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Abstract. The method of fundamental solutions (MFS) and the Collocation Trefftz
method have been known as two highly effective boundary-type methods for solv-
ing homogeneous equations. Despite many attractive features of these two methods,
they also experience different aspects of difficulty. Recent advances in the selection of
source location of the MFS and the techniques in reducing the condition number of the
Trefftz method have made significant improvement in the performance of these two
methods which have been proven to be theoretically equivalent. In this paper we will
compare the numerical performance of these two methods under various smoothness
of the boundary and boundary conditions.
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1 Introduction

The method of fundamental solutions (MFS) [3, 9] and the Collocation Trefftz method
(CTM) [14, 26, 27] are considered to be two of the most powerful boundary meshless
methods for solving homogeneous equations under the condition that either the fun-
damental solution or the T-complete functions are available for the given differential
equation. One of the great advantages of using these types of boundary-only solution
procedure is simplicity. Furthermore, the solution of both of these methods converges
exponentially. On the negative side, the MFS has the uncertainty of placing the source
points outside the domain. Some improvements proposed like adaptive approach [6, 21]
were computational expensive and nonlinear that hard to be solved, they were replaced
by later fixed approach [3, 6, 8] to bear mentioned problems. Selection of optimal source
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location, accuracy of MFS primarily depending on, were dealt with by various algorithm-
s [1,7,24,25]. In particular, the LOOCV (Leave-One-Out Cross Validation) algorithm [23]
has been successfully adopted to locate the optimal source points [1]. Collocation Trefftz
method is notorious for ill-conditioning of the resultant matrix. In recent years, signifi-
cant advances have been developed to alleviate these deficiencies. The collocation Trefftz
method was proposed to deal with the singularity by adopting nonsingular T-complete
basis function [10, 12]. Recently,the so-called multiple scale technique [13–15, 17], a pre-
conditioning technique, has been proposed to reduce the condition number of the re-
sultant matrix for the nonlinear problems. In summary, both the MFS and the Trefftz
method have been further enhanced and become more powerful. It is of interest to note
that there is a strong mathematical connection between the MFS and the Trefftz method.
Chen et al. [2] showed that the MFS and the Trefftz method are theoretically equivalen-
t for solving the Laplace and biharmonic equations for the case of the circular domain.
Liu [16] extended the equivalence between the Trefftz method and the MFS to the ar-
bitrary domain. On the other hand, the numerical procedure of these two methods are
completely different. Fu [5] has extended the MFS and collocation Trefftz method for
solving nonlinear and anisotropic equations, Fu [4] has solved Laplace transformed time
fractional diffusion equations which extends MFS and Trefftz Method. To the best of
our knowledge, no research has been conducted to compare the performance of LOOCV-
MFS and multiple scale CTM numerically. In particular, due to the recent development
of the MFS in the selection of the source points and the Trefftz method in the reduction
of the condition number, it is the purpose of this paper to study the performance and
make a comparison of these two powerful numerical methods. The paper is organized as
follows. In Section 2 we describe Laplace equations and biharmonic equations and intro-
duce the modified Trefftz method which has multiple-scale in Trefftz bases to solve the
Laplace equation with Dirichlet boundary condition and Biharmonic equation with the
first and second kind, respectively. In Section 3 we briefly review the MFS for solving two
kinds of equations as shown in Section 2. Numerical comparisons of these two methods
have been provided in Section 4. In Section 5 we draw conclusions on the performance
and comparison of these two methods.

2 The multiple-scale Trefftz method

2.1 Laplace equation

We consider the following Laplace equation with Dirichlet boundary condition

∆u(r,θ)=0, (r,θ)∈Ω, (2.1a)

u(x,y)= f (r,θ), (r,θ)∈∂, Ω, (2.1b)

where f is a given function. In the Trefftz method, the solution in Eq. (2.1) can be approx-
imated by the T-complete functions satisfying the governing equation Eq. (2.1a). For the
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Laplace equation in the two-dimensional bounded domain, the T-complete functions are
as follows:

{1,rk coskθ,rk sinkθ}, k=1,2,··· ,

where r and θ are the polar coordinates of the two-dimensional plane. The approximated
solution of u in Eq. (2.1) can be represented by a linear combination of the T-complete
functions:

u(r,θ)= a0+
m

∑
k=1

(akrk coskθ+bkrk sinkθ). (2.2)

Let {(rj,θj)}n
j=1 be the collocation points on ∂Ω. By the collocation method, we have the

following system of equations




1 r1cosθ1 r1sinθ1 ··· rm
1 cosmθ1 rm

1 sinmθ1

1 r2cosθ2 r2sinθ2 ··· rm
2 cosmθ2 rm

2 sinmθ2
...

...
...

. . .
...

...
1 rn cosθn rn sinθn ··· rm

n cosmθn rm
n sinmθn







a0

a1

b1
...

am

bm




=




f1

f2

f3
...
fn




.

