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Abstract

In this paper we study structured backward errors for some structured KKT systems.
Normwise structured backward errors for structured KKT systems are defined, and com-
putable formulae of the structured backward errors are obtained. Simple numerical exam-
ples show that the structured backward errors may be much larger than the unstructured
ones in some cases.
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1. Introduction

Consider the problem of solving the following structured linear systems(
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for x and y, where A ∈ Rm×n, x, b ∈ Rm, y ∈ Rn;(
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for X and Y , where A ∈ Rm×n, B, X ∈ Rm×r, Y ∈ Rn×r;( 0 0 B
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0
0

⎞
⎟⎠ . (4)

These systems called augmented systems, and they are structured Karush–Kuhn–Tucker
(structured — KKT) systems. The structured – KKT systems of (1) – (4) arise in many
applications, for example, for the linear least squares problem

LS : min
y∈Rn

‖b − Ay‖2, A ∈ Rm×n, b ∈ Rm,

let r = b − Ay, then the LS minimizer y satisfies the structured — KKT system (1) since this
is simply a representation of the normal equations. The structured — KKT systems (2) – (4)
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mainly arise in the linear least squares problem with multiple right-hand sides[19], the linear
least squares problem with equality constraint[3,4], and the generalized linear least squares
problem[14], respectively. And problems of least squares problems arise in many fields of study.

The structured linear systems (1) – (4) are structured — KKT systems, and they have
stronger structure than the KKT systems, so the results of Sun[16] about the KKT systems are
invalid to the structured linear systmes (1) – (4).Consequently, the structured optimal backward
perturbation analysis of the structured — KKT systems (1) – (4) is worth researching.

Consider the linear system Ax = b. Let x̂ be a computed solution to the system. In general,
there are many perturbations ∆A, and ∆b such that x̂ is a solution to the perturbed systems
(A + ∆A)x = b + ∆b. It may be asked how close is the nearest system for which x̂ is the
solution to the original system. There are various approaches to define backward errors (BEs)
for measuring the distance between the perturbed systems and the original systems. Finding an
explicit expression of a BE may be very useful for testing the stability of practical algorithms.
For general linear system, Rigal and Gaches[15] have defined a normwise BE and obtained the
explicit expression

τ(x̂) =
‖b − Ax̂‖2√‖A‖2

F‖x̂‖2
2 + ‖b‖2

2

.

However, it is worth pointing out that if the coefficient matrix A has some special structure,
and the perturbed matrice A + ∆A has the same form as A, in which we are interested. The
problem of finding an expression of the corresponding BE should be concerned. Generally
speaking, Rigal and Gaches’ result is a strict lower bound of the structured BE.

In this paper we shall define the structured BEs of Eq. (1)-(4), derive computable formulae
of them, and show that if the perturbed matrices have the same form as the coefficient matrix
and the unstructured backward error τ(x̂) is small, it does not necessarily follow that x̂ solves
a nearby structured linear system.

2. Structured Backward Errors for Structured-KKT Systems

Firstly, we investigate the backward errors for structured-KKT systems (1).
Theorem 2.1. Let (x̂T , ŷT )T with ŷ �= 0 be a computed solution of Eq. (1). Define the
normwise structured backward error η(θ)(x̂, ŷ) of the Eq. (1) by

η(θ)(x̂, ŷ) = min
(∆A,∆b)∈E

‖(∆A, θ∆b)‖F , (5)

where θ is a positive parameter, and the set E is defined by

E =
{

(∆A, ∆b) :
(

I A + ∆A
(A + ∆A)T 0

)(
x̂
ŷ

)
=
(

b + ∆b
0

)}
. (6)

Then
η(θ)(x̂, ŷ) =

[
x̂†(AAT + θ2(x̂ − b)(x̂ − b)T )x̂ + τ‖(Im − x̂x̂†)(Aŷ − b)‖2

2

]1/2
. (7)

The corresponding perturbations of A and b are
∆A∗ = −x̂x̂†A + τ(Im − x̂x̂†)(b − Aŷ)ŷT ,

∆b∗ = x̂x̂†(x̂ − b) − 1
1 + θ2‖ŷ‖2

2

(Im − x̂x̂†)(b − Aŷ) .
(8)

That is η(θ)(x̂, ŷ) = ‖(∆A∗, θ∆b∗)‖F , where τ =
θ2

1 + θ2‖x̂‖2
2

.

