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Abstract. Since the original DDG method has been introduced by Liu et al. [8] in 2009,
a variety of DDG type methods have been proposed and further developed. In this
paper, we further investigate and develop a new DDG method with interface cor-
rection (DDG (IC)) as the discretization of viscous and heat fluxes for the compress-
ible Navier-Stokes equations on unstructured grids. Compared to the original DDG
method, the newly developed DDG (IC) method demonstrates its superior in deliver-
ing the optimal order of accuracy under demanding situations. Strategies in extension
and application of this newly developed DDG (IC) method for solving the compress-
ible Navier-Stokes equations and special treatments designed for handling boundary
viscous fluxes are presented and examined in this work. The performance of the new
DDG method with interface correction is carefully evaluated and assessed through a
number of typical test cases. Numerical experiments show that the new DDG method
with interface correction can achieve the optimal order of accuracy on both uniform
structured grids and nonuniform unstructured grids, which clearly indicates its po-
tential for further applications of real engineering practices.
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1 Introduction

Discontinuous Galerkin (DG) methods [1–3,16,18], as a typical representative in the com-
munity of high order methods, have been widely used in computational fluid dynamics,
computational acoustics, and computational magneto-hydrodynamics. The DG meth-
ods combine two advantageous features commonly associated with finite element (FE)
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and finite volume methods (FVM). As in classical FE methods, accuracy is obtained by
means of high-order polynomial approximation within an element rather than by wide
stencils as in the case of FVM. Similar to FVM, the physics of wave propagation is, how-
ever, accounted for by solving the Riemann problems that arise from the discontinuous
representation of the solution at element interfaces.

DG methods are indeed a natural choice for solving hyperbolic equations, such as
the compressible Euler equations. However, the DG formulation is far less certain and
advantageous for diffusion equations such as the compressible Navier-Stokes equations,
where viscous and heat fluxes exist and require the evaluation of the solution derivatives
at the interfaces. Taking a simple arithmetic mean of the solution derivatives from the
left and right is inconsistent, because it does not take into account a possible jump of
the solutions. Thus, how to appropriately address this issue becomes one of the core
challenges for the practice of DG methods for real applications.

The first attempt at using DGM to solve elliptic and parabolic problems can be tracked
back to the late 1970s and early 1980s when an interior penalty (IP) method was indepen-
dently proposed and studied in [20, 21]. In the IP method, a viscous flux is obtained
through the average of the left and right state and then penalizing with a penalty term
which includes the jump of the solution at each cell interface. The IP method with d-
ifferent stabilization terms was further analyzed for the two dimensional compressible
Navier-Stokes equations by Hartmann et al. [22, 23], which led to a new symmetric IP
(SIP) method. Inspired by the great success of the DGM for a first-order system, a natural
choice to solve a second-order system is to convert it into a first-order system by intro-
ducing additional variables, and then to apply a DG method directly to the first-order
system. Based on different choices of numerical flux at the cell interface, there are mainly
two kinds of approaches: one is the first Bassi-Rebay (BR1) scheme [18], and the other
is the so-called local discontinuous Galerkin (LDG) method [15]. A variation of a LDG
method, termed compact DG (CDG) method [17], was later developed by Peraire and
Persson to overcome the issue that LDG method is not compact when applied to mul-
tidimensional problems. For the same reason, Bassi and Rebay introduced the second
Bassi and Rebay scheme (BR2) based on BR1 scheme in order to maintain the compact-
ness and stability for the pure diffusion problems [14]. In practice, the auxiliary vari-
ables in both BR2 scheme and CDG method are usually eliminated by introducing the
so-called local and global lifting operator. From the finite volume community, van Leer
et al. [6, 7] proposed a recovery-based DG (RDG) method for diffusion equations using
the recovery principle, that recovers a smooth continuous solution that in the weak sense
is indistinguishable from the discontinuous discrete solution. Similarly, Luo et al. [4, 5]
developed a reconstructed DG (rDG) method for the compressible Navier-Stokes equa-
tions on arbitrary grids, where a smooth continuous solution is reconstructed at each cell
interface from the discontinuous discrete solution and the diffusive fluxes are then ob-
tained based on the smooth reconstructed solution. Besides, a kind of hybridizable DG
(HDG) discretization was recently introduced for the solution of convection-diffusion e-
quations [24]. For an uniform analysis and comparison among several of the methods
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above, one can refer to the paper [19].