The above system of equations can be written in the matrix form

Ka= f , (2.3)

where K is a n×(2m+1) coefficient matrix, 2m+1 is the number of T-complete functions,
a= [a0,a1,b1,··· ,am,bm]T is a (2m+1)×1 coefficient vector to be determined, and f is an
n×1 matrix. When m becomes large, K in (2.3) is highly ill-conditioned.

Liu [14] first proposed the idea of characteristic length, which can be used to reduce
the ill-conditioning of the Trefftz method. Then Liu [18] proposed how to locate the best
source points in MFS to equilibrate the matrix. The equilibrated matrix has the minimal
condition number resulting from the fact that all the column norms or row norms are the
same [20]. If we find fixable multiple-scale R0,R1,··· ,R2m on Eq. (2.3), we could reduce
the condition number of K. The characteristic length is defined as follows

Rj−1=

√
n

∑
i=1

K2
i,j, j=1,2,··· ,2m+1,

and let

u(r,θ)=
â0

R0
+

m

∑
k=1

âkrk coskθ

R2k−1
+

m

∑
k=1

b̂krk sinkθ

R2k
, (2.4)

where â0= a0R0, âk = akRk, b̂k =bkRm+k. Then K̂ can be represented as follows:
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K̂=




1

R0

r1cosθ1

R1

r1sinθ1

R2
··· rm

1 cosmθ1

R2m−1

rm
1 sinmθ1

R2m
1

R0

r2cosθ2

R1

r2sinθ2

R2
··· rm

2 cosmθ2

R2m−1

rm
2 sinmθ2

R2m
...

...
...

. . .
...

...
1

R0

rn cosθn

R1

rn sinθn

R2
··· rm

n cosmθn

R2m−1

rm
n sinmθn

R2m




.

Hence, a new matrix system equivalent to Eq. (2.3) is:

K̂â= f , (2.5)

where â=[â0, â1,b̂1,··· , âm,b̂m]T .
In order to reduce the condition number of K̂, we adjust this matrix to equilibrate

by choosing a suitable Rk. Since the condition number is almost minimum when each
column of matrix K̂ is equivalent and the square norm of the each column of matrix K̂
are the same:

n

∑
i=1

K̂2
i1= ···=

n

∑
i=1

K̂2
in,

we could derive Rk from

Rk=γ

(
∑

n
i=1 K̂2

ik

∑
n
i=1 K̂2

i1

)1/2

, (2.6)

where γ is an amplification factor, ranging from 0.5 to 2, which is applied to reduce the
condition number better. For simplicity, let γ be 1. Consequently, Eq. (2.5) can be solved
as follows

Aa= f1,

where A= K̂
T

K̂, f1= K̂
T

f .
The above pre-conditioning process will significantly reduce the conditioning num-

ber of the matrix system resulting from the Trefftz collocation method. As shown in
the section of numerical results, the Trefftz method becomes very stable using the above
multiple scale technique.

2.2 Biharmonic equation

In this section, we give a brief review of the multiple-scale Trefftz method. The bihar-
monic equation of a two-dimensional boundary value problem is as follows:

∆2u(r,θ)=0, (r,θ)∈Ω, (2.7a)

u(r,θ)= f (θ),
∂u

∂n
(r,θ)= g(r,θ), 0≤ θ≤2π, (2.7b)

or u(r,θ)= f (θ), ∆u(r,θ)= g(r,θ), 0≤ θ≤2π, (2.7c)
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where f and g are given functions. r(θ) is a function which describes the boundary of the
problem domain. Eqs. (2.7a)-(2.7b) is the first biharmonic problem while (2.7a), (2.7c) is
the second biharmonic problem.

The T-complete functions for the biharmonic equation in the polar coordinate system
are as follows:

{1,rk coskθ,rk sinkθ,r2,rk+2coskθ,rk+2 sinkθ}, k=1,2,··· .

The multiple-scale characteristic length is added to the above T-complete functions, the
approximation of u can be written as

u(r,θ)=a0+
m

∑
k=1

( akrk coskθ

Rk
+

bkrk sinkθ

Rk+m

)

+
c0r2

R2m+1
+

m

∑
k=1

( ckrk+2coskθ

R2m+k+1
+

dkrk+2sinkθ

R3m+k+1

)
. (2.8)

Note that
∂u(r,θ)

∂n
=η(θ)

[
∂u(r,θ)

∂r
− r′∂u(r,θ)

r2∂θ

]
,

where

r′=
∂r

∂θ
, η(θ)=

r(θ)√
r2(θ)+(r′(θ))2

.

