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A NONOVERLAPPING DDM FOR GENERAL ELASTIC

BODY-PLATE PROBLEMS DISCRETIZED BY THE P1-NZT FEM

JIANGUO HUANG∗ AND XUEHAI HUANG

Abstract. A nonoverlapping domain decomposition method (DDM) is proposed to solve general
elastic body-plate problems, discretized by the P1-NZT finite element method. It is proved in a
subtle way that the convergence rate of the method is optimal (independent of the finite element
mesh size), even for a regular family of finite element triangulations. This enables us to combine the
method with adaptive techniques in practical applications. Some numerical results are included
to illustrate the computational performance of the method.
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1. Introduction

Elastic multi-structures are composed of a number of substructures that have
the same or different dimensions (e.g., bodies, plates, beams, etc.), coupled to-
gether with some junction conditions. They are widely used in the fields of avia-
tion, aerospace, civil engineering, mechanical manufacturing, etc. In the past few
decades, much work has been done about mathematical modeling, mathematical
analysis and numerical solution for elastic multi-structure problems. We refer to
[8, 11, 16, 17] and the references therein for details in this subject. Elastic multi-
structures have a significant feature, that is, they are very complex from the global
view point, but their substructures are quite simple comparably. Therefore, elastic
multi-structure problems are particularly suitable for solutions through nonoverlap-
ping domain decomposition methods (DDM). In [14], some substructuring method
was proposed for solving the stiffened plate problem, based on conforming element
discretization. In [15], two domain decomposition methods were given to solve a
regular elastic body-plate problem. However, due to the use of finite element dis-
cretization in [27], the body and the plate members must have a cuboid shape,
which greatly limits the applicability of these two methods.

In this article, we aim to propose and analyze a nonoverlapping DDM for solving
a general elastic body-plate problem, discretized by the finite element method de-
veloped in [6], where P1 conforming elements were used to discretize displacements
on the body and longitudinal displacements on the plate, while the NZT element
(cf. [28]) was used to discretize the transverse displacement. Hence, this method
can apply to any bodies and plates with polyhedral/polygonal shapes. The ideas
of constructing the related domain decomposition method are quite natural, sim-
ilar to the second method in [15]. It can be viewed as a Dirichlet-Neumann type
nonoverlapping method due to [19]. We refer the reader to the monograph [21] for a
comprehensive understanding of this method and mention that it has been applied
to solve a variety of coupling problems (cf. [12, 20, 30, 31]) with high efficiency.
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However, the convergence rate analysis of the proposed DDM is rather involved.
We first introduce a Clément-type operator and then develop its error estimates in
a subtle way. Then, we apply a new method to derive a certain spectral equivalence
lemma. In light of these results, we are able to study the convergence rate of the
DDM technically. It is proved that the convergence rate of the method is optimal
(independent of the finite element mesh size), even for a regular family of finite
element triangulations. It deserves to emphasize that there are few existing results
about convergence rate analysis of nonoverlapping DDMs for regular finite element
methods. Typically, it is often assumed that the restriction of the finite element
triangulation to the interface should be quasi-uniform (cf. [5, 7]), to achieve the
required spectral equivalence results (cf. [20, 21, 25, 29]). Hence, our convergence
rate analysis developed here might be helpful in investigating convergence rates of
some other nonoverlapping DDMs based on regular finite element discretizations.
The other benefit is that it enable us to combine the nonverlapping DDM with
adaptive techniques (cf. [5, 26]) to numerically solve the general elastic body-plate
problem very effectively. Similar to the second method in [15], our method here
only requires numerical solution of a pure body problem and a pure plate problem
at each iteration step, which can be implemented by existing efficient numerical
solvers. The relaxation parameter can be determined by numerical experience or by
the power method. We provide an academic example to illustrate the computational
performance of our method.

We end this section by introducing some notations and conventions frequently
used later on. Throughout this paper, we adopt standard notations for Sobolev
spaces [1, 5, 18], e.g., for a given open set G and a non-negative integer k, Hk(G)
consists of all L2(G)-integrable functions whose weak derivatives with the total
degree ≤ k are also L2(G)-integrable, and the norm and seminorm are denoted
by ‖ · ‖k,G and | · |k,G, respectively. Hk

0 (G) denotes the closure of C∞
0 (G) with

respect to the norm ‖ · ‖k,G, and the fractional-order Sobolev spaces are defined
by real interpolation of Banach spaces. Moreover, denote by Pk(G) the space of
all polynomials over G with the total degree ≤ k. We use the same index and
summation conventions as described in [16, 17]. That means, Latin indices i, j, l
take their values in the set {1, 2, 3}, while the capital Latin indices I, J, L take their
values in the set {1, 2}. The summation is implied when a Latin index (or a capital
Latin index) appears exactly twice. We also use the symbol “. · · · ” to denote
“≤ C · · · ” with a generic positive constant C independent of the finite element
mesh size and the functions under consideration, which may take different values
in different appearances.

2. The P1-NZT FEM for general elastic body-plate problems

As shown in Fig. 1, let (x1, x2, x3) be a right-handed orthogonal system in the
space R

3, whose orthonormal basis vectors are denoted by {ei}3i=1, respectively.
Let Ω be an elastic body-plate structure consisting of an elastic polyhedral body
α and an elastic polygonal plate β (precisely speaking, β is the mid-surface of an
elastic plate with thickness tβ), which is rigidly connected on the interface βb, i.e.,

(1) uα = uβ on βb,

where uα := uαi ei and uβ := uβi ei are the displacement fields in α and β, respec-
tively.
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Figure 1. The geometric domain of a body-plate elastic structure Ω.

