THE INVERSE PROBLEM FOR PART SYMMETRIC MATRICES ON A SUBSPACE $^{*1)}$

Zhen-yun Peng

(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)
(Department of Mathematics, Loudi Teachers College, Loudi 417000, China)

Xi-yan Hu Lei Zhang

(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

Abstract

In this paper, the following two problems are considered:

Problem I. Given $S \in R^{n \times p}$, $X, B \in R^{n \times m}$, find $A \in SR_{s,n}$ such that AX = B, where $SR_{s,n} = \{A \in R^{n \times n} | x^T(A - A^T) = 0, \text{ for all } x \in R(S)\}.$

Problem II. Given $A^* \in R^{n \times n}$, find $\hat{A} \in S_E$ such that $\|\hat{A} - A^*\| = \min_{A \in S_E} \|A - A^*\|$, where S_E is the solution set of Problem I.

The necessary and sufficient conditions for the solvability of and the general form of the solutions of problem I are given. For problem II, the expression for the solution, a numerical algorithm and a numerical example are provided.

Key words: Part symmetric matrix, Inverse problem, Optimal approximation.

1. Introduction

Let $R^{n\times m}$, $SR^{n\times n}$, $OR^{n\times n}$ denote the set of real $n\times m$ matrices, real $n\times n$ symmetric matrices and real $n\times n$ orthogonal matrices, respectively. The notation R(A), N(A), A^+ and $\|A\|$ stand for the column space, the null space, the Moore-Penrose generalized inverse and the Frobenius norm of a matrix A, respectively. I_k represents the identity matrix of order k. For $A=(a_{ij})\in R^{n\times m}$ and $B=(b_{ij})\in R^{n\times m}$, define $A*B=(a_{ij}b_{ij})\in R^{n\times m}$ as Hardmard product of A and B.

Inverse problem for nonsymmetric matrices and symmetric matrices have studied in [1-5], and a series of perfect results have been obtained. However, inverse problem for matrices between above two kinds of matrices, i.e., inverse problem for part symmetric matrices on a subspace, have not been considered yet. In this paper, we will discuss this problem.

Let $SR_{s,n} = \{A \in R^{n \times n} | x^T (A - A^T) = 0, \text{ for all } x \in R(S) \}$. we considered the following problems:

Problem I. Given $S \in \mathbb{R}^{n \times p}$, $X, B \in \mathbb{R}^{n \times m}$, find $A \in SR_{s,n}$ such that AX = B.

Problem II. Given $A^* \in \mathbb{R}^{n \times n}$, find $\hat{A} \in S_E$ such that

$$\|\hat{A} - A^*\| = \min_{A \in S_E} \|A - A^*\|,$$

where S_E is the solution set of Problem I.

In Section 2, the necessary and sufficient conditions for the solvability of Problem I have been studied, and the general form of S_E has been given. In Section 3, the expression of the solution of Problem II has been provided, and a numerical algorithm and a numerical example are included.

^{*} Received March 30, 2001; final revised September 3, 2001.

¹⁾ Research supported by National Natural Science Foundation of China (10171031), and by Hunan Province Education Foundation (02C025).

2. The Solution of Problem I

Let us first introduce some lemmas.

Lemma 1. Suppose the Singular-Value Decomposition (SVD) of matrix S in Problem I is

$$S = U_1 \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} V_1^T = U_{11} \Lambda V_{11}^T, \tag{2.1}$$

where $U_1 = (U_{11}, U_{12}) \in OR^{n \times n}, U_{11} \in R^{n \times r}, V_1 = (V_{11}, V_{12}) \in OR^{p \times p}, V_{11} \in R^{p \times r}, \Lambda = diag(\sigma_1, \sigma_2, \dots, \sigma_r) > 0$, and r = rank(S). Let

$$U_1^T A U_1 = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, A_{11} \in \mathbb{R}^{r \times r}.$$
 (2.2)

Then $A \in SR_{s,n}$ if and only if $A_{11} \in SR^{r \times r}$ and $A_{12} = A_{21}^T \in R^{r \times (n-r)}$.

Proof. If $A \in SR_{s,n}$, then by $x^T(A - A^T) = 0$, for all $x \in R(S)$, we have

$$S^T(A - A^T) = 0. (2.3)$$

Substitute (2.1) and (2.2) into (2.3), we have $V_1 \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_{11} - A_{11}^T & A_{12} - A_{12}^T \\ A_{21} - A_{21}^T & A_{22} - A_{22}^T \end{pmatrix} U_1^T = 0$,

i.e.,
$$\begin{pmatrix} \Lambda(A_{11} - A_{11}^T) & \Lambda(A_{12} - A_{12}^T) \\ 0 & 0 \end{pmatrix} = 0$$
. Hence $A_{11} \in SR^{r \times r}$ and $A_{12} = A_{21}^T \in R^{r \times (n-r)}$.

Conversely, for all $x \in R(S)$, there exists $y \in R^{p \times 1}$ such that $x = Sy = U_1 \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} V_1^T y$.