For the first biharmonic problem, we collocate the boundary condition with n boundary
points {(ri,θi)}n

i=1 and obtain

u(ri,θi)= f (ri,θi),
∂u

∂n
(ri,θi)= g(ri,θi), i=1,··· ,N. (2.9)

Then from Eq. (2.8), we have

∂u(ri,θi)

∂n
=

2c0ηiri

R1
+

m

∑
k=1

[
akEik

Rk
+

bkFik

Rm+k
+

ckGik

R2m+k+1
+

dk Hik

R3m+k+1

]
, (2.10)

where

Eik =ηir
k
i

(
k

ri
coskθi+

kr′i
r2

i

sinkθi

)
, Fik =ηir

k
i

(
− kr′i

r2
i

coskθi+
k

ri
sinkθi

)
,

Gik=ηir
k+2
i

(
k+2

ri
coskθi+

kr′i
r2

i

sinkθi

)
, Hik =ηir

k+2
i

(
− kr′i

r2
i

coskθi+
k+2

ri
sinkθi

)
.

Put Eq. (2.10) into Eq. (2.8) and Eq. (2.9), we derive a 2n∗(4m+2) dimensions linear
equation system as:

[
A B
C D

][
a
b

]
=

[
f
g

]
, (2.11)
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where

a=[a0,a1,···am,b1,··· ,bm]
T,

b=[c0,c1,··· ,cm,d1,··· ,dm]
T,

are unknown coefficients to be determined, and

A=




1
r1cosθ1

R1
··· rm

1 cosmθ1

Rm

r1sinθ1

Rm+1
··· rm

1 sinmθ1

R2m

1
r2cosθ2

R1
··· rm

2 cosmθ2

Rm

r2sinθ2

Rm+1
··· rm

2 sinmθ2

R2m
...

...
. . .

...
...

. . .
...

1
rn cosθn

R1
··· rm

n cosmθn

Rm

rn sinθn

Rm+1
··· rm

n sinmθn

R2m




,

B=




r2
1

R2m+1

r3
1 cosθ1

R2m+2
··· rm+2

1 cosmθ1

R3m+1

r3
1 sinθ1

R3m+2
··· rm+2

1 sinmθ1

R4m+1

r2
2

R2m+1

r3
2 cosθ2

R2m+2
··· rm+2

2 cosmθ2

R3m+1

r3
2 sinθ2

R3m+2
··· rm+2

2 sinmθ2

R4m+1
...

...
. . .

...
...

. . .
...

r2
n

R2m+1

r3
n cosθn

R2m+2
··· rm+2

n cosmθn

R3m+1

r3
n sinθn

R3m+2
··· rm+2

n sinmθn

R4m+1




,

C=




0
E11

R1

...
E1m

Rm−1

F11

Rm

...
F1m

R2m

0
E21

R1

...
E2m

Rm−1

F21

Rm

...
F2m

R2m
...

...
. . .

...
...

. . .
...

0
En1

R1

...
Enm

Rm−1

Fn1

Rm

...
Fnm

R2m




,

D=




2η1r1

R2m+1

G11

R2m+2

...
G1m

R3m+1

H11

R3m+2

...
H1m

R4m+1
2η2r2

R2m+1

G21

R2m+2

...
G2m

R3m+1

H21

R3m+2

...
H2m

R4m+1
...

...
. . .

...
...

. . .
...

2ηnrn

R2m+1

Gn1

R2m+2

...
Gnm

R3m+1

Hn1

R3m+2

...
Hnm

R4m+1




.

We denote Eq. (2.11) as

Ke=h. (2.12)

The norm of the first column of K in Eq. (2.12) is
√

2m+1. Multiple-scale Rk can be solved
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in the same way as Eq. (2.6)

Rk=





α

(
1

2m+1

2m+1

∑
i=1

[
(rk

i coskθi)
2+(Eik)

2
]) 1

2

, k=1,··· ,m,

α

(
1

2m+1

2m+1

∑
i=1

[
(rk

i sinkθi)
2+(Fik)

2
]) 1

2

, k=m+1,··· ,2m,

R2m+1=α

(
1

2m+1

2m+1

∑
i=1

[
r4

i +(2ηiri)
2
]) 1

2

,

R2m+1+k=





α

(
1

2m+1

2m+1

∑
i=1

[
(rk+2

i coskθi)
2+(Gik)

2
]) 1

2

, k=1,··· ,m,

α

(
1

2m+1

2m+1

∑
i=1

[
(rk+2

i sinkθi)
2+(Hik)

2
]) 1

2

, k=m+1,··· ,2m.

