va2) (X1 Vaa) T — (X1 Va2 ) tT (X1 Vas) T (B Vag ) (X1 Va2 )t
= (B1Va2) (X1 Va2)t + [(B1Vag) (X1 Va2) H]T — (X1 Vao)TT (B Vas) T (X1 Vag ) (X1 Va2 )t
+ [(B1 Va2) (X1 Va2) 1[I — (X1 Va2)(X1 Va2)t] = Auy,
( )+

= (B Va2)(X1Va2)™
Ay1 X1 Vag = By Vao (X1 Vao) T (X1 Vag) + [By Va2 (X1 Vao) T1T I — (X1 Vo) (X1 Vo) (X1 Vaz)
= By Vas (X1 Vao) T (X1 Var (B1Vaz) — B1Vaa Vaa Vb = By Vaa,

)=
A1 Xy = (By — A1 X1) XS Xy + [UsaUy Bo Voo (X1 Vaz ) T X
= (B — A1 X1) — (By — A1 X1)Vao V)b = By — A Xy,

(By — AL, X1)Vao Vi = [Ba — X5 7By — Wi X1)T Xy — UpaUgy By Vao (X1 Va) T X1 Voo Vi
_ UL ByVay — UL XST(By — Wi X1)T X1 Vay -
=U: T + Vs
U22B2V22 U22B2V22(X1V22) (X1V22)

_u, U21BQV22 U21X+T(Bl WiX)TX1Var \ 1 _
UL, BaVas V3o Vb 2
and
A9 Xy = (By — AL X)) — (By — AL X)) Vau Vb = B, — AT, X
Let

All A12 T
A=U U
! ( Aly  Ag ) v

then A € SR, ,, and

A A X1 AnXi + A Xy B,
AX =U =U, =U = B.
1<A1Tz A22><Xz> 1<AT2X1+A22X2> 1(32>

Hence Problem I is soluble.
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3. The solution for Problem II
Lemma 4. Given C,D,H,K € R"*™ T =diag(t1,t2,...,t,) > 0, then the problem

o(G)=]G = C|? + ||GT = D||? + ||TG — H||? + ||TGT — K||*> = min (3.1)
has an unique solution G € SRnxn sand
G=F+«C+CT+DT+TDT + TH + H'T + TKT + TKT) (3.2)

1
where F = (fij) € B**", fij = strarreram -

Proof. Since G € SR"*™, we have from (3.1) that

P(G) = Y [(gij — i) + (tigi; — di)* + (tigis — hij)* + (tit;gi; — kij)*]
1<i,j<n

= Z [(9:5 — Cij)2 + (g5 — Cji)2 + (tjgij — dij)2 + (tigij — dj~)2
1<i<j<n
+(tigij — hij)® + (tigi; — hji)* + (titjgi — kig)® + (tit;9i; — kji)*)
+ Z [(gu - Cii)2 + (tigii - d”)Z + (tigii — h”)2 + (t?gii _ k”)Z]
1<i<n
By 2 =0 (1 <i,j <n), we have
1
2(1+ 87 + 17 + £7t3)

9ij = (cij + ¢ji + tdji + tydij + tihay + tihgi + titjki; + titjkji).

Hence
G=F«(C+CT"+DT+TD" +TH + H'T + TKT + TK"T).

Similar to the proof of the Lemma 4, we can prove the following lemma 5.
Lemma 5. Given A;,B;(i = 1,2,...,p,j = 1,2,...,q) € R™*", T =diag(t1,t2,...,t,) > 0,
then the problem
p(@)= Y G- AP+ Y IIGT - Bjl* = min (3.3)

1<i<p 1<5i<q
has an unique solution G € R™*", and

G=Fx(Y Ai+ > BT) (3.4)

1<i<p 1<j<q

where F' = (fl]) € Rmxn’fij = ﬁ

Similar to the proof of the lemma 7 in [7], we can prove the following lemma 6.
Lemma 6. When the solution set Sg of Problem I is nonempty, then Sg is a convex cone,
and the corresponding Problem II has an unique optimal approximate solution.

Suppose the SVD of (ULX Vo I'71) is

_ ¥ 0
ULX, Vo T = U, ( 0 0 >V4T, (3.5)
where Uy = (Uyy, Uss) € ORUTF2)X(r=k2) "V, = (V) Vip) € ORFVF1 |8 =diag(6y, 02, . . ., 0¢) >
0, t =rank(UL X, Vo, T 1).