By $A_{11} = A_{11}^T, A_{12} = A_{21}^T$, we have

$$x^{T}(A - A^{T}) = (V_{1}^{T}y)^{T} \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} U_{1}^{T}(A - A^{T})$$

$$= (V_{1}^{T}y)^{T} \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_{11} - A_{11}^{T} & A_{12} - A_{21}^{T} \\ A_{21} - A_{12}^{T} & A_{22} - A_{22}^{T} \end{pmatrix} U_{1}^{T}$$

$$= 0$$

Hence $A \in SR_{s,n}$.

Lemma 2^[2]. Given $Z \in \mathbb{R}^{n \times k}$, $Y \in \mathbb{R}^{m \times k}$, and the SVD of Z is

$$Z = \tilde{U}_1 \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} \tilde{V}_1 = \tilde{U}_{11} \Delta \tilde{V}_{11}^T, \tag{2.4}$$

where $\tilde{U}_1 = (\tilde{U}_{11}, \ \tilde{U}_{12}) \in OR^{n \times n}, \ \tilde{U}_{11} \in R^{n \times r_0}, \ \tilde{V}_1 = (\tilde{V}_{11}, \tilde{V}_{12}) \in OR^{k \times k}, \ \tilde{V}_{11} \in R^{k \times r_0}, \ \Delta = diag(\delta_1, \delta_2, \dots, \delta_{r_0}) > 0, r_0 = rank(Z).$ Then there is a matrix $A \in R^{m \times n}$ such that AZ = Y if and only if $Y\tilde{V}_{12} = 0$. In that case the general solution can be expressed as $A = YZ^+ + \tilde{G}\tilde{U}_{12}^T$, where $\tilde{G} \in R^{m \times (n-r_0)}$ is arbitrary matrix.

Lemma 3^[2]. Given $Z, Y \in \mathbb{R}^{n \times k}$, and the SVD of Z is of the form (2.4). Then there is a matrix $A \in S\mathbb{R}^{n \times n}$ such that AZ = Y if and only if $Z^TY = Y^TZ$ and $Y\tilde{V}_{12} = 0$. In that case the general solution can be expressed as $A = YZ^+ + (YZ^+)^T(I_n - ZZ^+) + \tilde{U}_{12}\tilde{M}\tilde{U}_{12}^T$, where $\tilde{M} \in S\mathbb{R}^{(n-r_0)\times(n-r_0)}$ is arbitrary matrix.

Partition $U_1^T X$ and $U_1^T B$, where U_1 is the same as (2.1), into the following form

$$U_1^T X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, U_1^T B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, X_1, B_1 \in \mathbb{R}^{r \times m}, X_2, B_2 \in \mathbb{R}^{(n-r) \times m}.$$
 (2.5)

Suppose the SVD of X_2 is

$$X_2 = U_2 \begin{pmatrix} \Gamma & 0 \\ 0 & 0 \end{pmatrix} V_2^T = U_{21} \Gamma V_{21}^T$$
 (2.6)

where $U_2 = (U_{21}, U_{22}) \in OR^{(n-r)\times(n-r)}, U_{21} \in R^{(n-r)\times k_1}, V_2 = (V_{21}, V_{22}) \in OR^{m\times m}, V_{21} \in R^{m\times k_1}, \Gamma = \operatorname{diag}(a_1, a_2, \dots, a_{k_1}) > 0, k_1 = \operatorname{rank}(X_2).$

Suppose the SVD of (X_1V_{22}) is

$$X_1 V_{22} = U_3 \begin{pmatrix} \Omega & 0 \\ 0 & 0 \end{pmatrix} V_3^T = U_{31} \Omega V_{31}^T$$
 (2.7)

where $U_3 = (U_{31}, U_{32}) \in OR^{r \times r}, U_{31} \in R^{r \times k_2}, V_3 = (V_{31}, V_{32}) \in OR^{(m-k_1) \times (m-k_1)}, V_{31} \in R^{r \times k_2}$ $R^{(m-k_1)\times k_2}, \Omega = \operatorname{diag}(b_1, b_2, \dots, b_{k_2}) > 0, k_2 = \operatorname{rank}(X_1 V_{22}).$

$$W_1 = B_1 V_{22} (X_1 V_{22})^+ + [B_1 V_{22} (X_1 V_{22})^+]^T [I_r - (X_1 V_{22}) (X_1 V_{22})^+], \tag{2.8}$$

$$W_2 = (B_1 - W_1 X_1) X_2^+ + [U_{22} U_{22}^T B_2 V_{22} (X_1 V_{22})^+]^T$$
(2.9)

and

$$W_3 = (B_2 - W_2^T X_1) X_2^+. (2.10)$$

Then we have the following theorem.