From another perspective, based on the direct weak formulation of DG framework
and the analysis of solution structure for pure diffusion equations, Gassner et al. [27] p-
resented a method named the diffusive generalized Riemann problem (dGRP) method.
Later, a direct discontinuous Galerkin (DDG) method was introduced by Liu and Yan [8]
to construct the numerical flux for diffusion problems. Compared to the IP method, the
DDG method can be viewed as a multi-term penalty method. The numerical flux defined
by the DDG method is simple, compact, conservative, and consistent. The most remark-
able feature of the DDG method is its simplicity in implementation and its efficiency in
computational cost. Very recently, the DDG method has been successfully extended and
applied for solving the more complex compressible Navier-Stokes equations [25, 26] on
arbitrary grids. The DDG method shows its potential to deliver comparable accuracy
as the widely used BR2 method at a significantly reduced computational cost, thus, be-
comes an attractive alternative to discretize the compressible Navier-Stokes equations on
arbitrary grids.

Since the original DDG method has first been introduced in 2009, a variety of DDG
type methods have been proposed and further developed to fix the potential difficulties
in the practical implementations or to enhance the optimal order of accuracy on nonuni-
form grids. In order to avoid that the jump terms of higher order (k≥ 4) derivatives in
the original DDG discretization, a new DDG method with interface correction was in-
troduced and further analyzed by Liu et al. [9, 10] for solving convection diffusion prob-
lems. Meanwhile, due to the reason that the formulation of the original DDG method
lacks symmetric properties, which could make the traditional L2 error analysis become
difficult, a symmetric DDG method is developed by Yan and his coworkers [12, 13]. The
newly developed DDG type methods mentioned above possessed the merit and beauty
of the original DDG method, meanwhile offer a tantalizing glimpse of further investiga-
tion and evaluation of their full potential for more complex and real applications.

In this paper, we further investigate and develop the new DDG method with inter-
face correction (DDG (IC)) as the discretization of viscous and heat fluxes in the com-
pressible Navier-Stokes equations on unstructured grids. The performance of the new
DDG method with interface correction is carefully evaluated and assessed for solving the
compressible Navier-Stokes equations for practical problems. Strategies in extension and
application this newly developed DDG formulation for the compressible Navier-Stokes
have been detailed described and examined. Special boundary treatment is designed to
address the issue that the first and second derivatives required in the DDG flux functions
are generally unknown at the ghost states of the boundary. A number of test cases are p-
resented to assess the performance the DDG method with interface correction for solving
the compressible Navier-Stokes equations. Numerical experiments demonstrate that the
new DDG method with interface correction can achieve the optimal order of accuracy on
both uniform and nonuniform unstructured grids, which clearly indicates its potential
for further application in real engineering practices.

The rest of the paper is organized as follows. The governing equations are briefly de-
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scribed in Section 2. The extension and implementation of the DDG method with inter-
face correction for discretizing the viscous and heat fluxes in the Navier-Stokes equations
are presented and discussed in Section 3. Numerical experiments are reported in Section
4. Concluding remarks are given in Section 5.

2 Governing equations

Let Ω be the computational domain in R
2, the two dimensional steady-state compressible

Navier-Stokes equations are given by:

∇·F (u)−∇·G(u,∇u)=0 in Ω, (2.1)

where u=(ρ,ρu,ρv,E)T is the solution vector consisting of the density ρ, velocity vector
v=(u,v)T, and the specific total energy E. The convective flux functions F (u) are defined
as

F (u)=
(
F x(u),F y(u)

)
=







ρu ρv
ρu2+p ρuv

ρuv ρv2+p
(E+p)u (E+p)v







. (2.2)

Here, p is pressure which is determined by the equation of state of an ideal gas, i.e.,

p=(γ−1)
(

E−
1

2
ρ(u2+v2)

)

, (2.3)

where γ=1.4 is the heat capacity ratio for air.

The viscous flux functions G(u,∇u) are defined as

G(u,∇u)=
(
Gx(u,∇u),Gy(u,∇u)

)

=







0 0
τxx τxy

τyx τyy

uτxx+vτxy+KTx uτyx+vτyy+KTy







, (2.4)

where K is the thermal conductivity coefficient. The viscous stress tensor can be comput-
ed from

τ=µ
(

∇v+(∇v)T−
2

3
(∇·v)I

)

. (2.5)

Finally, the temperature T is defined by

KT=
µγ

Pr

E− 1
2 ρv2

ρ
. (2.6)
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In the above formulas, Pr is the Prandtl number, which is taken as 0.72 for sea-level air,
and µ is the dynamic viscosity coefficient which can be computed by Sutherland’s law as
follows:

µ

µ0
=

(
T

T0

) 3
2 T0+S

T+S
, (2.7)

where µ0 and T0 denote the reference dynamic viscosity coefficient and reference temper-
ature respectively, and S is assumed as a constant with a value of 110K.

