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Abstract. In this survey article, we present some recent results on the asymptotic behavior
of four systems of orthogonal polynomials. These are Stieltjes-Wigert, Hahn, Racah and pseudo-
Jacobi polynomials. In each case, the variable z is allowed to be in any part of the complex plane.
In some cases, asymptotic formulas are also given for their zeros.
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1. Introduction

Most of the asymptotic results of classical orthogonal polynomials (namely, Her-

mite Hn(z), Laguerre L
(α)
n (z), and Jacobi P

(α,β)
n (z)) can be found in the books of

Szegö [45] and Erdélyi et al. [15]. Some of the asymptotic results of a few familiar
discrete orthogonal polynomials (e.g., Charlier Cn(z; a), Meixner Mn(z;β, c), and
Krawtchouk Kn(z; p,N)) have been summarized in a survey article of Wong [56].
With the new developments in asymptotic methods based on the Riemann-Hilbert
approach [10, 11] and difference equations [48, 50, 51], asymptotic problems of some
orthogonal polynomials, which have been considered to be more difficult to tackle,
have also been resolved; for instance, discrete Chebyshev [33], Conrad-Flajolet [8],
polynomials orthogonal with respect to Freud weights [27, 57], and Tricomi-Carlitz
[30, 58]. The reasons for the asymptotic problems of the last few mentioned or-
thogonal polynomials being more difficult are : (i) they do not satisfy second-order
linear ordinary differential equations, and (ii) they do not have integral representa-
tions to which one can apply the classical methods of steepest descent or stationary
phase.

The purpose of this paper is to give a summary of asymptotic results obtained re-
cently for four systems of orthogonal polynomials; they are Stieltjes-Wigert Sn(z; q),
Hahn Qn(z;α, β,N), Racah Rn(λ(x);α, β, γ, δ), and pseudo-Jacobi Pn(z; a, b). The
problem of finding asymptotic formulas for Stieltjes-Wigert polynomials has been
around for some time. However, serious work began only at the beginning of this
century. These polynomials do not have integral representations, and neither do
they satisfy any second-order linear differential equation. Although they satisfy a
three-term recurrence relation [6, p.174], the coefficients of the recurrence relation
contain exponentially large terms of the form q−n, 0 < q < 1. As a consequence,
none of the existing methods for second-order difference equations can be applied.
The Hahn polynomial was first introduced by Chebyshev in 1858. Despite its long
history, there seems to be no literature on asymptotic results of this polynomial.
A difficulty in dealing with asymptotic problems of this polynomial is that it has
three free real parameters, whereas the other classical discrete orthogonal poly-
nomials involve only two or less free parameters. This remark also applies to the
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Racah polynomial, which has even one more free parameter. We pick Pseudo-Jacobi
polynomials as our last example for presentation, since it also has a long history
(over hundred years) and it is not well-known even to the researchers in the field
of orthogonal polynomials until just recently. Another reason is that this example
illustrates the asymptotic method developed for differential equations with a large
parameter [38, Chapter 11], which can be applied to many applied disciplines, and
deserves a larger audience.

2. Stieltjes-Wigert polynomials

Let k > 0 be a fixed number and

(1) q = exp{−(2k2)−1}.
Note that 0 < q < 1. The q-shifted factorial is given by

(a; q)0 = 1, (a; q)n =

n−1∏

j=0

(1 − aqj), n = 1, 2, · · · .

The Stieltjes-Wigert polynomials

(2) Sn(z; q) :=

n∑

j=0

qj
2

(q; q)j(q; q)n−j
(−z)j, n = 0, 1, 2, · · · ,

are orthogonal with respect to the weight function

(3) w(x) = kπ− 1
2 exp{−k2 log2 x}

for 0 < x < ∞; see [26, (3.27.1)] and [39, (18.27.18)]. It is known that these
polynomials belong to the indeterminate moment class and the weight function in
(3) is not unique; see [7]. By changing the index j to n−j in the explicit expression
given in (2), one can easily verify the symmetry relation

(4) Sn(z; q) = (−zqn)nSn

(
1

zq2n
; q

)
.

In some literatures, the variable z in (2) is replaced by q
1
2 z; see, for instance, [6], [45]

and [52]. The notation for the Stieltjes-Wigert polynomials used in these literatures
is

(5) pn(z) = (−1)nqn/2+1/4
√
(q; q)nSn(q

1
2 z; q).

These polynomials arise in random walks and random matrix formulation of Chern-
Simons theory on Seifert manifolds; see [4, 12].

The asymptotics of the Stieltjes-Wigert polynomials, as the degree tends to
infinity, has been studied by several authors. First, Wigert [53] in 1923 proved that
the polynomials have the limiting behavior

(6) lim
n→∞

(−1)nq−n/2pn(z) =
q1/4√
(q; q)∞

∞∑

k=0

(−1)k
qk

2+k/2

(q; q)k
zk,

which can be put in terms of the q-Airy function (also known as the Ramanujan
function)

(7) Aq(z) =
∞∑

k=0

qk
2

(q; q)k
(−z)k.
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In terms of this function, Wigert’s result can be stated as

(8) lim
n→∞

Sn(z; q) =
1

(q; q)∞
Aq(z).