For the second kind of boundary condition Eq. (2.7c), we can derive the corresponding
linear algebraic system in a similar way:

∆u(ri,θi)=
4c0

R2
1

+
m

∑
k=1

( ck Mik

R3m+1
+

dkNik

R4m+1

)
, (2.13)

where

Mik =4(k+1)rk
i coskθi, Nik =4(k+1)rk

i sinkθi,

n boundary collocation points {(ri,θi)}n
i=1 are used in the approximation of such bound-

ary condition:

u(ri,θi)= f (ri,θi), ∆u(ri,θi)= g(ri,θi), i=1,··· ,N. (2.14)

Put Eq. (2.10) into Eq. (2.8) and Eq. (2.14) and derive a 2n×(4m+2) dimensions linear
equation system similar to Eq. (2.11) as:

[
A B
0 M

][
a
b

]
=K

[
a
b

]
=

[
f
g

]
, (2.15)

where

M=




2η1r1

R2m+1

M11

R2m+2

...
M1m

R3m+1

N11

R3m+2

...
N1m

R4m+1
2η2r2

R2m+1

M21

R2m+2

...
M2m

R3m+1

N21

R3m+2

...
N2m

R4m+1
...

...
. . .

...
...

. . .
...

2ηnrn

R2m+1

Mn1

R2m+2

...
Mnm

R3m+1

Nn1

R3m+2

...
Nnm

R4m+1




.
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As K should be equilibrated, Ri is derived :

Rk =





α

(
1

2m+1

2m+1

∑
i=1

[
(rk

i coskθi)
2
]) 1

2

, k=1,··· ,m,

α

(
1

2m+1

2m+1

∑
i=1

[
(rk

i sinkθi)
2
]) 1

2

, k=m+1,··· ,2m,

R2m+1=α

(
1

2m+1

[
16(2m+1)+

2m+1

∑
i=1

r4
i

]) 1
2

,

R2m+1+k=





α

(
1

2m+1

2m+1

∑
i=1

[
(rk+2

i coskθi)
2+(Mik)

2
]) 1

2

, k=1,··· ,m,

α

(
1

2m+1

2m+1

∑
i=1

[
(rk+2

i sinkθi)
2+(Nik)

2
]) 1

2

, k=m+1,··· ,2m.

We refer readers to [19] for further details.

3 The MFS with LOOCV algorithm

3.1 MFS solving Laplace equation

Here we consider Eq. (2.1a) with Dirichlet boundary condition Eq. (2.1b). Let {ξk}M
k=1 de-

note the source points which are located on a pseudo-boundary outside the closure of Ω.
The solution to the Laplace equation (2.1a) can be approximated by a linear combination
of fundamental solutions as follows:

u(ξ,x)=
M

∑
k=1

ckG1(ξk,x), x∈Ω, (3.1)

where

G1(ξ,x)=− 1

2π
log|ξ−x| in two dimensions. (3.2)

Let {xi}N
i=1 be the collocation points on the domain boundary in the approximation, the

Dirichlet boundary condition Eq. (2.1b) is rewritten as:

u(ξk,xi)=
M

∑
k=1

ckG1(ξk,xi)= f (xi), k=1,··· ,M, i=1,··· ,N. (3.3)

In matrix form, we have the following N×M system of equations

Kc= f , (3.4)
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where
K=[G1(ξk,xi)]1≤i≤N,1≤k≤M , f =[ f (x1), f (x2),··· , f (xN)]

T ,

and c=[c1,c2,··· ,cM]T is the coefficient vector to be determined.
In the mixed Dirichlet-Neumann boundary condition:

u= f1 on ∂Ω1 and
∂u

∂n
= f2 on ∂Ω2, (3.5)

M source points and N boundary collocation points are chosen, we have:

u(ξk,xi)= f1(xi), i=1,··· ,N1,
∂u

∂n
(ξk,xi)= f2(xi), i=N1+1,··· ,N1+N2, (3.6)

where N=N1+N2, what we obtained is still an N×M equation system equal to Eq. (3.4),
where

Kik =G1(ξk,xi), fi = f1(xi), 1≤ i≤N1, (3.7a)

Kik =
∂G1

∂n
(ξk,xi), fi = f2(xi), N1+1≤ i≤N1+N2, (3.7b)

and c=[c1,c2,··· ,cM]T is the coefficient vector to be determined.

3.2 MFS solving Biharmonic equation

Here we consider the biharmonic equation with two boundary conditions. The solution
u can be approximated as follows:

u(ξ,x)=
M

∑
k=1

akG1(ξk,x)+
M

∑
k=1

bkG2(ξk,x), x∈Ω, (3.8)

where G1 is given in (3.2), and

G2=− 1

8π
|ξ−x|2 log|ξ−x| in two dimensions. (3.9)

We choose N collocation points {xi}N
i=1 on the domain boundary ∂Ω. Then the coefficient

vector a=[a1,··· ,aM]T and b=[b1,··· ,bM]T can be determined by collocating the boundary
conditions (2.7b) and (2.7c) as follows:

u(ξk,xi)= f (xi),
∂u

∂n
(ξk,xi)= g(xi), i=1,··· ,N, k=1,··· ,M, (3.10)

which yields a 2N×2M system

K

[
a
b

]
=Kc=

[
f
g

]
, (3.11)
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where in the first biharmonic problem

K=




G1(ξk,xi) G2(ξk,xi)
∂G1

∂n
(ξk,xi)

∂G2

∂n
(ξk,xi)


,

f =[ f (x1),··· , f (xN)]
T, and g=[g(x1),··· ,g(xN)]

T . In the second biharmonic problem, we
have

K=

[
G1(ξk,xi) G2(ξk,xi)

∆G1(ξk,xi) ∆G2(ξk,xi)

]

and c=[a,b]T is the coefficient vector to be determined.