In order to derive the proposed DDG spatial discretization, we rewrite the viscous
flux functions G(u,∇u) as follows:

G(u,∇u)=
(
Gx(u,∇u),Gy(u,∇u)

)

=
(
(GxxGxy)·∇u,(GyxGyy)·∇u

)
, (2.8)

where

Gxx =
∂Gx

∂ux

=
µ

ρ










0 0 0 0

−
4

3
u

4

3
0 0

−v 0 1 0

−
(4

3
u2+v2+

γ

Pr

(E

ρ
−v2

)) (4

3
−

γ

Pr

)

u
(

1−
γ

Pr

)

v
γ

Pr










,

Gxy=
∂Gx

∂uy
=

µ

ρ










0 0 0 0
2

3
v 0 −

2

3
0

−u 1 0 0

−
1

3
uv v −

2

3
u 0










,

Gyx =
∂Gy

∂ux
=

µ

ρ










0 0 0 0
−v 0 1 0
2

3
u −

2

3
0 0

−
1

3
uv −

2

3
v u 0










,

Gyy=
∂Gy

∂uy

=
µ

ρ










0 0 0 0
−u 1 0 0

−
4

3
v 0

4

3
0

−
(

u2+
4

3
v2+

γ

Pr

(E

ρ
−v2

)) (

1−
γ

Pr

)

u
(4

3
−

γ

Pr

)

v
γ

Pr










.
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For the sake of simplification, we introduce the following definition:

G(u)∇u :=
(
(GxxGxy)·∇u,(GyxGyy)·∇u

)
. (2.9)

Finally, we obtain the equivalent form of the primal compressible Navier-Stokes equa-
tions in Eq. (2.1) as follows:

∇·F (u)−∇·(G(u)∇u)=0 in Ω. (2.10)

3 Direct DG method with interface correction for the

compressible Navier-Stokes equations

3.1 Review of original Direct DG method

Let us begin this section with introducing some basic notations. The shape-regular sub-
division of domain Ω is denoted by Th = {κ}. For κ ∈ Th, we denote the outward unit
normal of ∂κ by nκ :=(nx,ny)T and we use u+ and u− to denote the traces of u evaluated
from the interior and the exterior of ∂κ, respectively. Then, we define the average and
jump of u on ∂κ as follows:

u=
u−+u+

2
, [u]=u

−−u
+. (3.1)

For matrices a, b∈R
m×n, we define the matrix multiplication operator a:b=∑

m
i=1∑

n
j=1 aijbij

and for vectors c∈R
m,d∈R

n the dyadic tensor c⊗d∈R
m×n is defined by (c⊗d)ij = cidj.

Additionally, we introduce the following broken Sobolev space

Vh,p=
{

u∈ [L2(Ω)]4 : u|κ ∈ [P p]4, ∀κ∈Th

}

, (3.2)

where P p denotes the polynomial of degree p. For κ ∈Th, ∂κ∩∂Ω 6=∅ is the boundary
face, we denote the set of all boundary faces by Γ. An interior edge of Th is the one-
dimensional interior of ∂κ+∩∂κ−, where κ+ and κ− are two adjacent elements of Th.

In order to obtain the DG discretization of Eq. (2.10), we multiply them by a test
function vh∈Vh,p and integrate by parts over element k, then, we get the following weak
formulation: find uh ∈Vh,p, such that

−
∫

κ
F (uh) :∇vhdx+

∫

∂κ
(F (uh)·nκ)·vhds

+
∫

κ
(G(uh)∇uh) :∇vhdx−

∫

∂κ
(G(uh)∇uh)·nκ ·vhds=0, ∀vh∈Vh,p. (3.3)

Summing over all the elements κ ∈Th and approximating the inviscid and viscous flux
functions at each cell interface and boundary face by suitable numerical flux functions,
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we obtain the following DDG discretization: find uh∈Vh,p, such that

−
∫

Ω
F (uh) :∇vhdx+ ∑

κ∈Th

∫

∂κ
H(u+

h ,u−
h ,nκ)·v

+
h ds

+
∫

Ω
(G(uh)∇uh) :∇vhdx− ∑

κ∈Th

∫

∂κ
( ̂G(uh)∇uh)·nκ ·v

+
h ds=0, ∀vh∈Vh,p, (3.4)

where H(·,·,·) is the inviscid numerical flux function, such as Local Lax-Friedrichs, Roe
and HLLC flux, etc. Unlike BR2 and SIP method, here, in the DDG discretization, the
viscous numerical flux functions are constructed based on the jump of conservative vari-
ables themselves and their even order derivatives directly based on DG weak form.