Theorem 1. Given $X, B \in \mathbb{R}^{n \times m}, S \in \mathbb{R}^{n \times p}$, and the SVD of S, X_2 and X_1V_{22} separately are of the form (2.1),(2.6) and (2.7), then Problem I is soluble if and only if

- (i). $B_1V_{22}V_{32} = 0$;
- (ii). $V_{22}^T B_1^T X_1 V_{22} = V_{22}^T X_1^T B_1 V_{22};$ (iii). $U_{21}^T B_2 V_{22} U_{21}^T (X_2^+)^T (B_1 W_1 X_1)^T (X_1 V_{22}) = 0;$ (iv). $U_{22}^T B_2 V_{22} V_{32} = 0.$

When the above conditions are satisfied, the general solution of Problem I can be represented

$$A = U_{1} \begin{pmatrix} W_{1} + U_{32}MU_{32}^{T} & W_{2} + U_{32}N^{T}U_{22}^{T} - U_{32}MU_{32}^{T}X_{1}X_{2}^{+} \\ W_{2}^{T} + U_{22}NU_{32}^{T} & W_{3} + HU_{22}^{T} - U_{22}NU_{32}^{T}X_{1}X_{2}^{+} \\ -(U_{32}^{T}X_{1}X_{2}^{+})^{T}MU_{32}^{T} & +(U_{32}^{T}X_{1}X_{2}^{+})^{T}MU_{32}^{T}X_{1}X_{2}^{+} \end{pmatrix} U_{1}^{T},$$
 (2.11)

Proof. Necessity. Suppose there exists $A \in SR_{s,n}$ such that AX = B, then by Lemma 1, $U_1^T A U_1$ can be partitioned as

$$U_1^T A U_1 = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{pmatrix}, A_{11} \in SR^{r \times r}, A_{22} \in R^{(n-r) \times (n-r)}.$$
 (2.12)

Hence AX = B is equivalent to

$$A_{12}X_2 = B_1 - A_{11}X_1 \tag{2.13}$$

and

$$A_{22}X_2 = B_2 - A_{12}^T X_1. (2.14)$$

Applying Lemma 2 and (2.6) to (2.13), we get

$$A_{11}X_1V_{22} = B_1V_{22} \tag{2.15}$$

and

$$A_{12} = (B_1 - A_{11}X_1)X_2^+ + GU_{22}^T, (2.16)$$

where $G \in \mathbb{R}^{r \times (n-r-k_1)}$ is arbitrary matrix. Applying Lemma 3, (2.7) and (2.8) to (2.15), we

$$V_{22}^T B_1^T X_1 V_{22} = V_{22}^T X_1^T B_1 V_{22}, \quad B_1 V_{22} V_{32} = 0$$
(2.17)

and

$$A_{11} = W_1 + U_{32}MU_{32}^T, (2.18)$$

where $M \in SR^{(r-k_2)\times(r-k_2)}$ is arbitrary matrix. Substitute (2.18) into (2.16), and furthermore into (2.14), we have

$$A_{22}X_2 = B_2 - (X_2^+)^T (B_1 - W_1 X_1)^T X_1 + (U_{32}^T X_1 X_2^+)^T M U_{32}^T X_1 - U_{22} G^T X_1.$$
 (2.19)

Notice that $U_{32}^T X_1 V_{22} = 0$, and using Lemma 2 and (2.6) to (2.19), we get

$$U_{22}G^{T}X_{1}V_{22} = B_{2}V_{22} - (X_{2}^{+})^{T}(B_{1} - W_{1}X_{1})^{T}X_{1}V_{22}$$
(2.20)

and

$$A_{22} = [B_2 - (X_2^+)^T (B_1 - W_1 X_1)^T X_1 + (U_{32}^T X_1 X_2^+)^T M U_{32}^T X_1 - U_{22} G^T X_1] X_2^+ + H U_{22}^T, \quad (2.21)$$
 where $H \in \mathbb{R}^{(n-r)\times(n-r-k_1)}$ is arbitrary matrix. But (2.20) is equivalent to

$$U_{21}^T B_2 V_{22} - U_{21}^T (X_2^+)^T (B_1 - W_1 X_1)^T X_1 V_{22} = 0 (2.22)$$

and

$$G^T X_1 V_{22} = U_{22}^T B_2 V_{22}. (2.23)$$

By Lemma 2 and (2.23), we get

$$U_{22}^T B_2 V_{22} V_{32} = 0 (2.24)$$

and

$$G^{T} = U_{22}^{T} B_{2} V_{22} (X_{1} V_{22})^{+} + N U_{32}^{T}, (2.25)$$

where $N \in \mathbb{R}^{(n-r-k_1)\times(r-k_2)}$ is arbitrary matrix. Taking (2.18) and (2.25) into (2.16), we have

$$A_{12} = W_2 + U_{32}N^T U_{22}^T - U_{32}M U_{32}^T X_1 X_2^+, (2.26)$$

where W_2 is the same as (2.9). Taking (2.25) into (2.21), we have

$$A_{22} = W_3 + HU_{22}^T - U_{22}NU_{32}^TX_1X_2^+ + (U_{32}^TX_1X_2^+)^TMU_{32}^TX_1X_2^+,$$
 (2.27)