For easy of exposition, we here only consider the case where the plate β is
clamped along the exterior boundary γ0 := ∂β. In other words,

uβ1 = uβ2 = 0, uβ3 = ∂nβuβ3 = 0 on γ0,

with nβ denoting the unit outward normal to ∂β. Moreover it is imposed the force-
free condition on the exterior boundary ∂α\βb of α. Then, under the applied force

fields fα ∈ (L2(α))3,fβ ∈ (L2(β))3, the equilibrium configuration of the elastic
body-plate structure Ω is governed by the following problem (cf. [11, 16, 27]):

Find u := (uα,uβ) ∈ V such that

(2) D(u,v) = F (v) ∀ v ∈ V .

Here,

V :=
{
v = (vα,vβ); vα ∈ (H1(α))3,vβ ∈ (H1

0 (β))
2 ×H2

0 (β), v satisfies (1)
}
;

for v = (vα,vβ) ∈ V ,

F (v) := Fα(vα) + F β(vβ),

Fα(vα) :=

∫

α

fα · vαdα, F β(vβ) :=

∫

β

fβ · vβdβ;

for w = (wα,wβ) ∈ V ,

D(v,w) := Dα(v,w) +Dβ(v,w),

(3) Dα(v,w) :=

∫

α

σα
ij(v)ε

α
ij(w)dα,

(4) εαij(v) := (∂iv
α
j + ∂jv

α
i )/2, ∂iv

α
j := ∂vαj /∂xi,

(5) σα
ij(v) :=

Eα

1 + να
εαij(v) +

Eανα
(1 + να)(1 − 2να)

(εαll(v))δij , 1 ≤ i, j, l ≤ 3,

Dβ(v,w) :=

∫

β

Qβ
IJ (v)ε

β
IJ(w)dβ +

∫

β

Mβ
IJ(v)Kβ

IJ (w)dβ,

εβIJ(v) := (∂Iv
β
J + ∂Jv

β
I )/2, ∂Iv

β
J :=

∂vβJ
∂xI

,

Qβ
IJ (v) :=

Eβtβ
1− ν2β

((1− νβ)ε
β
IJ(v) + νβ(ε

β
LL(v))δIJ ), 1 ≤ I, J, L ≤ 2,
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Kβ
IJ(v) := −∂IJvβ3 = − ∂2vβ3

∂xI∂xJ
,

Mβ
IJ(v) :=

Eβt
3
β

12(1− ν2β)
((1− νβ)Kβ

IJ (v) + νβ(Kβ
LL(v))δIJ ).(6)

In addition, Eω > 0 and νω ∈ (0, 1/2) denote Young’s modulus and Poisson’s ratio
of the elastic member ω = α, β, respectively; tβ is the thickness of plate β; δij and
δIJ stand for the usual Kronecker delta.

The unique solvability of the problem (2) was proved in [16], and if the solution
u satisfies the regularity conditions:

(7) uα ∈ (H2(α))3,uβ ∈ (H2(β))2 ×H3(β),

then we further have the following equilibrium equations (cf. [16]):

−σα
ij,j(u) = fα

i in α,

σα
ij,j(u)n

α
j ei = 0 on ∂α \ βb,

−Qβ
IJ,J(u)eI −Mβ

IJ,IJ(u)e3 = fβ in β \ βb,
σα
ij,j(u)n

α
j ei −Qβ

IJ,J(u)eI −Mβ
IJ,IJ(u)e3 = fβb in βb.

From the above equations we know that the elastic body-plate problem is a
heterogeneous model, i.e., different PDEs are imposed in different regions.

Now, let us recall the P1-NZT element method for problem (2), proposed in [6].
Let {T α

h }h>0 be a regular family of triangulations of α into open tetrahedrons K,

with h the mesh size of T α
h . Let {T β

h } be a regular family of triangulations of β
into open triangles τ . We then obtain a family of total partitions of Ω,

T Ω
h :=

{
T α
h , T β

h

}
.

For ease of exposition, assume that finite element triangulations over α and β have
the same size h, and they are matching across the interface βb.

Denote by V 1
h (α) (resp. V 1

h (β)) the space of all piecewise linear continuous

functions associated with the triangulation T α
h (resp. T β

h ). Let V NZT
h (β) be the

new Zienkiewicz-type (NZT) finite element space associated with the triangulation

T β
h (cf. [28]). That means, for each τ ∈ T β

h , the local shape function space related

to V NZT
h (β) is

PNZT
τ = P2(τ) + span{qij ; 1 ≤ i < j ≤ 3},

where

qij = λ2iλj − λiλ
2
j +

(
2(λi − λj) + 3

(∇λi −∇λj)⊤∇λk
‖∇λk‖2

(2λk − 1)

)
λ1λ2λ3,

with {λi}3i=1 being the barycentric coordinates of the triangle τ and ‖ · ‖ the length
of a vector. The corresponding nodal variables are given by

Στ := {v(pτi ), ∂1v(pτi ), ∂2v(pτi ), 1 ≤ i ≤ 3},
where {pτi }3i=1 are three vertices of the triangle τ , respectively. In what follows, p
with or without index always stands for a node of some finite element triangulation.