Proof. By Eq. (6), (∆A, ∆b) ∈ E if and only if ∆A and ∆b satisfy
∆b = x̂ − b + Aŷ + ∆Aŷ, (9)

x̂T ∆A = −x̂T A. (10)

From (10),
∆A = −x̂x̂†A + (Im − x̂x̂†)Z, Z ∈ Rm×n. (11)



Structured Backward Errors for Structured KKT Systems 607

Substituting it into (9), we get
∆b = (Im − x̂x̂†)Aŷ + x̂ − b + (Im − x̂x̂†)Zŷ. (12)

Combining (11) and (12) with (5) gives
(η(θ)(x̂, ŷ))2 = min

(∆A,∆b)∈E
‖(∆A, θ∆b)‖2

F

= min
(∆A,∆b)∈E

(tr(∆AT ∆A) + θ2∆bT ∆b)

= x̂†AAT x̂ + θ2(Aŷ)T (Im − x̂x̂†)Aŷ + θ2(x̂ − b)T (x̂ − b)
−2θ2bT (Im − x̂x̂†)Aŷ + min

Z∈Rm×n
f(Z),

(13)

where
f(Z) = tr(ZT (Im − x̂x̂†)Z) + θ2(Zŷ)T (Im − x̂x̂†)Zŷ + 2θ2(Aŷ − b)T (Im − x̂x̂†)Zŷ

= ‖(Im − x̂x̂†)Z‖2
F + θ2‖(Im − x̂x̂†)Zŷ‖2

2 + 2θ2(Aŷ − b)T (Im − x̂x̂†)Zŷ
= (vecZ)T [(In + θ2ŷŷT ) ⊗ (Im − x̂x̂†)]vecZ + 2θ2[ŷT ⊗ (Aŷ − b)T (Im − x̂x̂†)]vecZ.

(14)
Let

z = vecZ, M = (In + θ2ŷŷT ) ⊗ (Im − x̂x̂†),
D = (In + θ2ŷŷT ) ⊗ Im > 0, c = ŷ ⊗ [(Im − x̂x̂†)(Aŷ − b)]. (15)

Then
g(z) =: f(Z) = zT Mz + 2θ2cT z. (16)

It is easy to verify that for
z̄ = −θ2D−1c, (17)

we have
g(z) − g(z̄) = zT Mz + 2θ2cT z − z̄T Mz̄ − 2θ2cT z̄
= (z − z̄)T M(z − z̄) + 2z̄T M(z − z̄) + 2θ2cT (z − z̄).

From (15), and (16)
z̄T M = −θ2cT D−1M = −θ2cT

Consequently,
g(z) − g(z̄) = (z − z̄)T M(z − z̄) ≥ 0, ∀z ∈ Rmn.

Thus
min

Z∈Rm×n
f(Z) = min

z∈Rmn
g(z) = g(z̄) = −θ4cT D−1c

= −θ4ŷT (In + θ2ŷŷT )−1ŷ‖(Im − x̂x̂†)(Aŷ − b)‖2
2

= −θ4ŷT (In − τ ŷŷT )ŷ‖(Im − x̂x̂†)(Aŷ − b)‖2
2

= (−θ4‖ŷ‖2
2 + τθ4‖ŷ‖4

2)‖(Im − x̂x̂†)(Aŷ − b)‖2
2

= (τ − θ2)‖(Im − x̂x̂†)(Aŷ − b)‖2
2

(18)

where

τ =
θ2

1 + θ2‖x̂‖2
2

(19)

Combining (18) with (13), we have
(η(θ)(x̂, ŷ))2 = x̂†AAT x̂ + θ2(Aŷ)T (Im − x̂x̂†)Aŷ + θ2(x̂ − b)T (x̂ − b)

−2θ2bT (Im − x̂x̂†)Aŷ + (τ − θ2)‖(Im − x̂x̂†)(Aŷ − b)‖2
2

= x̂†AAT x̂ + θ2(Aŷ)T (Im − x̂x̂†)Aŷ − 2θ2bT (Im − x̂x̂†)Aŷ
+θ2bT (Im − x̂x̂†)b + θ2(x̂ − b)T x̂x̂†(x̂ − b) + (τ − θ2)‖(Im − x̂x̂†)(Aŷ − b)‖2