Namely, let us take DG (P2) discretization as an example, in that case all the even
order derivatives higher than the second order derivatives are zero, thus, omitted. Then,
the DDG flux for Eq. (3.4) can be written as follows:

̂G(uh)∇uh =G(uh)

(
β0

h̃
[uh]⊗nκ

)

︸ ︷︷ ︸

jump of solution

+ G(uh)∇uh
︸ ︷︷ ︸

average of viscous term

+β1h̃
(

[(G(uh)(∇uh)x)·nκ ] [(G(uh)(∇uh)y)·nκ ]
)

︸ ︷︷ ︸

jump of second order derivatives

, (3.5)

where

[(G(uh)(∇uh)x)·n] :=[Gxxuxx+Gxyuyx]nx+[Gyxuxx+Gyyuyx]ny, (3.6a)
[
(G(uh)(∇uh)y)·n

]
:=[Gxxuxy+Gxyuyy]nx+[Gyxuxy+Gyyuyy]ny. (3.6b)

Note that in the above formulas, for brevity, we omit the subscript h of u.
The choice of the parameters (β0,β1) is based on both the strict analysis of the conver-

gence and super-convergence property of the DDG method for the convection diffusion
equations, cf. [10,11] and our numerical experiments for solving practical problems of the
compressible Navier-Stokes equations. We remark that the original theoretical analysis
is based on the scalar convection diffusion equation, though such a requirement is also
likely to be necessary for more complex Navier-Stokes equations. However, based on
our limited numerical experiences, it seems that the β0 needs to be chosen large enough
for the consideration of stability in some cases. The numerical experiments indicate that,
roughly, choose the β0 as the same scale of k2 for Pk polynomials (k ≥ 2) will be good
enough to stabilize the scheme meanwhile without bringing any detrimental effects to
the order of accuracy. In specific, in this work, we simply choose β0 equal to 2,4,9 for
k=1,2,3, respectively and for the second parameter β1, we set it equal to 1/12 in all our
simulations.

The characteristic length h̃ can be easily defined as the cell size when the numerical
flux is implemented on a uniform structure grid. However, on non-uniform meshes, such
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κ
+

κ
−

n

d−

Γ

d
+

κ
+

n

Γ

d
+

(a) For internal face (b) For boundary face

Figure 1: Definition of characteristic length h̃ for the DDG flux.

as unstructured grids or highly anisotropic grids which is commonly used in the region of
boundary layers, the appropriate definition of characteristic length h̃ can play a decisive
role on both the magnitude of error and the order of accuracy for the DDG type methods.
Generally, the basic principle in defining the characteristic length h̃ on arbitrary grids is
that the characteristic length h̃ should be associated with the target interface where the
viscous flux is evaluated and also be orthogonal to the common interface or boundary
face. A variety of different definitions had been tested in our previous work [25], and the
one gives the best performance is given as follows:

h̃ :=

{

d++d− for internal face Γ,

d+ for boundary face Γ,
(3.7)

where d+ and d− are the distance from the cell center to the target face as shown in Fig. 1,
similarly, for boundary faces, h̃ is defined as the distance from cell center to boundary
face. It should be noted that this definition is also works quite well when high-order
curved grids are used for handling curved geometries. In that case, the distance d+ and
d− will be obtained by calculating the distance from cell center to the curved interface or
boundary face, approximately.

3.2 Direct DG method with interface correction

Furthermore, in order to obtain the new direct DG discretization with interface correc-
tion (DDG (IC)) for the compressible Navier-Stokes equations, an additional term which
contains the numerical flux of test function needs to be added to Eq. (3.4), then, the new
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discretization is given as: find uh ∈Vh,p, such that

−
∫

Ω
F (uh) :∇vhdx+ ∑

κ∈Th

∫

∂κ
H(u+

h ,u−
h ,nκ)·v

+
h ds

+
∫

Ω
(G(uh)∇uh) :∇vhdx− ∑

κ∈Th

∫

∂κ
( ̂G(uh)∇uh)·nκ ·v

+
h ds

+ ∑
κ∈Th

∫

∂κ
[uh]·

(
( ̂GT(uh)∇vh)·nκ

)
ds=0, ∀vh∈Vh,p, (3.8)

where ̂GT(uh)∇vh can be given as follows:

̂GT(uh)∇vh=GT(uh)∇vh, (3.9)

and GT(uh)∇vh is defined by

G
T(uh)∇vh :=((GT

xxG
T
yx)·∇vh,(GT

xyG
T
yy)·∇vh). (3.10)

Compared to the original DDG discretization described in Section 3.1, the newly devel-
oped DDG method with interface correction enjoys several superior potentials. Firstly,
as the previous work [9] indicates, the newly developed DDG method with interface
correction no longer requires the jump terms of even order derivatives higher than two.
Only the jump of second order derivatives is required for all the DG (Pk) discretization,
which greatly simplifies the implementation of this method for very high-order prac-
tices. Secondly, the newly developed DDG method becomes more robust in delivering
the designed optimal order of accuracy under demanding situations, i.e., under severely
distorted grids, which will be demonstrate later through our numerical experiments.