3.3 LOOCV algorithm on choosing source points

The LOOCV Algorithm was designed to choose a suitable shape parameter by Rippa [23]
in the Radial Basis Function. In MFS, this algorithm is used to select suitable distance of
source points to achieve relative better results. We only present the process of harmonic
and non-harmonic problem in this section. Biharmonic and non-biharmonic problems are
easy to be extended. Suppose the boundary curve ∂Ω is presented in polar coordinates
like:

x= r(θ)cosθ, y= r(θ)sinθ, θ∈ [0,2π). (3.12)

Discrete θ as θi, i = 1,··· ,N, then we can get corresponding ri = r(θi), i = 1,··· ,N, which
could be used to describe boundary collocation points in the approximation of boundary:

xi= ri(cos(θi),sin(θi)), i=1,··· ,N. (3.13)

In [1,11], we know that results would be excellent to collocate source points uniformly at
fixed distance from boundary, thus we choose two approaches placing source points as
follows for different boundary conditions:

1. On a circle by equal angles: When the boundary condition is harmonic, satisfied
accuracy would be achieved by locating source points uniformly as a circle ∂Ω̃ sur-

rounding boundary ∂Ω. Let θi =
2π(i−1)

N , i = 1,··· ,N, we get boundary collocation
points distributed as (3.12) and source points represented as:

ξk =R(cos(φk),sin(φk)), φk=
2π(k−1)

M
, k=1,··· ,M,

where R≥max|r| which is large enough to satisfy: ∂Ω⊂∂Ω̃.

2. At fixed distance from boundary by equal segments: In order to collocate source
points by equal segments, we should determine uniform boundary collocation points
at first. The length S of boundary curve is calculated by :

S=
∫ 2π

0

√
r(θ)2+r′(θ)2dθ,
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then, each segment between neighboring boundary collocation points are equal to
S/N. Let θ1=0, then the component t=θi+1 of next element is achieved in order by
solving:

√
(r(t)cost+r(θi)cosθi)2+(r(t)sint+r(θi)sinθi)2− S

N
=0, i=1,··· ,N−1.

Put θi, i= 1,··· ,N−1, into (3.13), boundary collocation points are evaluated. Out-
ward normal vector of each boundary collocation points are defined as:

ni=
1√

r2(θi)+r′2(θi)
(r′(θi)sinθi+r(θi)cosθi,r(θi)sinθi−r′(θi)cosθi),

where i = 1,··· ,N. The number of source points and boundary collocation points
are M and N respectively. Let M=N/µ and µ is an integer, source points could be
placed along outward normal vectors at distance h as follows:

ξk= xµ(k−1)+1+hnµ(k−1)+1, j=1,··· ,M.

The right hand side of (3.4) f is calculated through these points and the coefficient vector
c is achieved through (3.4).

Let
E1(t)=‖K̃c− f̃ ‖,

where t equals to R or h depending on harmonic problem or non-harmonic problem, K̃
and f̃ are reconstructed by source points and test points which are different from collo-
cation points on the boundary.

E2(t)=‖e(t)‖
is the error function in the process of Leave-one-out Cross Validation, where

e(t)= [e1(t),e2(t),··· ,eM(t)] and ej(t)=
cj(t)

k̃jj(t)
, j=1,··· ,M,

k̃jj(t) are the diagonal elements of matrix K̃
−1

. LOOCV algorithm will search the best

value of t in given search interval by re-calculating K̃ and f̃ for each t, until satisfying
that E1(t) is as small as possible. Then coefficient vector c is determined and could be
used to evaluate test points.

4 Numerical examples

To compare the performance of the MFS and the Trefftz Method, we consider four two-
dimensional problems. In this section, nb, ns, nt denotes the number of boundary points,
source points, and test points, respectively. According to the Maximum Principle [22], the
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maximum error would occur on the boundary. Hence, test points and collocation points
are selected on the boundary where the boundary values are known. The accuracy is
calculated by the root-mean-square error (RMSE) which is defined as follows:

RMSE=

√
1

nt

nt

∑
i=1

(ūi(xi,yi)−ui(xi,yi))2, (4.1)

where ui and ūi are the exact solution and approximation solution, respectively.
As shown in Fig. 1, five irregular domains are considered in this section. The para-

metric equation of the boundary ∂Ω is defined as follows:

∂Ω={(x,y)|x= r(θ)cos(σ(θ)), y= r(θ)sin(σ(θ)), 0≤ θ<2π}, (4.2)

where r(θ) depends of the given domain. They are

1. Cassini domain:

r(θ)=

(
cos(4θ)+

√
18

5
−sin2(4θ)

)1/3

, σ(θ)= θ.