Let
A A

UlTA*Ul - < Az Ay

) ,Al c R’I"XT‘,A4 c R(nfr)x(nfr)’ (36)
Ql = U4TIU3T2(A1 + A{ - Wy — WIT)U?,QU41 + UZ;U3T2(W2 — AQ)U21V412
+EV:£U£ (W2 — Az)TU32U41 + EV;E;U% (WQT — A3)U32U41 (37)
+ULULWT — A3)TU Vi S + SVEUL (Ay + AT — W3 — W Un Vi B,
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Qo = ULUL (AL + AT — Wy — W UsoUyge + SVIUY, QWY — AT — ADYU3,Uy, (3.8)

1
Qs = §U47;U31;(A1 + AL = Wi = W )Us2Uss, (3.9)
Qs = Uy (As — 2W5 + A7) UsoUsy + Usy(Ay — W)U Vin B, (3:10)
and 1
Qs = §U21;(A3 + A7 — 2W5 ) UsyUsa. (3.11)

Then we have the following theorem.
Theorem 2. If the solution set Sg of Problem I is nonempty , then Problem II has a unique
optimal approximate solution which can be represented as

Wy + Usy MUY, Wy + Uss NTUL, — Uso MUL X, X

1 T
_ . . . 12
A=U W 4+ Uy NUL Wy + HUL — Uy NUL X, X Ui (3.12)

—(ULX X)) TMUL  +(ULX X )T MUL X X5
F xQ FyxQ
(F21* Q;)T 2Q3 ? >U4TaF1 = (1/%]) € RtXt:¢ij = 2(1+6l.2+1612.+5i25]2__)aF2 =
(pij) € R*rkaml) g = 2(1lTl_Z)7N = (F3 % Qu,Q:)Ul, F3 = (pyj) € Rmr=hoxt 5 =
w70 H = (A = W3) U,

Proof. Since the solution set Sg of Problem I is nonempty , hence Problem II has a unique
optimal approximate solution. Attention to U;,V;(i = 1,2,3,4) are orthogonal matrices, we
have from (2.11) that

2

A= A%|2 = || UsaMUL — (Ay = W1) || + || UsaNTUL — U32MU3T2X1X2+ —(Ay = W) ||
+ || UnnNUEL — (UL X X TMUL — (A3 — W) ||’ ,
+|| HUS — UnnNUHX1 X5 + (UH X X5 ) TMULX XS — (A — W) ||

2
0 0
:‘ <0 M)—U?T(Al—Wl)Ug

0 0 .
" ( ~M(UHX Vo I NT ) = U3 (A2 = W)U,

+ ( 0 WX ) — Uf (A5 — W)Uy
((U3T2X1V21F1)TM(U§;X1V21F1) Ug;H
N(U£X1V21F71) Ug;H
Hence ||A — A*|| = min is equivalent to
|M — Uy (Ar = Wi)Usa” + || M (Ugy X1 Vaor T™1) = Ugy (W — Ap)Uas ||
(U X1 Vo DT M — U3, (W3 — Ag)Uso

where M = Uy (

2

2

2
+

> — U (Ay — W3)Us

H(ULX Vo, DY MULX Vo T — U (Ag — W3)Usy ||? = min, (3.13)
INT — Uy (A — Wa)Uss||” + [|N — Usy (A — W3 )Uss||?
HIN(ULX, Vo, 7Y — UL (Ag — W3)Usy ||* = min (3.14)
and
|H — (A4 — W3)Uss|| = min . (3.15)
Write

Mll M12

UZMU4 = < Ml’]; ]\4’22

) ,M11 € SRtXt,MQQ € SR(rihit)X(Tikzit), (316)
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then (3.13) is equivalent to
M1 = Uf Uy (A = W) UsoUnt||> + [|M11 S = U Usy (W — As)Usi Via ||
HIEM1y — VAUL (W — A3)Uso Ui [P + |IEM11 & — VAU (Ag — W3)Usy Vi || min,  (3.17)
[Mi2 = Uf, Uy (A1 = Wi)UsoUss || + [| M1z — UL, Uy (Ar — Wi)TUsoUss |
IS My = VUL (W = A7) UsoUss|® + ||SMy = Vi U5, (W — A3) " UspUss||* = min (3.18)

and
||M22 — U47;U32(A1 — Wl)U32U42|| = min . (319)