2

= x̂†(AAT + θ2(x̂ − b)(x̂ − b)T )x̂ + θ2‖(Im − x̂x̂†)(Aŷ − b)‖2
2

+(τ − θ2)‖(Im − x̂x̂†)(Aŷ − b)‖2
2

= x̂†(AAT + θ2(x̂ − b)(x̂ − b)T )x̂ + τ‖(Im − x̂x̂†)(Aŷ − b)‖2
2.

(20)
From (16) and (14), we have

Z̄ = τ(Im − x̂x̂†)(b − Aŷ)ŷT . (21)
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Combining (21), (18) with (9) and (10) gives the minimum perturbations of A and b in normwise
∆A∗ = −x̂x̂†A + τ(Im − x̂x̂†)(b − Aŷ)ŷT ,
∆b∗ = (Im − x̂x̂†)Aŷ + x̂ − b + τ‖ŷ‖2

2(Im − x̂x̂†)(b − Aŷ)

= (Im − x̂x̂†)Aŷ + x̂ − b + (1 − 1
1 + θ2‖ŷ‖2

2

)(Im − x̂x̂†)(b − Aŷ)

= x̂x̂†(x̂ − b) − 1
1 + θ2‖ŷ‖2

2

(Im − x̂x̂†)(b − Aŷ).

Similar to the proof of theorem 2.1, we can get the structured backward errors of the
structured-KKT systems (2)-(4) as follows:
Theorem 2.2. Let (X̂T , Ŷ T )T , (x̂T

1 , x̂T
2 , x̂T

3 )T and (x̃T
1 , x̃T

2 , x̃T
3 , x̃T

4 )T be the computed solutions
of Eq. (2),(3) and (4) respectively. Define the normwise structured backward errors of the Eq.
(2),(3) and (4) as follows:

η
(θ)
F (X̂, Ŷ ) = min

(∆A,∆B)∈EM

‖(∆A, θ∆B)‖F

η(x̂1, x̂2, x̂3) = min(
∆B ∆d
∆A ∆b

)
∈ELSE

∥∥∥∥
(

∆B ∆d
∆A ∆b

)∥∥∥∥
F

η(x̃1, x̃2, x̃3, x̃4) = min
(∆C,∆B,∆b)∈G

‖(∆C, ∆B, ∆b)‖F

where θ is a positive parameter, and the set EM , ELSE and G are all the structure perturbation
of Eq. (2),(3) and (4),respectively. Then[

η
(θ)
F (X̂, Ŷ )

]2
= ‖X̂X̂†A‖2

F + θ2‖X̂X̂†(X̂ − B)‖2
F + θ2‖(Im − X̂X̂†)(AŶ − B)‖2

F

−θ4‖(Im − X̂X̂†)(AŶ − B)Ŷ T (I + θ2Ŷ Ŷ T )−1/2‖2
F

[η(x̂1, x̂2, x̂3)]
2 =

(
x̂1

x̂2

)† [(
B
A

)(
B
A

)T

+
(

d
b − x̂3

)(
d

b − x̂3

)T
](

x̂1

x̂2

)

+
1

1 + ‖x̂3‖2
2

∥∥∥∥∥
(

Im+p −
(

x̂1

x̂2

)(
x̂1

x̂2

)†)(
d − Bx̂3

b − Ax̂3 − x̂3

)∥∥∥∥∥
2

2

[η(x̃1, x̃2, x̃3, x̃4)]
2 =

1
‖x̃1‖2

2

[∥∥CT x̃1

∥∥2

2
+
∥∥BT x̃1 + x̃2

∥∥2

2
+
(
bT x̃1 + x̃T

2 x̃4

)2]
+

1
1 + ‖x̃3‖2

2 + ‖x̃4‖2
2

∥∥∥(I − x̃1x̃
†
1)(Cx̃3 + Bx̃4 − b)