In the numerical fluxes of test function vh given above, the value of test functions
and their derivatives are equal to zero outside the element κ, therefore, only inside of κ

contributes to ̂GT(uh)∇vh, i.e.,

̂GT(uh)∇vh =
GT(u+

h )∇v
+
h

2
. (3.11)

Furthermore, splitting the faces into interior faces and boundary faces, we can rewrite
the new DDG discretization with interface correction as follows: find uh∈Vh,p, such that

−
∫

Ω
F (uh) :∇vhdx+ ∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u−
h ,nκ)·v

+
h ds

+
∫

Ω
(G(uh)∇uh) :∇vhdx− ∑

κ∈Th

∫

∂κ\Γ
( ̂G(uh)∇uh)·nκ ·v

+
h ds

+ ∑
κ∈Th

∫

∂κ\Γ
[uh]·

(
( ̂GT(uh)∇vh)·nκ

)
ds

+
∫

Γ
H(u+

h ,uΓ(u
+
h ),nκ)ds−

∫

Γ
( ̂
G(uΓ(u

+
h ))∇uh)·nκ ·v

+
h ds



10 J. Cheng, H. Q. Yue. S. J. Yu and T. G. Liu / Adv. Appl. Math. Mech., 10 (2018), pp. 1-21

+
∫

Γ
(uΓ(u

+
h )−u

+
h )·

(
( ̂
GT(uΓ(u

+
h ))∇vh)·nκ

)
ds=0, ∀vh∈Vh,p, (3.12)

where the boundary function uΓ(u
+
h ) is given according to the type of boundary condi-

tion imposed.

Remark 3.1. We point out that the above spatial discretization of DDG method with in-
terface correction is, to some extend, very similar to the SIP method. In fact, for the DG
(P1) discretization, the above spatial discretization degenerates to the SIP discretization,
though it becomes different for DG (Pk) with k≥ 2 as the jump of second-order deriva-
tives must be taken into account in the DDG type methods. However, what we want
to emphasize is that the major difference between the DDG type methods and the SIP
method comes from the concept and derivation rather than from the specific numerical
implementation. Compared to the SIP method which the derivation is based on the ap-
plication of internal penalty ideas on the numerical flux for the decoupled first-order sys-
tems derived from the Navier-Stokes equations, the formulation of DDG type methods
is directly based on the weak formulation of DG method and an appropriate approxima-
tion of generalized Riemann problem from pure diffusive equation. Although, these two
type of methods eventually lead to the similar formulation in spatial discretization from
different perspectives.

Remark 3.2. Another potential advantage of the new DDG method with interface correc-
tion, compared to the original DDG method, for solving the compressible Navier-Stokes
equations is that the new DDG (IC) method is adjoint consistent. Although, adjoint
consistency may not bring too much influence to the order of accuracy in solving pri-
mal problems, it can become crucial in the context of adjoint-based error estimation and
adaptivity [30]. As adjoint inconsistent discretization can not deliver the optimal rates of
convergence.

3.3 Boundary treatment

Note that the numerical flux functions defined in Eq. (3.5) and Eq. (3.9) involve the deriva-
tives of conservative variables at ghost states of the boundary faces. In general, these
derivatives are not available for practical problems. Therefore on boundary faces, we
drop the jump terms of second order derivatives and only use the internal first order
derivatives to define the viscous numerical flux functions, i.e.,

̂
G(uΓ(u

+
h ))∇uh =G(uΓ(u

+
h ))

(
β0

h̃
(uΓ(u

+
h )−u

+
h )⊗nκ

)

+G(uΓ(u
+
h ))∇u

+
h , (3.13)

and
̂

GT(uΓ(u
+
h ))∇vh=G

T(uΓ(u
+
h ))∇v

+
h , (3.14)
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where uΓ(u
+
h ) is boundary function defined based on the specific type of boundary con-

ditions. For example along no-slip adiabatic wall boundaries, the no-slip boundary con-
dition enforces the velocity equal to zero, thus

uΓ(u
+
h )=(ρ+,0,0,E+)T. (3.15)

Furthermore, on adiabatic wall boundaries, ∇T·n=0, therefore the viscous flux functions
G(u,∇u) can be defined as

G
adia(u,∇u)=







0 0
τxx τxy

τyx τyy

0 0







. (3.16)

For more details about boundary treatment for the compressible Navier-Stokes equation-
s, we refer the readers to [22] and references cited therein.