2. Amoeba-like domain:

r(θ)= esinθ sin2(2θ)+ecosθcos2(2θ), σ(θ)= θ.

3. Cardioid domain:

r(θ)=

√
c2+

∣∣sin
(

θ
2

)∣∣
√

c2+1
, c=0.3218, σ(θ)= θ.

4. L-shaped domain: No parametric equation is available in this case.

5. Gear-shaped domain:

r(θ)=2+
1

2
sin(7θ), σ(θ)= θ+

1

2
sin(7θ).

For the MFS, collocation points are uniformly distributed on the boundary.When the
boundary condition is harmonic, source points are placed on a circle covering the do-
main. See Fig. 2a. When the imposed boundary condition is non-harmonic, source points
are selected on a fictitious boundary with similar shape that is close to the boundary as
shown in Fig. 2b. To find a suitable distance from source points to the boundary points,
we apply the Leave-One-Out cross validation (LOOCV) algorithm. We refer readers to [1]
for further details.

For the Trefftz Method, just boundary collocation points on the boundary are suffi-
cient. To reduce the condition number, the multiple scale technique is required in the
implementation of the Trefftz method.
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Figure 1: The profiles of five different irregular domains.

Example 4.1. We consider the Laplace equation (2.1a) with the Dirichlet boundary con-
dition (2.1b)

f (x,y)= ex sin(y), (x,y)∈∂Ω. (4.3)

Since the boundary condition is harmonic, the exact solution is given as

u(x,y)= ex sin(y), (x,y)∈ Ω̂. (4.4)
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Figure 2: The distribution of source points of the MFS for harmonic boundary condition and nonharmonic
condition.
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Figure 3: Example 4.1: The profiles of condition numbers and errors with and without the multiple scale method
using the Trefftz method.

First, we consider the Cassini domain (see Fig. 1a). Table 1 shows the results of the
MFS with LOOCV using various numbers of collocation and source points, and r is the
maximal distance from the geometry center to the boundary. In [1], the number of collo-
cation points and source points are equal. In our approach, we find that similar accuracy
can be achieved using less source points which implies less computational time.

For the Trefftz method, b denotes the number of a group of Trefftz bases of the Laplace
operator. Fig. 3 shows the profiles of condition numbers and errors with and without
using the multiple scale method. Without using the multiple scale method, the condition
number grows proportional to the number of basis functions of the Trefftz method and
will quickly go out of control. With the multiple scale method, the solutions are stable
and reliable. From Table 2, we observe that the accuracy obtained by using the Trefftz
method is as good as the MFS.
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Table 1: Example 4.1: The RMSE for various numbers of collocation and source points using the MFS with
LOOCV.

nb ns Search interval R RMSE CPU time
200 100 (r,2r) 2.0912 1.5347e-15 0.5775
200 200 (r,2r) 2.0912 3.2416e-14 0.5482
500 250 (r,2r) 2.2306 1.0774e-15 1.1850
500 500 (r,2r) 2.2306 2.3187e-14 1.2500

Table 2: Example 4.1: The corresponding RMSE for various orders of Trefftz bases.

nb b RMSE CPU time b RMSE CPU time
200 21 2.1041e-07 0.4490 41 1.1180e-15 0.4206
200 61 1.0925e-15 0.4100 81 2.2615e-15 0.3998
200 101 1.3175e-15 0.4004
500 21 2.1041e-07 0.8974 41 1.4824e-15 0.7884
500 61 1.7412e-15 0.7879 81 1.4551e-15 0.7908
500 101 1.7551e-15 0.7985

Table 3: Example 4.1: Comparison between Trefftz Method and MFS.

Trefftz Method MFS
Domain Shape b RMSE Search interval R RMSE

Amoeba 61 3.2709e-15 (r,6r) 3.6272 5.5387e-15
Cassini 77 1.4079e-10 (r,6r) 2.6736 1.1521e-15

Cardioid 45 3.7126e-15 (r,2r) 1.5774 5.8688e-16
L-shaped 29 1.7276e-15 (r,5r) 0.9783 6.3606e-16

Gear-shaped 37 8.9747e-16 (r,4r) 2.6822 4.8016e-15

In Table 3, we compare these two methods for various domains as shown in Fig. 1.
For the MFS, we choose nb=ns=500, and nt=400. From the results in these three tables,
we conclude both methods are equally effective in terms of accuracy. However, we prefer
the MFS due to its simplicity in numerical implementation.

Example 4.2. We consider the Laplace equation Eq. (2.1a) with Dirichlet boundary con-
dition Eq. (2.1b), where f (x,y)= x2y3.