Introduce the following finite element spaces:

W h(α) := (V 1
h (α))

3;

W h(β) := (V 1
0h(β))

2 × V NZT
0h (β),

where
V 1
0h(β) := {vh ∈ V 1

h (β); vh(p) = 0 ∀ p ∈ γ0} ,
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V NZT
0h (β) := {vh ∈ V NZT

h (β); vh(p) = ∂1vh(p) = ∂2vh(p) = 0 ∀ p ∈ γ0}.
The discrete rigid junction related to (1) is given by

(8) vαi (p) = vβi (p) ∀ p ∈ βb, 1 ≤ i ≤ 3,

from which we can construct a total finite element space by

V h :=
{
vh ∈ W h(α)×W h(β), vh satisfies (8)

}
.

Then the P1-NZT element method for problem (2) reads as follows:
Find uh ∈ V h such that

(9) Dh(uh,vh) = F (vh) ∀ vh ∈ V h,

where

Dh(uh,vh) := Dα
h (uh,vh) +Dβ

h(uh,vh),(10)

Dα
h (uh,vh) :=

∑

K∈T α
h

∫

K

σα
ij(uh)ε

α
ij(vh)dK,

Dβ
h(uh,vh) :=

∑

τ∈T β

h

∫

τ

Qβ
IJ(uh)ε

β
IJ(vh)dτ + Zβ

h (uh,vh),

Zβ
h (uh,vh) :=

∑

τ∈T β

h

∫

τ

Mβ
IJ(uh)Kβ

IJ (vh)dτ.

As shown in [6], there exists a unique solution uh to the problem (9), and the
error u− uh in the discrete energy norm is of the size O(h) provided the regularity
assumption (7) holds. In what follows, we intend to propose certain nonoverlapping
DDM for solving problem (9) and then develop its convergence rate analysis.

3. A Clément-type interpolation operator with error estimates and a

spectral equivalence lemma

Define
V 1
h (α;βb) = {v ∈ V 1

h (α); v(p) = 0 ∀ p ∈ βb}.
We have the following result corresponding to the body problem, which is known
as the discrete extension theorem in the context of domain decomposition methods
(cf. [21, 25, 29]).

Lemma 3.1. For any vector-valued function v ∈ (V 1
h (α))

3 satisfying

Dα
h (v,w) = 0 ∀ w ∈ (V 1

h (α;βb))
3,

there holds

Dα
h (v,v) . ‖v‖21/2,βb

.

Proof. We first introduce an auxiliary problem by finding u ∈ (H1(α))3 such that
{

u = v on βb,
D(u,w) = 0 ∀ w ∈ (H1(α;βb))

3.

Then, according to the regularity theory of elliptic equations in non-smooth domains
(cf. [13]), it follows that

(11) ‖u‖1,α . ‖v‖1/2,βb
.

On the other hand, by the minimum energy principle,

(12) Dα
h (v,v) ≤ Dα

h (w,w)
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for all w ∈ (V 1
h (α))

3 with w = v on βb. Let Q
α
h be the weak interpolation operator

keeping traces of functions on βb (cf. [23]). Then, recalling the definitions (3)-(5),
we have by the Cauchy-Schwarz inequality that

(13) Dα
h (Q

α
hu,Q

α
hu) = Dα(Qα

hu,Q
α
hu) . ‖Qα

hu‖21,α.
Therefore, choosing w = Qα

hu in the estimate (12), and using (11), (13) and the
stability estimates for Qα

h , we find

Dα
h (v,v) ≤ Dα

h (Q
α
hu,Q

α
hu) . ‖Qα

hu‖21,α . ‖u‖21,α . ‖v‖21/2,βb
,

as required. �

Now, we introduce some notations for later uses. Let G be any open subset of

β, which is aligned with the triangulation T β
h . Write T G

h and V NZT
h (G) as the

restriction of T β
h and V NZT

h (β) to G, respectively. It is mentioned that the same

convention also applies to other finite element spaces. If v is a piecewise Hk-smooth
function with respect to the triangulation T G

h , define

‖v‖k,h,G =

{ ∑

τ∈T G
h

‖v‖2k,τ
}1/2

, |v|k,h,G =

{ ∑

τ∈T G
h

|v|2k,τ
}1/2

.

The next result follows readily from the technique in [5] for deriving the discrete
Poincaré-Friedrichs inequality for piecewise Sobolev functions.

Lemma 3.2. There holds

‖v‖2,h,β . |v|2,h,β ∀ v ∈ V NZT
0h (β).

Let βc := β\β̄b. Now, let us construct a Clément-type interpolation operator Πβc

h

from H2(βc) into V
NZT
h (βc) and then establish the corresponding error estimates

(cf. [9]). It is emphasized that all the results can be extended to any subset G of

β, which is aligned with the triangulation T β
h .

For any subset G ⊂ βc, define

△βc

G = {(∪τ̄)0; τ ∈ T βc

h , τ̄ ∩ Ḡ 6= ∅}.
For p ∈ T βc

h , △βc
p is exactly the macro-element consisting of all triangles in T βc

h

that share the node p. It was shown in [2, 9] that there exist positive constants
{Ai}4i=1 which rely only on the parameter describing the shape-regularity of the

triangulation T βc

h (cf. [5, 7]), such that

(1) for all p ∈ T βc

h , the number of triangles contained in △βc
p is no more than

A1;

(2) for all p ∈ T βc

h ,

∀ τ ⊂ △βc

p , A2hτ ≤ h△βc
p

≤ A3hτ ,

where, for an open set G, hG denotes the diameter of G;

(3) for all τ ⊂ T βc

h , the number of macro-elements that contain τ is no more
than A4.