where W_3 is the same as (2.10). Taking (2.18),(2.26) and (2.27) into (2.12), we have (2.11). Sufficiency. Suppose the conditions (i)-(iv) are satisfied. Let

$$A_{11} = W_1 = B_1 V_{22} (X_1 V_{22})^+ + [B_1 V_{22} (X_1 V_{22})^+]^T [I_r - (X_1 V_{22}) (X_1 V_{22})^+],$$

$$A_{12} = (B_1 - A_{11} X_1) X_2^+ + [U_{22} U_{22}^T B_2 V_{22} (X_1 V_{22})^+]^T$$

and

$$A_{22} = (B_2 - A_{12}^T X_1) X_2^+,$$

then we have

$$A_{11}^{T} = [B_{1}V_{22}(X_{1}V_{22})^{+}]^{T} + (B_{1}V_{22})(X_{1}V_{22})^{+} - (X_{1}V_{22})^{+T}(X_{1}V_{22})^{T}(B_{1}V_{22})(X_{1}V_{22})^{+}$$

$$= (B_{1}V_{22})(X_{1}V_{22})^{+} + [(B_{1}V_{22})(X_{1}V_{22})^{+}]^{T} - (X_{1}V_{22})^{+T}(B_{1}V_{22})^{T}(X_{1}V_{22})(X_{1}V_{22})^{+}$$

$$= (B_{1}V_{22})(X_{1}V_{22})^{+} + [(B_{1}V_{22})(X_{1}V_{22})^{+}]^{T}[I_{r} - (X_{1}V_{22})(X_{1}V_{22})^{+}] = A_{11},$$

$$\begin{split} A_{11}X_1V_{22} &= B_1V_{22}(X_1V_{22})^+(X_1V_{22}) + [B_1V_{22}(X_1V_{22})^+]^T[I_r - (X_1V_{22})(X_1V_{22})^+](X_1V_{22}) \\ &= B_1V_{22}(X_1V_{22})^+(X_1V_{22}) = (B_1V_{22}) - B_1V_{22}V_{32}V_{32}^T = B_1V_{22}, \end{split}$$

$$A_{12}X_2 = (B_1 - A_{11}X_1)X_2^+X_2 + [U_{22}U_{22}^TB_2V_{22}(X_1V_{22})^+]^TX_2$$

= $(B_1 - A_{11}X_1) - (B_1 - A_{11}X_1)V_{22}V_{22}^T = B_1 - A_{11}X_1,$

$$\begin{aligned} (B_2 - A_{12}^T X_1) V_{22} V_{22}^T &&= [B_2 - X_2^{+T} (B_1 - W_1 X_1)^T X_1 - U_{22} U_{22}^T B_2 V_{22} (X_1 V_{22})^+ X_1] V_{22} V_{22}^T \\ &&= U_2 \left(\begin{array}{c} U_{21}^T B_2 V_{22} - U_{21}^T X_2^{+T} (B_1 - W_1 X_1)^T X_1 V_{22} \\ U_{22}^T B_2 V_{22} - U_{22}^T B_2 V_{22} (X_1 V_{22})^+ (X_1 V_{22}) \end{array} \right) V_{22}^T \\ &&= U_2 \left(\begin{array}{c} U_{21}^T B_2 V_{22} - U_{21}^T X_2^{+T} (B_1 - W_1 X_1)^T X_1 V_{22} \\ U_{22}^T B_2 V_{22} V_{32} V_{32}^T \end{array} \right) V_{22}^T = 0 \end{aligned}$$

and

$$A_{22}X_2 = (B_2 - A_{12}^T X_1) - (B_2 - A_{12}^T X_1)V_{22}V_{22}^T = B_2 - A_{12}^T X_1.$$

Let

$$A = U_1 \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{array} \right) U_1^T,$$

then $A \in SR_{s,n}$ and

$$AX = U_1 \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{array} \right) \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) = U_1 \left(\begin{array}{c} A_{11}X_1 + A_{12}X_2 \\ A_{12}^TX_1 + A_{22}X_2 \end{array} \right) = U_1 \left(\begin{array}{c} B_1 \\ B_2 \end{array} \right) = B.$$

Hence Problem I is soluble

3. The solution for Problem II

Lemma 4. Given $C, D, H, K \in \mathbb{R}^{n \times n}, T = diag(t_1, t_2, \dots, t_n) > 0$, then the problem

$$\varphi(G) = \|G - C\|^2 + \|GT - D\|^2 + \|TG - H\|^2 + \|TGT - K\|^2 = \min$$
(3.1)

has an unique solution $\hat{G} \in SR^{n \times n}$, and

$$\hat{G} = F * (C + C^{T} + DT + TD^{T} + TH + H^{T}T + TKT + TK^{T}T)$$
(3.2)

where $F = (f_{ij}) \in \mathbb{R}^{n \times n}, f_{ij} = \frac{1}{2(1+t_i^2+t_i^2+t_i^2+t_i^2)}$