We consider Ω to be the amoeba domain as shown in Fig. 1b. The number of test
points is nt = 400. d is the maximum distance between the two neighboring collocation
points. To improve the accuracy, an equal number of source points are located at a fixed
distance h from the boundary.

For the Trefftz method, we select the same number of collocation points. As shown in
Fig. 4, we present the profiles of condition number and error with and without using the
multiple scale method. In the case of a non-harmonic boundary condition, the condition
number without using the multiple scale method is even worse than Fig. 3 in Example
4.1. The multiple scale method works nicely to alleviate the difficulty of the extremely
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Figure 4: Example 4.2: The profiles of condition numbers and errors with and without the multiple scale method
using the Trefftz method.

high condition number for the Trefftz method.

Table 4 and Table 5 show the results of both the Trefftz method and the MFS in the
amoeba domain. In Table 6, we compare the accuracy of these two methods for various
irregular domains shown in Fig. 1.

Overall, the MFS is superior to the Trefftz method in terms of accuracy. The better
accuracy of the MFS is at the expense of a searching algorithm for the optimal source
location using LOOCV. But even with such additional cost, the computational cost of
both methods is not much different. Despite the advantage of simplicity, the need of
searching for the optimal location of the source points presents a disadvantage for the
MFS. With the LOOCV, we are able to overcome such shortcoming at a reasonable cost.

Table 4: Example 4.2: The RMSE for the MFS.

nb ns Search interval h RMSE CPU (sec)
200 100 (0,2d) 0.0986 6.3193e-03 0.4530
200 200 (0,2d) 0.0573 2.0230e-03 0.5558
500 250 (0,2d) 0.0461 9.5285e-04 0.8945
500 500 (0,2d) 0.0319 1.8133e-04 1.0421

Table 5: Example 4.2: The RMSE for various Trefftz basis.

nb b RMSE CPU (sec) b RMSE CPU (sec)
200 21 1.6697e-01 0.4093 41 7.7712e-02 0.4393
200 61 5.2798e-02 0.4244 81 4.1350e-02 0.4171
200 101 4.2359e-02 0.4261
500 21 1.6706e-01 0.8180 41 7.7725e-02 0.8345
500 61 5.2803e-02 0.8125 81 4.1337e-02 0.7967
500 101 3.7120e-02 0.7879
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Table 6: Example 4.2: Comparison between the Trefftz Method and the MFS.

Trefftz Method MFS
Domain Shape b RMSE Search interval h RMSE

Amoeba 181 2.8754e-02 (0,4d) 0.0319 1.9053e-04
Cassini 309 1.7137e-09 (0,8d) 0.1208 3.0628e-16

Cardioid 189 7.1715e-05 (0,2d) 0.0149 9.2327e-06
L-shaped 301 8.3291e-05 (0,2d) 0.0110 1.6524e-05

Gear-shaped 173 1.8170e-02 (0,4d) 0.0385 3.7522e-03

Example 4.3. In this example, we consider the following biharmonic problem:

∆2u=0, (x,y)∈Ω, (4.5a)

u(x,y)= x2y3, (x,y)∈∂Ω, (4.5b)

∆u(x,y)=2y3+6x2y, (x,y)∈∂Ω, (4.5c)

where Ω is a Cardioid domain.
In this example, nb = 500 and nt = 201 are chosen for all the tests. For the MFS, the

source points are placed very close to the boundary with distance h. d is the maximum
distance between two neighboring collocation points. For the Trefftz method, we use
various numbers of biharmonic T-complete functions to approximate the solution u.

From Table 7 and Table 9, we notice that the optimal source points are very close to
the physical boundary. This is consistent with the results obtained in [1]. Comparing the
results in Tables 7 and 8, it is clear that the MFS is again superior to the Trefftz method in
terms of accuracy, but the Trefftz method consumes less CPU time. For the MFS in Table
9, we choose the same number of boundary points and source points. For four domains
as shown in Table 9, it is clear that the MFS is far superior to the Trefftz method in terms
of accuracy.

Table 7: Example 4.3: The RMSE for the MFS.

nb ns Search interval h RMSE CPU (sec)
500 250 (0,8d) 0.0532 1.9268e-05 2.2007
500 500 (0,8d) 0.0126 5.9034e-06 7.6547

Table 8: Example 4.3: The RMSE for the Trefftz method.

nb b RMSE CPU (sec) b RMSE CPU (sec)
500 22 2.2171e-02 1.1304 62 7.6066e-03 1.1510
500 102 5.0891e-03 1.3474 142 3.9934e-03 1.2173
500 182 3.3632e-03 1.2053

Example 4.4. We consider the equation

∆2u(x,y)=0,



58 F. Hao, H. Lv and X. Y. Liu / Adv. Appl. Math. Mech., 10 (2018), pp. 41-61

Table 9: Example 4.3: Comparison between Trefftz Method and MFS.