For all p ∈ T βc

h , let Qp,βc

h be the L2(△βc
p )-orthogonal projection operator from

L2(△βc
p ) onto P1(△βc

p ), which admits the following error estimates (cf. [9]).

(14)

2∑

k=0

hk
△βc

p
|v −Qp,βc

h v|k,△βc
p

. h2
△βc

p
|v|

2,△βc
p

∀ v ∈ H2(△βc

p ).



92 J. HUANG AND X. HUANG

Moreover, let ψp, ψp,1, ψp,2 be the nodal basis functions in V NZT
h (βc) associated

with the nodal variables v(p), ∂1v(p), and ∂2v(p), respectively. Then our Clément-

type interpolation operator Πβc

h is defined by

(15) Πβc

h v =
∑

p∈T βc
h

(
(Qp,βc

h v)(p)ψp + ∂1(Q
p,βc

h v)(p)ψp,1 + ∂2(Q
p,βc

h v)(p)ψp,2

)
.

Lemma 3.3. Let Πβc

h be the Clément-type interpolation operator defined by (15).

Then for all τ ∈ T βc

h , there holds

(16)

2∑

k=0

hkτ |v −Πβc

h v|k,τ . h2τ |v|2,△βc
τ

∀ v ∈ H2(△βc

τ ).

Proof. Let P τ be the L2(τ)-orthogonal projection from L2(τ) onto P1(τ). It is
well-known that

(17)

2∑

k=0

hkτ |v − P τv|k,τ . h2τ |v|2,τ ∀ v ∈ H2(τ).

By the scaling argument we know, if p is a vertex of the triangle τ, then

(18) |ψp|k,τ . h1−k
τ , |ψp,I |k,τ . h2−k

τ , 0 ≤ k ≤ 2, 1 ≤ I ≤ 2.

On the other hand, we have from (15) that

P τv −Πβc

h v

=
∑

p∈τ

(
(P τv −Qp,βc

h v)(p)ψp + ∂1(P
τv −Qp,βc

h v)(p)ψp,1 + ∂2(P
τv −Qp,βc

h v)(p)ψp,2

)
.

Here and in what follows, for a given set G, p ∈ G means that p ∈ Ḡ and it is a

vertex of a triangle in T β
h as well. Therefore, from (14), (17)-(18), the local inverse

inequality for finite elements and the properties for macro-elements given before,
we arrive at

|P τv −Πβc

h v|k,τ ≤
∑

p∈τ

(
|(P τv −Qp,βc

h v)(p)||ψp|k,τ + |∂1(P τv −Qp,βc

h v)(p)||ψp,1|k,τ

+ |∂2(P τv −Qp,βc

h v)(p)||ψp,2|k,τ
)

.h−1
τ

(
‖P τv −Qp,βc

h v‖0,τh1−k
τ + h2−k

τ |P τv −Qp,βc

h v|1,τ
)

.h−k
τ (‖v − P τv‖0,τ + ‖v −Qp,βc

h v‖0,τ ) + h1−k
τ (|v − P τv|1,τ

+ |v −Qp,βc

h v|1,τ )
.h2−k

τ |v|
2,△βc

p
. h2−k

τ |v|
2,△βc

τ
,

which, in conjunction with (17), gives (16) readily. �

Denote by V B
h (βb) the Bell element space with respect to the triangulation T βb

h

(cf. [4, 5, 7]). That means, for each τ ∈ T βb

h with three vertices {pτi }3i=1, the local
shape function space is

Pτ := {v ∈ P5(τ); ∂nτ v
∣∣
F τ ∈ P3(F

τ ) ∀F τ ⊂ ∂τ},
where nτ stands for the unit outward normal to τ and F τ is an edge of τ ; the nodal
variables are given by

Στ := {v(pτi ), ∂1v(pτi ), ∂2v(pτi ), ∂11v(pτi ), ∂12v(pτi ), ∂22v(pτi ), 1 ≤ i ≤ 3}.
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We next introduce a connection operator Eβb

h from V NZT
h (βb) into the Bell con-

forming element space V B
h (βb) as follows. For all v ∈ V NZT

h (βb), E
βb

h v is uniquely
determined by the conditions:

(19)






(Eβb

h v)(p) = v(p) ∀ p ∈ βb,

(∂IE
βb

h v)(p) = (∂Iv)(p) ∀ p ∈ βb, 1 ≤ I ≤ 2,

(∂IJE
βb

h v)(p) = 0 ∀ p ∈ βb, 1 ≤ I, J ≤ 2,

(∂nτEβb

h v)
∣∣
F τ ∈ P3(F

τ ) ∀ F τ ⊂ τ ∈ T βb

h .

Employing the technique for proving Lemma 5.1 in [4], we can derive the follow-
ing result.

Lemma 3.4. For the connection operator Eβb

h defined by (19),

(20) ‖Eβb

h v‖2,h,βb
. ‖v‖2,h,βb

∀ v ∈ V NZT
h (βb).