3.4 Pseudo-transient continuation

We add a pseudo time term to Eq. (2.10), i.e., and rewrite the steady-state Navier-Stokes
equations as

∂u

∂t
+∇·F (u)−∇·(G(u)∇u)=0 in Ω. (3.17)

Spatial discretization of Eq. (3.17) leads to a system of ordinary differential equations:

M
duh

dt
=R(uh), (3.18)

where M is mass matrix and R is right hand side residual. In this work, as we are
interested in stationary problems, thus, the implicit backward Euler scheme is applied.
After temporal discretization and linearizing Eq. (3.18) in time, we get a linear system
written as (

M

∆t
I−

∂R

∂u

∣
∣
∣
un

h

)

∆u
n
h =R(un

h), (3.19)

where ∆t is time increment, and ∆un
h = u

n+1
h −un

h . Then, the linear system is solved by
GMRES method with ILU0 preconditioning in this work.

4 Numerical examples

4.1 A model problem with a source term

In order to investigate the accuracy and convergence of the proposed DDG (IC) method
for solving the compressible Navier-Stokes equations, in the first numerical test, a model
problem with a source term is chosen. The exact solution to Eq. (2.1) is chosen to be

u=(sin(2(x+y)+4),sin(2(x+y)+4),sin(2(x+y)+4),(sin(2(x+y)+4))2)T
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with a source term s given as follows

s=










4cos(2(x+y))

cos(2(x+y))(14γ−10)+sin(4(x+y))(2γ−2)

cos(2(x+y))(14γ−10)+sin(4(x+y))(2γ−2)

cos(2(x+y))(28γ+4)+4γsin(4(x+y))+
8µγ

Pr
sin(2(x+y))










.

Additionally, the computational domain is chosen to be Ω=[0,1]2 and the dynamic vis-
cosity coefficient µ=0.1.

In this test case, the Dirichlet boundary condition is enforced in the ghost states along
the boundary, namely,

u|∂Ω=(sin(2(x+y)+4),sin(2(x+y)+4),sin(2(x+y)+4),(sin(2(x+y)+4))2)T. (4.1)

It should be noted that although, in this test case, the first and second order derivatives
can be handily derived, we still strictly follow the boundary treatment given in Section
3.3 and do not use them in the formulation of boundary viscous flux.

The initial condition has also been carefully chosen in this test case, instead of using
the so-called freestream constant values, the initial condition is set as follows:

u0=







sin(1.5(x+y))+3
0.2sin(1.5(x+y))+3
0.8sin(1.5(x+y))+3
(sin(1.5(x+y))+3)2







.

Three different types of grids are designed to assess the performance of the new DDG
method with interface correction in this test case. As shown in Fig. 2, uniform structured
grids, nonuniform unstructured grids together with a specially designed heterogeneous
grids are used in this test case and grid convergence studies based on the three different
types of grids are performed. It should be pointed out that the heterogeneous grids are
specially designed, inspired by the work [31], as this type grids can be really effective in
testing the performance of the viscous discretization under the demanding situations.

The L2 norm of the solution vector ‖u−uh‖L2(Ω) is considered as the measure of the
magnitude of the error in this test case. A comparison between the original DDG method
and the newly developed DDG (IC) method is performed and presented for DG (Pk),
k=1,2,3 and numerical results of this accuracy test are presented in Table 1, Table 2 and
Table 3.

From these numerical results we note that, on both the uniform structured grids and
the nonuniform unstructured grids, both the original DDG method and the newly de-
veloped DDG (IC) method can deliver the optimal order of accuracy for all the DG (Pk)
methods with k = 1,2,3, respectively. Meanwhile, the magnitude of errors for both of
these methods are totally comparable. As the situation on heterogeneous grids shown
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Figure 2: Three different types of quadrilateral grids used for model problem with source term.

in Table 3, for the odd order of DG discretization, i.e., DG (Pk) k=1,3, both of these two
methods gain designed order of accuracy with matchable errors. However, for the even
order DG discretization k = 2, it is clearly that DDG (IC) method shows its robustness
over the original DDG method and gives a better performance in delivering the optimal
third order of accuracy, while the original DDG method degenerates to slight higher than
second order of accuracy, eventually. The grid convergence study shows that the new-
ly developed DDG method can achieve its designed order of accuracy and has its own
superior potential and robustness in handling demanding situations.

Table 1: Grid convergence study on uniform structured grids.

Number of DoFs DDG (P1) Order DDG (IC) (P1) Order

48 2.154e-1 2.437e-1

192 5.382e-2 2.00 6.565e-2 1.89

768 1.307e-2 2.04 1.649e-2 1.99

3071 3.195e-3 2.03 4.097e-3 2.01

Number of DoFs DDG (P2) Order DDG (IC) (P2) Order

96 1.687e-2 1.756e-2

384 2.089e-3 3.01 2.106e-3 3.05

1536 2.604e-4 3.00 2.589e-4 3.02

6144 3.246e-5 3.00 3.238e-5 2.99

Number of DoFs DDG (P3) Order DDG (IC) (P3) Order

160 1.523e-3 1.548e-3

640 9.571e-5 3.99 9.605e-5 4.01

2560 6.003e-6 4.00 5.992e-6 4.00

10240 3.767e-7 3.99 3.756e-7 4.00



14 J. Cheng, H. Q. Yue. S. J. Yu and T. G. Liu / Adv. Appl. Math. Mech., 10 (2018), pp. 1-21

Table 2: Grid convergence study on nonuniform unstructured grids.