∥∥∥2

2

3. Numerical Examples

In Section 2 we have derived the expression of the backward error η(θ)(x̂, ŷ) for the approx-
imate solution (x̂T , ŷT )T to Eq (1). In this section, we present three numerical examples to
illustrate our results. The relationship between Eq. (1) and LS shows that the solution y to Eq.
(1) is the solution to LS , so the solution to Eq. (1) can be regarded as the computed solution
to LS . Hence we also compare η(θ)(x̂, ŷ) with the result of Waldén, Karlson and Sun’s η(θ)(ŷ)
which is difficult to compute. Gu [7] derives an approximation ηg(ŷ) to η(0)(ŷ) that differs
from it by a factor less than 2 and can be computed in O(mn2) operations, so we only need to
compare η(θ)(x̂, ŷ) with ηg(ŷ). All computations were performed using MATLAB, version 6.1,
the relative machine precision is 2.2204× 10−16.
Example 3.1. Consider the structured — KKT system (1) with

A =

⎛
⎜⎝

2 3
−1 1
1 1
2 1

⎞
⎟⎠ , b =

⎛
⎜⎝

−1
0
2
3

⎞
⎟⎠ ,
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and

ŷ =
(

1.0000
−0.5000

)
, x̂ =

⎛
⎜⎝

−1.5000
1.5000
1.5000
1.5000

⎞
⎟⎠

is a computed solution to the structured — KKT system (1). Some numerical results for the
backward error are listed in Table 1.

Table 1
θ ηg(ŷ) η(θ)(x̂, ŷ) τ (ẑ)
0.01 1.4134e-15 4.4434e-16 8.4339e-17
0.1 1.4134e-15 4.6781e-16 8.4339e-17
1 1.4134e-15 1.1176e-15 8.4339e-17
10 1.4134e-15 6.2989e-15 8.4339e-17

Example 3.2. Consider the structured — KKT system (1) with

A =

( 1 1
1 1
1 1 + ε

)
, b =

( 2
0

1 − 103ε

)
, ε =

{
10−4

1

and

ŷ =
(

1.0010
−1.0000

)
× 103, x̂ =

( 1.0000
−1.0000
−0.0000

)

is a computed solution to the structured — KKT system (1). Some numerical results for the
backward error are listed in Table 2 and Table 3.

Table 2 ε = 10−4

θ ηg(ŷ) η(θ)(x̂, ŷ) τ (ẑ)
0.01 3.7000e-14 5.2408e-13 4.3453e-16
0.1 3.7000e-14 5.2245e-12 4.3453e-16
1 3.7000e-14 5.2243e-11 4.3453e-16
10 3.7000e-14 5.2243e-10 4.3453e-16

Table 3 ε = 1
θ ηg(ŷ) η(θ)(x̂, ŷ) τ (ẑ)
0.01 3.9359e-16 6.6145e-13 1.3433e-16
0.1 3.9359e-16 4.0247e-12 1.3433e-16
1 3.9359e-16 3.9903e-11 1.3433e-16
10 3.9359e-16 3.9900e-10 1.3433e-16

Example 3.3. Consider the structured — KKT system (1) with

A =

⎛
⎜⎝

1 1 2 3
0 1 1 −4
1 2 3 −1
2 3 −1 −1

⎞
⎟⎠ , b =

⎛
⎜⎝

1
1
4
−6

⎞
⎟⎠ ,

and

ŷ =

⎛
⎜⎝

−0.7882
−0.8902
1.9137
−0.1608

⎞
⎟⎠ , x̂ =

⎛
⎜⎝

−0.6667
−0.6667
0.6667
0.0000

⎞
⎟⎠

is a computed solution to the structured —- KKT system (1). Some numerical results for the
backward error are listed in Table 4.

Table 4
θ ηg(ŷ) η(θ)(x̂, ŷ) τ (ẑ)
0.01 1.0084e-15 3.4402e-15 1.5643e-16
0.1 1.0084e-15 3.4702e-15 1.5643e-16
1 1.0084e-15 3.4702e-15 1.5643e-16
10 1.0084e-15 3.5002e-14 1.5643e-16
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From the results listed in Table 1-Table 4, we get the following conclusions:
1. the solution to the structured —- KKT system (1) obtained by using the stable algorithm
can be regarded as the computed solution to the linear least squares problem (5).
2. The stable solution to the structured —- KKT system (1) is not necessarily strongly stable.
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