Proof. Since $G \in SR^{n \times n}$, we have from (3.1) that

$$\varphi(G) = \sum_{1 \le i, j \le n} [(g_{ij} - c_{ij})^2 + (t_j g_{ij} - d_{ij})^2 + (t_i g_{ij} - h_{ij})^2 + (t_i t_j g_{ij} - k_{ij})^2]$$

$$= \sum_{1 \le i < j \le n} [(g_{ij} - c_{ij})^2 + (g_{ij} - c_{ji})^2 + (t_j g_{ij} - d_{ij})^2 + (t_i g_{ij} - d_{ji})^2$$

$$+ (t_i g_{ij} - h_{ij})^2 + (t_j g_{ij} - h_{ji})^2 + (t_i t_j g_{ij} - k_{ij})^2 + (t_i t_j g_{ij} - k_{ji})^2]$$

$$+ \sum_{1 \le i \le n} [(g_{ii} - c_{ii})^2 + (t_i g_{ii} - d_{ii})^2 + (t_i g_{ii} - h_{ii})^2 + (t_i^2 g_{ii} - k_{ii})^2].$$

By $\frac{\partial \varphi(G)}{\partial g_{ij}} = 0$ $(1 \le i, j \le n)$, we have

$$g_{ij} = \frac{1}{2(1+t_i^2+t_j^2+t_i^2t_j^2)}(c_{ij}+c_{ji}+t_id_{ji}+t_jd_{ij}+t_ih_{ij}+t_jh_{ji}+t_it_jk_{ij}+t_it_jk_{ji}).$$

Hence

$$\hat{G} = F * (C + C^{T} + DT + TD^{T} + TH + H^{T}T + TKT + TK^{T}T).$$

Similar to the proof of the Lemma 4, we can prove the following lemma 5.

Lemma 5. Given $A_i, B_j (i = 1, 2, ..., p, j = 1, 2, ..., q) \in \mathbb{R}^{m \times n}, T = diag(t_1, t_2, ..., t_n) > 0$, then the problem

$$\varphi(G) = \sum_{1 \le i \le p} \|G - A_i\|^2 + \sum_{1 \le j \le q} \|GT - B_j\|^2 = \min$$
(3.3)

has an unique solution $\hat{G} \in \mathbb{R}^{m \times n}$, and

$$\hat{G} = F * (\sum_{1 \le i \le p} A_i + \sum_{1 \le j \le q} B_j T)$$
(3.4)

where $F = (f_{ij}) \in \mathbb{R}^{m \times n}, f_{ij} = \frac{1}{p+qt^2}$.

Similar to the proof of the lemma 7 in [7], we can prove the following lemma 6.

Lemma 6. When the solution set S_E of Problem I is nonempty, then S_E is a convex cone, and the corresponding Problem II has an unique optimal approximate solution.

Suppose the SVD of $(U_{32}^T X_1 V_{21} \Gamma^{-1})$ is

$$U_{32}^T X_1 V_{21} \Gamma^{-1} = U_4 \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V_4^T, \tag{3.5}$$

where $U_4 = (U_{41}, U_{42}) \in OR^{(r-k_2)\times(r-k_2)}$, $V_4 = (V_{41}, V_{42}) \in OR^{k_1\times k_1}$, $\Sigma = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_t) > 0$, $t = \operatorname{rank}(U_{32}^T X_1 V_{21} \Gamma^{-1})$.

Let

$$U_1^T A^* U_1 = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, A_1 \in R^{r \times r}, A_4 \in R^{(n-r) \times (n-r)},$$
(3.6)

$$Q_{1} = U_{41}^{T} U_{32}^{T} (A_{1} + A_{1}^{T} - W_{1} - W_{1}^{T}) U_{32} U_{41} + U_{41}^{T} U_{32}^{T} (W_{2} - A_{2}) U_{21} V_{41} \Sigma + \Sigma V_{41}^{T} U_{21}^{T} (W_{2} - A_{2})^{T} U_{32} U_{41} + \Sigma V_{41}^{T} U_{21}^{T} (W_{2}^{T} - A_{3}) U_{32} U_{41} + U_{41}^{T} U_{32}^{T} (W_{2}^{T} - A_{3})^{T} U_{21} V_{41} \Sigma + \Sigma V_{41}^{T} U_{21}^{T} (A_{4} + A_{4}^{T} - W_{3} - W_{3}^{T}) U_{21} V_{41} \Sigma,$$

$$(3.7)$$

$$Q_2 = U_{41}^T U_{32}^T (A_1 + A_1^T - W_1 - W_1^T) U_{32} U_{42} + \Sigma V_{41}^T U_{21}^T (2W_2^T - A_3^T - A_2^T) U_{32} U_{42},$$
 (3.8)

$$Q_3 = \frac{1}{2} U_{42}^T U_{32}^T (A_1 + A_1^T - W_1 - W_1^T) U_{32} U_{42}, \tag{3.9}$$

$$Q_4 = U_{22}^T (A_3 - 2W_2^T + A_2^T) U_{32} U_{41} + U_{22}^T (A_4 - W_3) U_{21} V_{41} \Sigma,$$
(3.10)

and

$$Q_5 = \frac{1}{2} U_{22}^T (A_3 + A_2^T - 2W_2^T) U_{32} U_{42}. \tag{3.11}$$

Then we have the following theorem.