Number of DoFs DDG (P1) Order DDG (IC) (P1) Order
273 7.206e-2 7.284e-2

1092 1.820e-2 1.98 1.861e-2 1.97
4368 4.424e-3 2.04 4.629e-3 2.01

Number of DoFs DDG (P2) Order DDG (IC) (P2) Order
546 4.719e-3 4.714e-3

2184 5.565e-4 3.08 5.538e-4 3.08
8736 6.745e-5 3.04 6.596e-5 3.07

Number of DoFs DDG (P3) Order DDG (IC) (P3) Order
910 3.160e-4 3.169e-4

3640 1.994e-5 3.99 1.975e-5 4.04
14560 1.222e-6 4.03 1.207e-6 4.03

Table 3: Grid convergence study on heterogeneous grids.

Number of DoFs DDG (P1) Order DDG (IC) (P1) Order
2400 1.672e-2 1.768e-2
9600 3.992e-3 2.07 4.237e-3 2.06
38400 9.667e-4 2.05 1.019e-3 2.06

Number of DoFs DDG (P2) Order DDG (IC) (P2) Order
4800 3.568e-4 3.204e-4
19200 5.288e-5 2.75 3.860e-5 3.05
76800 1.033e-5 2.36 4.802e-6 3.01

Number of DoFs DDG (P3) Order DDG (IC) (P3) Order
8000 9.402e-6 8.959e-6
32000 5.596e-7 4.07 5.324e-7 4.07

128000 3.424e-8 4.03 3.254e-8 4.03

4.2 Couette flow

In the second numerical test, a compressible Couette flow on a rectangle domain (0 ≤
x≤ 2H, 0≤ y≤ H) is considered. This example is again aimed at verifying the accuracy
and convergence of the DDG (IC) method for solving the compressible Navier-Stokes
equations based on different types of grids.

The exact solution to this problem is given by

u= ȳU, v=0,

p= p∞, ρ=
p

RT
,

T=T0+ ȳ(T1−T0)+ ȳ(1− ȳ)
PrU2

2cp
,

where ȳ = y
H , cp is the specific heat capacity at constant pressure, U is the velocity at
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Figure 3: Three different types of quadrilateral grids used for Couette flow.

upper wall and T0, T1 are the temperature at bottom and upper wall respectively. In this
test case, we take H=2.0, T0=0.8, and T1=0.85. Mach number for upper wall is given as
Ma=0.1 and the dynamic viscosity coefficient is taken as a constant µ=0.1.

Similarly, three different types of grids are adopted to assess the performance of the
newly developed DDG (IC) method, as shown in Fig. 3, including the uniform structured
grids, nonuniform unstructured grids together with the heterogeneous grids. A grid
convergence study based on the three different types of grids is performed and the L2

norm of density ρ is used as the measure of the magnitude of the error in this study. Again
in the boundary treatment of this test case, we strictly follow the boundary treatment
described in Section 3.3 and do not use the first or second order derivatives at the ghost
states along the boundary faces.

Numerical results are shown in Table 4. Except in some extreme situations that the
magnitude of error becomes too small and contaminated, the new DDG method with
interface correction provides satisfactory results. It can be seen clearly that optimal order

Table 4: Grid convergence study of DDG (IC) method for Couette flow.

Uniform grid
Number of cells DG (P1) Order DG (P2) Order DG (P3) Order

50 2.749e-05 1.216e-07 4.398e-10
200 6.669e-06 2.04 1.508e-08 3.01 3.062e-11 3.85
800 1.686e-06 1.98 1.989e-09 2.92

Unstructured grid
Number of cells DG (P1) Order DG (P2) Order DG (P3) Order

72 6.103e-04 3.524e-06 2.315e-07
288 1.866e-04 1.71 4.000e-07 3.13 1.451e-08 4.00

1152 4.253e-05 2.13 4.592e-08 3.12 9.676e-10 3.91
Heterogeneous grid

Number of cells DG (P1) Order DG (P2) Order DG (P3) Order
120 8.211e-06 1.532e-08 3.268e-11
480 2.210e-06 1.89 2.031e-09 2.91

1920 6.182e-07 1.83 2.650e-10 2.93
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of accuracy has been achieved on all those three different types of grids including the
heterogeneous grids which can be regarded as quite challenging.