Applying Lemma 4 and Lemma 5 to (3.17),(3.18) and (3.19), we have My, = F; * Q1, M2 =
Fy % 2, Moo = Q3. Hence

M=U, ( (}gl**Q%T F253Q2 >U4T. (3.20)
Write
NUy = (N11, Nia), Nyy € R=k)xt Ny e Rin=r—hk)x(r—ka=t), (3.21)
then (3.14) is equivalent to
N1 = Usy (A — Wa) " UsoUaa [|” + | N1y — Ugy(As — W )UsoUas |
+IN1E = Uy (Ag — W3)Usy Viy ||* = min (3.22)
and
|N12 — Uy (As — W) UsaUss||* + || N12 — Uy (A3 — W) UsoUis||* = min . (3.23)
Applying Lemma 5 to (3.22) and (3.23), we have Ny; = F3 % Q4, N12 = Q5. Hence
N = (F5 % Qu4,@Q5)UJ . (3:24)
From (3.15),we have
H = (A4 — W3)Uss. (3.25)

Taking (3.20),(3.24) and (3.25) into (2.11), we have (3.12).
According to Theorem 1 and 2 , we now give an algorithm of finding the optimal approximate
solution of Problem II as the following steps:
(1). Construct the SVD of S according to (2.1);
(2). According to (2.5) compute X;, B;(i = 1,2) ;
(3). Construct the SVD of X5 and (X;Va2) according to (2.6) and (2.7) ;
(4). If conditions (i)-(iv) are satisfied, go to step (5); else go to step (9);
(5). According to (2.8)-(2.10) calculate W;(i = 1,2, 3);
(6). Construct the SVD of (UL X, Vae'™1) according to (3.5) ;
(7). According to (3.7)-(3.11) calculate Q;(i = 1,2,3,4,5);
(8). According to (3.12) calculate A;
(9). stop.
Example 1. Given

1.2 =09 0.7 0.2 24 =21
0.7 -0.9 1.8 —-09 14 1.6
-11 —-1.7 0.2 1.5 -22 0.6
0.8 0.4 04 -08 1.6 0.4
09 -07 -16 2.3 1.8 1.6
1.3 0.6 1.1 -1.7 26 -08
0.7 -0.9 1.8 —-09 14 1.6
—-1.2 09 -07 -02 -24 2.1
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—-233 466 -32.8 101 —-20.2 -11.5

324 —-64.8 314 499 —-99.8 128.0

—42.7 854 -22.9 153.6 —307.2 142.2

¥ = 32.1 —64.2 31.6 B —46.0 92.0 —-51.2
—23.9 478 7.1 |’ -20.3 40.6 25.3

—-124 248 -26.9 145 -29.0 76.6

31.1 —62.2 41.7 302 —-604 571

276 —55.2 -—23.7 175 —=35.0 —47.2

and

Sk

1.2 1.7 20 3.1 40 -50 -1.8 3.0
-1.7 26 19 -11 -6.0 3.9 70 -1.9
3.0 —41 -29 1.7 1.6 08 —45 2.1
1.5 1.9 16 —-53 —-26 —-6.1 3.0 -23
-53 —-2.6 —4.7 1.2 -71 —-6.1 2.3 2.1
2.0 3.0 4.0 6.1 7.1 2.9 1.6 —4.0
1.7 35 -18 =21 4.1 21 =22 1.6
23 —-49 31 -23 31 —-47 -13 -33

A*

It is easy to verify that the conditions of Theorem 1 are satisfied. Hence, the solution set
of Problem I is nonempty, and so the corresponding Problem II has an unique solution.

According to the above calculating steps, we have A as follow:

s

[1]

0.9008 1.8419  0.6820  0.7353 —0.7187  0.2878 —0.4294 —0.8366
1.5452 22434  1.4235 1.3189 —0.7862 1.8938  3.2973 —2.4056
0.2746  0.5241 -2.2272  3.3022 1.3065 1.0075 —-1.1703  0.8025
—0.1051 1.0686 —0.0580 —4.5006 —1.2741  0.0221 21978 —1.4392
—0.6617 —0.9651 1.9445 —-0.4280 —0.8892 —1.9493 19113 —-0.4524
0.2415  0.7372  3.2156  4.9577 —-2.3304 —-0.6214  0.2630 —3.5241
0.1717  3.8400 -1.7986 —0.0045  2.1712  0.7874 —4.2788 1.0019
—0.8531 —2.5220 1.9986 1.1638 —0.6455 —3.4778  0.2135  2.2425
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