For any function v ∈ V NZT
h (βb), we can extend it as a unique function v̂ ∈

V NZT
0h (β) such that

{
v̂(p) = v(p), ∂I v̂(p) = ∂Iv(p) ∀ p ∈ γ1, I = 1, 2,

Zβc

h (v̂, w) = 0 ∀ w ∈ V NZT
h (βc; γ2),

where γ1 := ∂βb, γ2 := γ0 ∪ γ1,
V NZT
h (βc; γ2) := {vh ∈ V NZT

h (βc); vh(p) = ∂1vh(p) = ∂2vh(p) = 0 ∀ p ∈ γ2},
and for any open subset G of β which is aligned with the triangulation T β

h ,

ZG
h (v, w) :=

∑

τ∈T G
h

∫

τ

Mβ
IJ(v)K

β
IJ (w)dτ.

It should be emphasized that only the third component of a vector-valued function
v is used in the definitions of MIJ(v) and KIJ(v) (cf. (6)). So we simply write
them as MIJ(v) and KIJ (v), with v denoting the third component of v, where
there is no confusion caused.

Lemma 3.5. There exist two positive constants C1 and C2, independent of the
finite element mesh size h, such that the following results hold.

C1‖v‖22,h,βb
≤ Zβ

h (v̂, v̂) ≤ C2‖v‖22,h,βb
∀ v ∈ V NZT

h (βb).

Proof. Observe that there exist two positive constants B1 and B2, which depend
only on the physical parameters of plate β, such that (cf. [4])

(21) B1|w|22,h,G ≤ ZG
h (w,w) ≤ B2|w|22,h,G ∀w ∈ V NZT

h (G),

for any open subset G of β, which is aligned with T β
h . Hence, it suffices for us to

verify the following results

(22) C1‖v‖22,h,βb
≤ |v̂|22,h,β ≤ C2‖v‖22,h,βb

.

The left side inequality comes readily from Lemma 3.2. It is rather involved to
achieve the right side inequality of (22). At first, by the minimum energy principle
and (21), we know vc := v̂|βc

satisfies that

(23) |vc|22,h,βc
. Zβc

h (vc, vc) ≤ Zβc

h (wc, wc) . |wc|22,h,βc
,

for all wc ∈ V NZT
h (βc) with

wc(p) = v(p), ∂I(wc)(p) = (∂Iv)(p) ∀ p ∈ γ1, 1 ≤ I ≤ 2,

wc(p) = 0, ∂I(wc)(p) = 0 ∀ p ∈ γ0, 1 ≤ I ≤ 2.
(24)
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Recalling the definition of Eβb

h (cf. (19)), we know Eβb

h v ∈ H2(βb) and

(Eβb

h v)(p) = v(p), ∂I(E
βb

h v)(p) = (∂Iv)(p) ∀ p ∈ γ1, 1 ≤ I ≤ 2.

Then, using the extension theorem for Sobolev spaces (cf. [24]) and the technique

of cut-off functions (cf. [1]), there exists an extension operator Ẽ from H2(βb) into
H2

0 (β) such that

(25) ‖Ẽw‖2,β . ‖w‖2,βb
∀w ∈ H2(βb),

where the generic constant depends only on the geometric nature of βb and β.

Now, let w̄c be the restriction of Ẽ(Eβb

h v) to βc. It is easy to check that w̄c is
in H2(βc) and satisfies the conditions (24). We next construct a function wc in
V NZT
h (βc) based on w̄c as follows. If p ∈ γ2,

wc(p) := w̄c(p), (∂Iwc)(p) := (∂I w̄c)(p), 1 ≤ I ≤ 2;

if p ∈ βc\γ2,
wc(p) := (Πβc

h w̄c)(p), (∂Iwc)(p) := (∂I(Π
βc

h w̄c))(p), 1 ≤ I ≤ 2,

where Πβc

h is the Clément-type interpolation operator defined by (15).
We can write the finite element function wc via the nodal basis functions in the

form

wc =
∑

p∈γ2

(
w̄c(p)ψp + (∂Iw̄c)(p)ψp,I

)

+
∑

p∈βc\γ2

(
(Πβc

h w̄c)(p)ψp + (∂I(Π
βc

h w̄c)(p)ψp,I

)
,

which implies that

wc = Πβc

h w̄c +
∑

p∈γ2

(
w̄c(p)− (Πβc

h w̄c)(p)
)
ψp +

∑

p∈γ2

(
(∂I w̄c)(p)− ∂I(Π

βc

h w̄c)(p)
)
ψp,I .

Hence, using error estimate for the interpolation operator Πβc

h (cf. (16)), the es-
timate (18), the local inverse inequality for finite elements and the property of
macro-elements shown before, we see that

|wc|22,h,βc
.|Πβc

h w̄c|22,h,βc
+

∑

p∈γ2

∣∣w̄c(p)− (Πβc

h w̄c)(p)
∣∣2|ψp|22,βc

+
∑

p∈γ2

∣∣(∂Iw̄c)(p)− ∂I(Π
βc

h w̄c)(p)
∣∣2|ψp,I |22,βc

.|w̄c|22,βc
+

∑

τ∈T βc
h

|w̄c −Πβc

h w̄c|20,∞,τh
−2
τ +

∑

τ∈T βc
h

|w̄c −Πβc

h w̄c|21,∞,τ

.|w̄c|22,βc
+

∑

τ∈T βc
h

|w̄c −Πβc

h w̄c|20,τh−4
τ +

∑

τ∈T βc
h

|w̄c −Πβc

h w̄c|21,τh−2
τ

.|w̄c|22,βc
+

∑

τ∈T βc
h

|w̄c|22,△τ
p
. |w̄c|22,βc

,

from which, (20) and (25) we are led to

|wc|2,h,βc
. |w̄c|2,βc

= |Ẽ(Eβb

h v)|2,βc
≤ ‖Ẽ(Eβb

h v)‖2,βc
. ‖Eβb

h v‖2,βb
. ‖v‖2,h,βb

.