4.3 Laminar flow over a NACA0012 airfoil

This test case involves a subsonic laminar flow past a NACA0012 airfoil at a Mach num-
ber of 0.5, an angle of attack of 0◦, and a Reynolds number of 5,000 based on the freestream
velocity and the chord length of the airfoil. An adiabatic wall boundary is assumed a-
long the airfoil in this test case. The Reynolds number is close to the upper limit of a
steady flow. This computation is performed on a hybrid structured and unstructured
quadrilateral mesh with 3,466 elements as shown in Fig. 4(a). A distinguishing feature of
this test case is the separation of the flow occurring near the tailing edge, which causes
the formation of two small recirculation bubbles in the wake region. This can be clearly
seen from the streamline plot in the vicinity of the trailing edge as shown in Fig. 4(b).
Fig. 5 shows the computed skin friction coefficients and pressure coefficients obtained
by the DDG (IC) (P2) and DDG (IC) (P3) methods, which match very well compared to
the reference values. A detailed comparison of the computed drag coefficients due to
pressure (Cdp) and viscous stress (Cd f ), respectively, is shown in Table 5. The residual
convergence history shown in Fig. 6. Due to the reason that the grid is designed to be rel-
atively coarse, we can see that the higher-order DDG (IC) method, especially DDG (IC)
(P3) method, matches the reference values very well. The numerical results indicate that
the newly developed DDG (IC) method has the capability to deliver satisfactory results
for this typical simulation.

Table 5: Comparison of pressure coefficient and drag coefficient for laminar flow over a NACA0012 airfoil.

Method Cdp Cd f Cd

DDG (IC) (P1) 0.011698 0.040698 0.052397
DDG (IC) (P2) 0.020653 0.035096 0.055749
DDG (IC) (P3) 0.022445 0.032228 0.054673

References [22, 25, 29] 0.02208-0.02250 0.03103-0.03283 0.05311-0.05533

4.4 Steady flow past a cylinder

A subsonic flow past a circular cylinder at a Reynolds number of 40 based on the diame-
ter of the cylinder and at a Mach number of 0.2 is considered in this test case. Steady and
unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies,
has been subjected to numerous experimental and computational studies. The flow con-
sidered in this test case is steady and characterized by the presence of a symmetric pair of
closed separation bubbles at the current Reynolds number. The initial condition is a uni-
form freestream with no-slip adiabatic boundary condition on the solid wall. The hybrid
structured and unstructured quadrilateral mesh used in the computation and shown in
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Figure 4: Grids and Mach number contours for laminar flow over a NACA0012 airfoil.
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Figure 5: Plot of pressure coefficient and skin friction coefficient for laminar flow over a NACA0012 airfoil.

Fig. 7 consists of 4,434 quadrilateral elements, and 96 boundary faces on the surface of
the cylinder. The cell size is 0.0336D at the cylinder, with the height of the first layer grid
around the cylinder equal to 0.0166D, approximately. The computed Mach contours in
the flow field and the streamlines over the cylinder are shown in Fig. 8. A comprehensive
comparison of separation angle θs, wake length Lw/D, and drag coefficient Cd is present-
ed in Table 6. One can observe that the results obtained by the newly developed DDG
(IC) method are well within the range of the reference solutions.

5 Conclusions

In this paper, we have developed and investigated a new DDG method with interface cor-
rection (DDG (IC)) as the discretization of viscous and heat fluxes for the compressible
Navier-Stokes equations on unstructured grids. Compared to the original DDG method,
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Figure 6: Convergence history of laminar flow over a NACA0012 airfoil.
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Figure 7: Hybrid structured and unstructured quadrilateral grid for steady flow past a cylinder.

the DDG method with interface correction has several superior potentials. It no longer
requires the jump terms of even order derivatives higher than two, meanwhile becomes
more robust in delivering the designed optimal order of accuracy under demanding sit-
uations, i.e., under severely distorted grids. A number of test cases have been presented
to assess the performance the DDG method with interface correction for solving the com-

Table 6: Comparison of separation angle θs, wake length Lw/D, and drag coefficient Cd for steady flow past a
cylinder.

Method θs Lw/D Cd
DDG (IC) (P1) 123.6◦ 2.11 1.57694
DDG (IC) (P2) 125.9◦ 2.17 1.56831
DDG (IC) (P3) 126.2◦ 2.18 1.56149
Reference [28] 125.8◦−127.3◦ 2.13-2.35 1.48-1.62
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Figure 8: Mach number contours and streamlines for steady flow past a cylinder.
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Figure 9: Convergence history of steady flow past a cylinder.

pressible Navier-Stokes equations. Numerical experiments demonstrate that DDG (IC)
method can achieve the optimal order of accuracy on both uniform structured grids and
nonuniform unstructured grids, which clearly indicates its potential for further applica-
tions of real engineering practices.
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