Theorem 2. If the solution set S_E of Problem I is nonempty, then Problem II has a unique optimal approximate solution which can be represented as

$$\hat{A} = U_1 \begin{pmatrix} W_1 + U_{32} \hat{M} U_{32}^T & W_2 + U_{32} \hat{N}^T U_{22}^T - U_{32} \hat{M} U_{32}^T X_1 X_2^+ \\ W_2^T + U_{22} \hat{N} U_{32}^T & W_3 + \hat{H} U_{22}^T - U_{22} \hat{N} U_{32}^T X_1 X_2^+ \\ - (U_{32}^T X_1 X_2^+)^T \hat{M} U_{32}^T & + (U_{32}^T X_1 X_2^+)^T \hat{M} U_{32}^T X_1 X_2^+ \end{pmatrix} U_1^T$$
(3.12)

where
$$\hat{M} = U_4 \begin{pmatrix} F_1 * Q_1 & F_2 * Q_2 \\ (F_2 * Q_2)^T & Q_3 \end{pmatrix} U_4^T, F_1 = (\psi_{ij}) \in R^{t \times t}, \psi_{ij} = \frac{1}{2(1+\delta_i^2+\delta_j^2+\delta_i^2\delta_j^2)}, F_2 = (\phi_{ij}) \in R^{t \times (r-k_2-t)}, \phi_{ij} = \frac{1}{2(1+\delta_i^2)}, \hat{N} = (F_3 * Q_4, Q_5)U_4^T, F_3 = (\rho_{ij}) \in R^{(n-r-k_1) \times t}, \rho_{ij} = \frac{1}{2+\delta_i^2}, \hat{H} = (A_4 - W_3)U_{22}.$$

Proof. Since the solution set S_E of Problem I is nonempty, hence Problem II has a unique optimal approximate solution. Attention to $U_i, V_i (i = 1, 2, 3, 4)$ are orthogonal matrices, we have from (2.11) that

$$\begin{split} \|A - A^*\|^2 &= \| \ U_{32} M U_{32}^T - (A_1 - W_1) \ \|^2 + \| \ U_{32} N^T U_{22}^T - U_{32} M U_{32}^T X_1 X_2^+ - (A_2 - W_2) \ \|^2 \\ &+ \| \ U_{22} N U_{32}^T - (U_{32}^T X_1 X_2^+)^T M U_{32}^T - (A_3 - W_2^T) \ \|^2 \\ &+ \| \ H U_{22}^T - U_{22} N U_{32}^T X_1 X_2^+ + (U_{32}^T X_1 X_2^+)^T M U_{32}^T X_1 X_2^+ - (A_4 - W_3) \ \|^2 \\ &= \| \ \left(\begin{array}{cc} 0 & 0 \\ 0 & M \end{array} \right) - U_3^T (A_1 - W_1) U_3 \ \|^2 \\ &+ \| \ \left(\begin{array}{cc} 0 & 0 \\ -M (U_{32}^T X_1 V_{21} \Gamma^{-1}) & N^T \end{array} \right) - U_3^T (A_2 - W_2) U_2 \ \|^2 \\ &+ \| \ \left(\begin{array}{cc} 0 & -(U_{32}^T X_1 V_{21} \Gamma^{-1})^T M \\ 0 & N \end{array} \right) - U_2^T (A_3 - W_2^T) U_3 \ \|^2 \\ &+ \| \ \left(\begin{array}{cc} (U_{32}^T X_1 V_{21} \Gamma^{-1})^T M (U_{32}^T X_1 V_{21} \Gamma^{-1}) & U_{21}^T H \\ N (U_{32}^T X_1 V_{21} \Gamma^{-1}) & U_{22}^T H \end{array} \right) - U_2^T (A_4 - W_3) U_2 \ \|^2 . \end{split}$$

Hence $||A - A^*|| = \min$ is equivalent to

$$||M - U_{32}^{T}(A_1 - W_1)U_{32}||^2 + ||M(U_{32}^{T}X_1V_{21}\Gamma^{-1}) - U_{32}^{T}(W_2 - A_2)U_{21}||^2 + ||(U_{32}^{T}X_1V_{21}\Gamma^{-1})^{T}M - U_{21}^{T}(W_2^{T} - A_3)U_{32}||^2$$

$$+\|(U_{32}^T X_1 V_{21} \Gamma^{-1})^T M U_{32}^T X_1 V_{21} \Gamma^{-1} - U_{21}^T (A_4 - W_3) U_{21}\|^2 = \min,$$
(3.13)