Furthermore, it is easy to check that wc is in V NZT
h (βc) and satisfies the condi-

tions (24), so the last estimate and (23) together allows

|v̂|22,h,β = |vc|22,h,βc
+ |v|22,h,βb

. |wc|22,h,βc
+ |v|22,h,βb

. ‖v‖22,h,βb
,
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leading to the right side inequality of (22). The proof is complete. �

Remark 3.1. It is easy to check that even for any function v ∈ V NZT
0h (β), there

holds

‖v‖22,h,βb
≤ CZβ

h (v, v),

which is a direct consequence of Lemma 3.2.

Remark 3.2. Lemma 3.5 can be viewed as a spectral equivalence lemma corre-
sponding to the finite element space V NZT

0h (β). As shown in [20, 21], such kind of
results play important roles in convergence rate analysis of nonoverlapping DDMs
and are usually derived by the discrete extension theorems under some additional
conditions over triangulations. Here, we derive the above lemma in view of the
extension theorem for Sobolev spaces, avoiding the use of the so-called discrete ex-
tension theorem. So, it holds even for a regular family of triangulations.

4. A nonoverlapping DDM and convergence rate analysis

Similar to the second algorithm in [15], we can construct a nonoverlapping do-
main decomposition method for solving problem (9), described as follows.

Algorithm 1 The Body-Plate Alternating Method.

Let λ0
h ∈ (V 1

h (βb))
2 × V NZT

h (βb) be any given vector-valued function, and
θ ∈ (0, 1) a fixed parameter. Set n = 0.

Step 1. Sequentially solve the problems

(26)






u
α,n+1
h ∈ (V 1

h (α))
3,

u
α,n+1
h (p) = λn

h(p) ∀ p ∈ βb,

Dα
h (u

α,n+1
h ,vα

h) = Fα(vα
h) ∀ vα

h ∈ (V 1
h (α;βb))

3

and

(27)

{
u
β,n+1
h ∈ (V 1

0h(β))
2 × V NZT

0h (β),

Dβ
h(u

β,n+1
h ,vβ

h) = F β(vβ
h) + [Fα(vα

h)−Dα
h (u

α,n+1
h ,vα

h)],

where v
β
h ∈ (V 1

0h(β)
2 × V NZT

0h (β) and vα
h ∈ (V 1

h (α))
3 satisfy vα

h(p) = v
β
h(p)

∀ p ∈ βb.
Step 2. Let

(28) λn+1
h = θλn

h + (1− θ)uβ,n+1
h |βb

.

Step 3. Set n := n+ 1. Goto Step 1 and repeat the above iteration until
convergence.

Remark 4.1. The above algorithm can be naturally extended to deal with the nu-
merical solution of more complicated elastic multi-structure problems as given in
[16, 17]. However, it is a very difficult issue to develop the convergence rate analy-
sis in this case. It is our forthcoming work to attack this difficulty.

Let µn
h := λn

h −u
β
h|βb

, δα,n
h := u

α,n
h −uα

h and δ
β,n
h := u

β,n
h −u

β
h. From (9)-(10),

and (26)-(28), we find that δα,nh and δ
β,n
h must satisfy the following conditions

(29)






δ
α,n+1
h ∈ (V 1

h (α))
3,

δ
α,n+1
h (p) = µn

h(p) ∀ p ∈ βb,

Dα
h (δ

α,n+1
h ,vα

h) = 0 ∀ vα
h ∈ (V 1

h (α;βb))
3,
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(30)

{
δ
β,n+1
h ∈ (V 1

0h(β))
2 × V NZT

0h (β),

Dβ
h(δ

β,n+1
h ,vβ

h) +Dα
h (δ

α,n+1
h ,vα

h) = 0,

(31) µ̃
n+1
h = θµ̃n

h + (1− θ)δβ,n+1
h .

where vα
h and v

β
h are defined as in (27), and µ̃

n
h denotes the extension of the vector-

valued function µn
h on βb such that

{
µ̃
n
h(p) = µn

h(p), ∂I µ̃
n
3,h(p) = ∂Iµ

n
3,h(p), I = 1, 2, ∀ p ∈ βb,

Dβc

h (µ̃n
h,v

βc

h ) = 0 ∀ v
βc

h ∈ (V 1
h (βc; γ2))

2 × V NZT
h (βc; γ2),

where

V 1
h (βc; γ2) := {vh ∈ V 1

h (βc); vh(p) = 0 ∀ p ∈ γ2},
and V NZT

h (βc; γ2) is defined as in the last section.
To establish convergence analysis for the above method, we require the next two

lemmas. The first lemma can be derived following the proof of Lemma 4 in [15],
combined with Lemmas 3.1 and 3.5 developed in Section 3. The second lemma is
a consequence of the first one (cf. Lemma 4.1). We omit the details for simplicity.