Trefftz Method MFS
Domain Shape b RMSE Search interval h RMSE

Amoeba 102 4.4621e-01 (0,6d) 0.0468 5.8614e-04
Cassini 302 3.5904e-05 (0,7d) 0.1136 1.1701e-14

Cardioid 402 2.3626e-03 (0,6d) 0.0119 4.3087e-06
Gear-shaped 322 3.1621e-01 (0,4d) 0.0312 6.8960e-03

with the first biharmonic boundary conditions

u(x,y)= x2y3, (x,y)∈∂Ω, (4.6a)

∂u

∂n
=(∇x2y3)·n, (x,y)∈∂Ω. (4.6b)

To study the stability of these two methods, the boundary conditions are disturbed
by random noise for the Gear-shaped domain. We utilize the MATLAB function Rand to
generate random noise Ran∈ [−1,1]. Let {(xi,yi)}nb

i=1 be the boundary collocation points,
and ũ and ∂ũ/∂n be the perturbed boundary conditions which can be explicitly expressed
as follows:

ũ(xi,yi)=u(xi,yi)+
∣∣∣ max

1≤i≤nb

(u(xi,yi))− min
1≤i≤nb

(u(xi,yi))
∣∣∣∗s∗Ran,

∂ũ

∂n
(xi,yi)=

∂u

∂n
(xi,yi)+

∣∣∣∣ max
1≤i≤nb

(
∂u

∂n
(xi,yi)

)
− min

1≤i≤nb

(
∂u

∂n
(xi,yi)

)∣∣∣∣∗s∗Ran,

where i=1,2,··· ,nb and s is the level of noise.
For the numerical implementation, we choose nb =ns =500, nt =201. The noise level

is chosen s= 3%. As shown in Table 10, the numerical results obtained by the MFS are
very stable for various search intervals using LOOCV. From Tables 10 and 11, we observe
that the Trefftz method can not achieve the same level of accuracy as the MFS. From
Table 12, we show that the MFS is far superior to the Trefftz method in accuracy for
four irregular domains. This is consistent with the results obtained in Examples 4.2 and
4.3. We also notice that for the Cassini domain, we consistently obtain a highly accurate
solution regardless of the types of differential equations and boundary conditions we
have tested. We believe the main reason is due to the symmetry and the high smoothness
of the boundary of the Cassini domain.

5 Conclusions

In this paper, we make comparisons of two powerful boundary meshless methods: the
Trefftz method and the MFS. We consider the Laplace and biharmonic equations for five
irregular domains. To enhance the performance of these two methods, we apply the
LOOCV algorithm to choose optimal source location. For the Trefftz, the multiple scale
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Table 10: Example 4.4: The RMSE for the MFS with and without random noise on the boundary.

No noise noise
nb Search interval d RMSE Search interval d RMSE

500 (0,2d) 0.0122 7.0168e-04 (0,2d) 0.0156 1.7787e-02
500 (0,4d) 0.0126 7.1769e-04 (0,4d) 0.0408 4.4635e-02
500 (0,6d) 0.0138 7.2228e-04 (0,6d) 0.0094 2.1809e-02
500 (0,8d) 0.0139 7.4044e-04 (0,8d) 0.0071 1.8371e-02

Table 11: Example 4.4: The RMSE for the Trefftz method with random noise on the boundary.

No noise noise
nb b RMSE b RMSE

500 22 6.7088e-02 22 7.5930e-02
500 102 2.6309e-02 102 4.6118e-02
500 182 1.7339e-02 182 4.4077e-02
500 262 1.7179e-02 262 4.5035e-02
500 342 4.3316e-02 342 1.0278e-01

Table 12: Example 4.4: Comparison of the Trefftz method and the MFS.

Trefftz Method MFS
Domain Shape b RMSE Search interval h RMSE

Amoeba 342 3.4405e-02 (0,4d) 0.0428 1.1606e-05
Cassini 402 6.3332e-07 (0,4d) 0.0621 8.3928e-12

Cardioid 342 2.1181e-04 (0,4d) 0.0102 3.8632e-06
Gear-shaped 242 4.2832e-02 (0,4d) 0.0108 7.1520e-04

technique is implemented to reduce its severe ill condition numbers. For the harmon-
ic boundary condition, these two methods are equally powerful. For the nonharmonic
boundary condition, the MFS is clearly superior to the Trefftz method in terms of accu-
racy. For the biharmonic equation, we have the similar conclusion. For the boundary
condition with noise, the Trefftz method is more stable that the MFS. Another important
advantage of the MFS is its simplicity in numerical implementation. The fundamental
solution of the MFS is simpler than the Trefftz method. The recent advances in the selec-
tion of the source location using the LOOCV has put the MFS in an even better position
to compete with other established boundary meshless methods. Hence, as far as the nu-
merical computation is concerned, we conclude the MFS is superior to the Trefftz method
in the two dimensional case.
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