$$||N^T - U_{32}^T (A_2 - W_2) U_{22}||^2 + ||N - U_{22}^T (A_3 - W_2^T) U_{32}||^2$$

$$+\|N(U_{32}^T X_1 V_{21} \Gamma^{-1}) - U_{22}^T (A_4 - W_3) U_{21}\|^2 = \min$$
(3.14)

and

$$||H - (A_4 - W_3)U_{22}|| = \min. (3.15)$$

Write

$$U_4^T M U_4 = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^T & M_{22} \end{pmatrix}, M_{11} \in SR^{t \times t}, M_{22} \in SR^{(r-k_2-t) \times (r-k_2-t)}, \tag{3.16}$$

then (3.13) is equivalent to

$$||M_{11} - U_{41}^T U_{32}^T (A_1 - W_1) U_{32} U_{41}||^2 + ||M_{11} \Sigma - U_{41}^T U_{32}^T (W_2 - A_2) U_{21} V_{41}||^2 + ||\Sigma M_{11} - V_{41}^T U_{21}^T (W_2^T - A_3) U_{32} U_{41}||^2 + ||\Sigma M_{11} \Sigma - V_{41}^T U_{21}^T (A_4 - W_3) U_{21} V_{41}||^2 \min, \quad (3.17)$$
$$||M_{12} - U_{41}^T U_{32}^T (A_1 - W_1) U_{32} U_{42}||^2 + ||M_{12} - U_{41}^T U_{32}^T (A_1 - W_1)^T U_{32} U_{42}||^2$$

$$+\|\Sigma M_{12} - V_{41}^T U_{21}^T (W_2^T - A_2^T) U_{32} U_{42}\|^2 + \|\Sigma M_{12} - V_{41}^T U_{21}^T (W_2 - A_3)^T U_{32} U_{42}\|^2 = \min (3.18)$$

and

$$||M_{22} - U_{42}^T U_{32} (A_1 - W_1) U_{32} U_{42}|| = \min.$$
(3.19)

Applying Lemma 4 and Lemma 5 to (3.17),(3.18) and (3.19), we have $M_{11} = F_1 * Q_1, M_{12} = F_2 * Q_2, M_{22} = Q_3$. Hence

$$M = U_4 \begin{pmatrix} F_1 * Q_1 & F_2 * Q_2 \\ (F_2 * Q_2)^T & Q_3 \end{pmatrix} U_4^T.$$
 (3.20)

Write

$$NU_4 = (N_{11}, N_{12}), N_{11} \in R^{(n-r-k_1)\times t}, N_{12} \in R^{(n-r-k_1)\times (r-k_2-t)},$$
 (3.21)

then (3.14) is equivalent to

$$||N_{11} - U_{22}^T (A_2 - W_2)^T U_{32} U_{41}||^2 + ||N_{11} - U_{22}^T (A_3 - W_2^T) U_{32} U_{41}||^2 + ||N_{11} \Sigma - U_{22}^T (A_4 - W_3) U_{21} V_{41}||^2 = \min$$
(3.22)

and

$$||N_{12} - U_{22}^T (A_2 - W_2)^T U_{32} U_{42}||^2 + ||N_{12} - U_{22}^T (A_3 - W_2^T) U_{32} U_{42}||^2 = \min.$$
 (3.23)

Applying Lemma 5 to (3.22) and (3.23), we have $N_{11}=F_3\ast Q_4, N_{12}=Q_5$. Hence

$$N = (F_3 * Q_4, Q_5)U_4^T. (3.24)$$

From (3.15), we have

$$H = (A_4 - W_3)U_{22}. (3.25)$$

Taking (3.20),(3.24) and (3.25) into (2.11), we have (3.12).

According to Theorem 1 and 2, we now give an algorithm of finding the optimal approximate solution of Problem II as the following steps:

- (1). Construct the SVD of S according to (2.1);
- (2). According to (2.5) compute $X_i, B_i (i = 1, 2)$;
- (3). Construct the SVD of X_2 and (X_1V_{22}) according to (2.6) and (2.7);
- (4). If conditions (i)-(iv) are satisfied, go to step (5); else go to step (9);
- (5). According to (2.8)-(2.10) calculate W_i (i = 1, 2, 3);
- (6). Construct the SVD of $(U_{32}^T X_1 V_{22} \Gamma^{-1})$ according to (3.5);
- (7). According to (3.7)-(3.11) calculate Q_i (i = 1, 2, 3, 4, 5);
- (8). According to (3.12) calculate \hat{A} ;
- (9). stop.