Lemma 4.1. There exists a positive constants C∗, independent of the finite element
mesh size h, such that, for any vector-valued function vβ ∈ (V 1

0h(β))
2 × V NZT

0h (β)
we have

Dα
h (v

β
α,v

β
α) ≤ C∗Dβ

h(v
β,vβ),

where vβ
α ∈ (V 1

h (α))
3 is uniquely determined by the conditions
{

vβ
α(p) = vβ(p) ∀ p ∈ βb,
Dα

h (v
β
α,w) = 0 ∀ w ∈ (V 1

h (α;βb))
3.

Lemma 4.2. For any vector-valued function vα ∈ (V 1
h (α))

3 and vβ ∈ (V 1
0h(β))

2 ×
V NZT
0h (β) which satisfy the conditions

{
Dα

h (v
α,w) = 0 ∀ w ∈ (V 1

h (α, βb))
3,

Dα
h (v

α, [w]α) +Dβ
h(v

β ,w) = 0 ∀ w ∈ (V 1
0h(β))

2 × V NZT
0h (β),

we have the estimate

Dβ
h(v

β ,vβ) ≤ C∗Dα
h (v

α,vα),

where C∗ is given as in Lemma 4.1.

We are now ready to state and prove the main theorem in this article.

Theorem 4.1. There exists a fixed parameter θ∗ ∈ (0, 1), independent of the finite
element mesh size h, such that, if θ∗ ≤ θ < 1, we have the following estimates for
the Body-Plate Alternating Method (cf. Algorithm 1):

(32)
‖µn

h‖h ≤ Cρ(θ)n‖µ0
h‖h,

Dα
h (δ

α,n
h , δα,n

h ) +Dβ
h(δ

β,n
h , δβ,nh ) ≤ Cρ(θ)2n‖µ0

h‖2h.

Here the explicit form of ρ(θ) and θ∗ are given in the proof below and ρ(θ∗) =
√
θ∗,

and for v ∈ (V 1
h (βb))

2 × V NZT
h (βb),

‖v‖h :=

( 2∑

i=1

‖vi‖21,βb
+ ‖v3‖22,h,βb

)1/2

.



A NONOVERLAPPING DDM FOR ELASTIC BODY-PLATE PROBLEMS 97

Proof. We proceed by similar arguments for proving Theorem 2 in [15]. In fact,
from (29),

δ
α,n+1
h (p) = µn

h(p) ∀ p ∈ βb,

so we can choose v
β
h = µ̃

n
h, v

α
h = δ

α,n+1
h in (30) to get

(33) Dβ
h(µ̃

n
h , δ

β,n+1
h ) = −Dα

h(δ
α,n+1
h , δα,n+1

h ) ≤ 0.

Since δβ,n+1
h and δ

α,n+1
h satisfy (29) and (30), an application of Lemma 4.2 implies

(34) Dβ
h(δ

β,n+1
h , δβ,n+1

h ) ≤ C∗Dα
h (δ

α,n+1
h , δα,n+1

h )

with the constant C∗ the same as in Lemma 4.1. Using (33)-(34) and the Cauchy-
Schwarz inequality, we find

Dα
h (δ

α,n+1
h , δα,n+1

h ) ≤
(
Dβ

h(µ̃
n
h, µ̃

n
h)

)1/2(
Dβ

h(δ
β,n+1
h , δβ,n+1

h )

)1/2

≤
√
C∗

(
Dβ

h(µ̃
n
h, µ̃

n
h)

)1/2(
Dα

h (δ
α,n+1
h , δα,n+1

h )

)1/2

,

and with (34) we further have

Dβ
h(δ

β,n+1
h , δβ,n+1

h ) ≤ C∗Dα
h (δ

α,n+1
h , δα,n+1

h ) ≤ C∗2Dβ
h(µ̃

n
h, µ̃

n
h).

On the other hand, from (31), (33) and the last estimate it follows that

Dβ
h(µ̃

n+1
h , µ̃n+1

h ) ≤ θ2Dβ
h(µ̃

n
h, µ̃

n
h) + (1− θ)2Dβ

h(δ
β,n+1
h , δβ,n+1

h )

≤ [θ2 + C∗2(1− θ)2]Dβ
h(µ̃

n
h, µ̃

n
h) = ρ(θ)2Dβ

h(µ̃
n
h, µ̃

n
h),

where ρ(θ) := [θ2+C∗2(1−θ)2]1/2, which takes its minimum at θ∗ = C∗2/(1+C∗2) ∈
(0, 1) with ρ(θ∗) =

√
θ∗. Moreover, 0 < ρ(θ) < 1 whenever θ∗ ≤ θ < 1. Therefore,

(35) Dβ
h(µ̃

n
h , µ̃

n
h) ≤ ρ(θ)2nDβ

h(µ̃
0
h, µ̃

0
h).

Arguing as in the proof of Lemma 3.5, we know

‖µn
h‖2h . Dβ

h(µ̃
n
h, µ̃

n
h) . ‖µn

h‖2h,
which with (35) implies

(36) ‖µn
h‖h ≤ Cρ(θ)n‖µ0

h‖h.
The second inequality in (32) follows readily from (34), (36) and Lemma 4.2. �

5. Numerical examples

Consider an elastic body member α := (−1/2, 1/2)2× (0, 1) and an elastic plate
member β := (−1, 1)2 × {0}. They are rigidly connected along the interface βb :=
(−1/2, 1/2)2 × {0} to form an elastic body-plate structure Ω.