Example 1. Given

$$S = \left(\begin{array}{cccccc} 1.2 & -0.9 & 0.7 & 0.2 & 2.4 & -2.1 \\ 0.7 & -0.9 & 1.8 & -0.9 & 1.4 & 1.6 \\ -1.1 & -1.7 & 0.2 & 1.5 & -2.2 & 0.6 \\ 0.8 & 0.4 & 0.4 & -0.8 & 1.6 & 0.4 \\ 0.9 & -0.7 & -1.6 & 2.3 & 1.8 & 1.6 \\ 1.3 & 0.6 & 1.1 & -1.7 & 2.6 & -0.8 \\ 0.7 & -0.9 & 1.8 & -0.9 & 1.4 & 1.6 \\ -1.2 & 0.9 & -0.7 & -0.2 & -2.4 & 2.1 \end{array} \right),$$

$$X = \begin{pmatrix} -23.3 & 46.6 & -32.8 \\ 32.4 & -64.8 & 31.4 \\ -42.7 & 85.4 & -22.9 \\ 32.1 & -64.2 & 31.6 \\ -23.9 & 47.8 & 57.1 \\ -12.4 & 24.8 & -26.9 \\ 31.1 & -62.2 & 41.7 \\ 27.6 & -55.2 & -23.7 \end{pmatrix}, B = \begin{pmatrix} 10.1 & -20.2 & -11.5 \\ 49.9 & -99.8 & 128.0 \\ 153.6 & -307.2 & 142.2 \\ -46.0 & 92.0 & -51.2 \\ -20.3 & 40.6 & 25.3 \\ 14.5 & -29.0 & 76.6 \\ 30.2 & -60.4 & 57.1 \\ 17.5 & -35.0 & -47.2 \end{pmatrix}$$

and

$$A^* = \begin{pmatrix} 1.2 & 1.7 & 2.0 & 3.1 & 4.0 & -5.0 & -1.8 & 3.0 \\ -1.7 & 2.6 & 1.9 & -1.1 & -6.0 & 3.9 & 7.0 & -1.9 \\ 3.0 & -4.1 & -2.9 & 1.7 & 1.6 & 0.8 & -4.5 & 2.1 \\ 1.5 & 1.9 & 1.6 & -5.3 & -2.6 & -6.1 & 3.0 & -2.3 \\ -5.3 & -2.6 & -4.7 & 1.2 & -7.1 & -6.1 & 2.3 & 2.1 \\ 2.0 & 3.0 & 4.0 & 6.1 & 7.1 & 2.9 & 1.6 & -4.0 \\ 1.7 & 3.5 & -1.8 & -2.1 & 4.1 & 2.1 & -2.2 & 1.6 \\ 2.3 & -4.9 & 3.1 & -2.3 & 3.1 & -4.7 & -1.3 & -3.3 \end{pmatrix}$$

It is easy to verify that the conditions of Theorem 1 are satisfied. Hence, the solution set S_E of Problem I is nonempty, and so the corresponding Problem II has an unique solution. According to the above calculating steps, we have \hat{A} as follow:

$$\hat{A} = \begin{pmatrix} 0.9008 & 1.8419 & 0.6820 & 0.7353 & -0.7187 & 0.2878 & -0.4294 & -0.8366 \\ 1.5452 & 2.2434 & 1.4235 & 1.3189 & -0.7862 & 1.8938 & 3.2973 & -2.4056 \\ 0.2746 & 0.5241 & -2.2272 & 3.3022 & 1.3065 & 1.0075 & -1.1703 & 0.8025 \\ -0.1051 & 1.0686 & -0.0580 & -4.5006 & -1.2741 & 0.0221 & 2.1978 & -1.4392 \\ -0.6617 & -0.9651 & 1.9445 & -0.4280 & -0.8892 & -1.9493 & 1.9113 & -0.4524 \\ 0.2415 & 0.7372 & 3.2156 & 4.9577 & -2.3304 & -0.6214 & 0.2630 & -3.5241 \\ 0.1717 & 3.8400 & -1.7986 & -0.0045 & 2.1712 & 0.7874 & -4.2788 & 1.0019 \\ -0.8531 & -2.5220 & 1.9986 & 1.1638 & -0.6455 & -3.4778 & 0.2135 & 2.2425 \end{pmatrix}$$

References

- [1] Sun Ji-guang, Least-squares solutions of a class of inverse eigenvalue problems, Math. Numer. Sinica, 2 (1987), 206-216.
- [2] S.Q.Zhou and H.Dai, Inverse Problem of Algebra Eigenvalue, Henan Science and Technology Press, 1991.
- [3] H.Dai, The best approximation by real symmetric matrices on the linear manifold, *Math. Numer. Sinica*, 4 (1993), 379-488.
- [4] L. Zhang, One kind of inverse eigenvalue problems for symmetric matrices, J. Numer. Math of Chinese Uni., 1 (1990), 65-71.
- [5] Liao An-ping, A class of inverse problems of matrix equation AX = B and its numerical solution, Math. Numer. Sinica, 1 (1990), 108-112.
- [6] L. Zhang, The approximation on the closed convex cone and its numerical application, Hunan Annals of Mathematics, 6 (1986), 43-48.
- [7] Dong-Xiu Xie, Lei Zhang and Xi-yan Hu, The Solvability Conditions for the Inverse Problem of Bisymmetric Nonnegative Definite Matrices, J. Comput. Math., 6 (2000), 597-608.