Let the displacement field uα := uαi ei on α and the displacement field uβ := uβi ei
on β be given respectively by





uα1 := (1 − x21)(1 − x22)(1− 4x21)
2(1− 4x22)

2(1− x3)
2,

uα2 := (1 − x21)(1 − x22)(1− 4x21)
2(1− 4x22)

2(1− x3)
2,

uα3 := (1 − x21)
2(1− x22)

2(1 − 4x21)
2(1 − 4x22)

2(1 − x3)
2,

where −1/2 < x1, x2 < 1/2 and 0 < x3 < 1,




uβ1 := (1− x21)(1− x22)(1 − 4x21)
2(1 − 4x22)

2,

uβ2 := (1− x21)(1− x22)(1 − 4x21)
2(1 − 4x22)

2,

uβ3 := (1− x21)
2(1 − x22)

2(1− 4x21)
2(1− 4x22)

2,
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Figure 2. The triangulation T Ω
h for the body-plate problem.

Table 1. The related energy errors vs h for the first example when
θ = 0.75.

h DOF Rn,h n

1/4 780 9.7597E-07 55

1/8 3632 7.4515E-07 31

1/16 20184 8.1101E-07 32

1/32 128936 9.4642E-07 32

where −1 < x1, x2 < 1. Since u is available, fα and fβ can be computed explicitly
by equilibrium equations.

As shown in Fig. 2, introduce a family of triangulations for the body-plate
structure, whose mesh size is denoted by h. Concretely speaking, we partition β
into (2N)2 equal squares with the length h = 1/N, and then divide each square

into two triangles in the same direction, so that we get the triangulation T β
h . The

triangulation T α
h is obtained similarly. We use the cubature over tetrahedrons

proposed in [10] for assembling stiffness matrix on the body and the PCG with
classic AMG preconditioners (cf. [3, 22]) for solving the discrete problems (26) and
(27). The algorithm terminates with the error criterion Rn,h < 10−6, and all the
initial functions are taken as zero functions.

Define the energy error and the relative energy error at the n-th iteration step
by

En,h := (Dα
h (u

α,n
h − u

α
h ,u

α,n
h − u

α
h) +Dβ

h(u
β,n
h − u

β
h,u

β,n
h − u

β
h))

1/2,

Rn,h := En,h/(D
α
h (u

α
h ,u

α
h) +Dβ

h(u
β
h,u

β
h))

1/2.

In the first example, we assume the elastic body-plate structure is made of grey
cast iron. Thus, we choose Eα = 120, να = 0.25, Eβ = 120, νβ = 0.25, and
tβ = 0.2. The computational results of En,h and Rn,h with the parameter θ =
0.75 for different choices of h are given in Fig. 3 and Table 1, respectively. The
computational results of Rn,h with the parameter θ = 0.9 for different choices of h
are given in Table 2. From these data we see that the convergence rate of the method
is insensitive to the finite element mesh size, which coincides with our theoretical
estimate. When h = 1/16 and θ is taken as different values, the numerical results
for En,h and Rn,h are listed in Table 3, which indicate that the convergence rate is
greatly influenced by the choice of the parameter θ. As shown in [15], the desired
parameter θ can be obtained by the power method or by numerical experience to
avoid more computational cost.
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Figure 3. Variation of the energy error in ln scale vs the iteration
number for the first example when θ = 0.75.

Table 2. The related energy errors vs h for the first example when
θ = 0.9.

h DOF Rn,h n
1/4 780 9.8498E-07 78
1/8 3632 9.4591E-07 83
1/16 20184 9.8024E-07 86
1/32 128936 8.8077E-07 88

Table 3. The energy errors and related energy errors vs θ for the
first example when h = 1/16.

θ 0.7 0.75 0.8 0.85 0.9
n 63 32 41 56 86

En,h 4.0581E-05 3.6072E-05 4.9592E-05 4.1327E-05 4.3598E-05
Rn,h 9.1239E-07 8.1101E-07 8.5619E-07 9.2917E-07 9.8024E-07

Table 4. The related energy errors vs h for the second example
when θ = 0.9.

h DOF Rn,h n
1/4 780 9.3426E-07 86
1/8 3632 9.5565E-07 76
1/16 20184 9.2949E-07 81
1/32 128936 9.1357E-07 83

In the second example, we consider the case where the elastic material is made
of nickel-chromium steel. Thus, we choose Eα = 206, να = 0.3, Eβ = 206, νβ =
0.3, and tβ = 0.14. To simplify the presentation, we only list in Table 4 the
computational results of Rn,h for θ = 0.9 with different choices of h. We may
find again from these numerical results that the convergence rate of our domain
decomposition method is insensitive to the finite element mesh size. Furthermore,
comparing the numerical results in Tables 2 and 4, we may conclude that the
convergence rate of the method depends on the choice of physical parameters of the
underlying problem, but the influence is not very sensitive.
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In summary, all of the above numerical results have demonstrated that the Body-
Plate Alternating Method proposed here performs well in solving the general elastic
body-plate problem.
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