It has been shown in [52] that for large values of n, all zeros of Sn(z; q) lie in the
interval (14 , 4q

−2n). Thus, it is natural to introduce a new scale

(9) z = uq−tn

with u ∈ C\{0} and t ∈ R. The values of t = 0 and t = 2 can be regarded as the
turning points of Sn(q

−ntu; q). In view of the symmetry relation in (4), one may
restrict oneself to the case t > 1; see [47, (1.4)]. (However, we shall not make this
restriction in our discussion here.) The case t = 2 has been studied by Ismail [20],
and he proved that for t = 2

(10) lim
n→∞

qn
2(t−1)(−u)−nSn(uq

−nt; q) =
1

(q; q)∞
Aq

(
qn(t−2)

u

)

uniformly for u in compact subsets of C \ {0}; see [20, Theorem 2.5]. This result
can in fact be derived directly from Wigert’s formula in (8) by using the symmetry
relation mentioned in (4). In [21], Ismail and Zhang extended the validity of this
result to t > 2. For 1 6 t < 2, Ismail and Zhang [21] gave asymptotic formulas for
these polynomials in terms of the theta-type function (cf. also [17])

(11) Θq(z) =
∞∑

k=−∞

qk
2

zk,

but in a very complicated manner. Their result was then simplified by Wang and
Wong in [46]. For instance, when 1 6 t < 2, Wang and Wong proved that

Sn(uq
−nt; q) =

(−u)n−mqn
2(1−t)−m[n(2−t)−m]

(q; q)n(q; q)∞

×
{
Θq

(
q2m−n(2−t)

−u

)
+O(qn(l−δ))

}
,

(12)

where l = 1
2 (2 − t),m = ⌊nl⌋ and δ > 0 is any small number; see [46, Corollary 2].

However, none of these results is valid in a neighborhood of t = 2, one of the turning
points. To address this issue, Wang and Wong in a second paper [47] presented a
uniform asymptotic formula: for z := uq−nt with t > 2(1− δ), δ > 0, they showed
that

(13) Sn(z; q) =
(−z)nqn

2

(q; q)n
[Aq,n(q

−2n/z) + rn(z)],

where rn(z) is the remainder and Aq,n(z) is the q-Airy polynomial obtained by
truncating the infinite series in (7) at k = n, i.e.,

Aq,n(z) :=

n∑

k=0

qk
2

(q; q)k
(−z)k.

This result, however, is not totally satisfactory, since the q-Airy polynomial is not
a known special function and has not been well studied. (The situation is like

that with the exponential polynomial
n∑

k=0

zk/k! , which is not as well-known as the

exponential function ez itself.)
A more satisfactory solution was provided by Li and Wong [32] three years later.

Their result is stated below.
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THEOREM 2.1 Let z := uq−nt with −∞ < t < 2, u ∈ C and |u| 6 R, where
R > 0 is any fixed positive number. We have

(14) Sn(z; q) =
1

(q; q)n
[Aq(z) + rn(z)],

where the remainder satisfies

(15) |rn(z)| 6
[
qn(1−σ)

1− q
+

2

1− q

(
1

2

)⌊nσ⌋ ]
Aq(−|z|)

with σ = max{ 1
2 ,

1
2 + t

4}.
Let z := uq−nt with 0 < t < ∞, u ∈ C and |u| > 1/R, where R > 0 is any fixed

number. We have

(16) Sn(z; q) =
(−z)nqn

2

(q; q)n

[
Aq(q

−2n/z) + rn(z)

]
,

where the remainder satisfies

(17) |rn(z)| 6
[
qn(δ−1)

1− q
+

2

1− q

(
1

2

)⌊n(2−δ)⌋ ]
Aq(−q−2n/|z|)

with δ = min{ 3
2 , 1 +

t
4}.

Since the quantities inside the square brackets in (15) and (17) are exponentially
small, the two asymptotic formulas in (14) and (16) are quite satisfactory.

The above mentioned investigations all began with the explicit expression of
Sn(z; q) given in (2). In [52], Wang and Wong used a different method, namely,
the Riemann-Hilbert approach, to construct a uniform asymptotic expression of
the Stieltjes-Wigert polynomials pn(z) in terms of Airy functions. Unfortunately,
the main result in [52] is not quite correct; it requires an additional condition. The
additional condition is that the parameter k in (1) should depend on the degree n
and tend to infinity as n → ∞. More precisely, we need to impose the condition
that there are two constants c > 0 and σ > 0 such that

(18) lim
n→∞

k

nσ
= c;

see also Baik and Suidan [4]. For completeness, we state the amended result below.
First, we introduce some notations. Let γn denote the leading coefficient of

the polynomial pn(z) given in (5), and put πn(z) := pn(z)/γn. The Mhaskar-
Rakhmanov-Saff (MRS) numbers αn and βn for our present problem are given by

αn = 2e(n+1/2)/k2 − e(n+1/2)/2k2

− 2e(n+1/2)/2k2
√
e(n+1/2)/k2 − e(n+1/2)/2k2 ,

(19)

βn = 2e(n+1/2)/k2 − e(n+1/2)/2k2

+ 2e(n+1/2)/2k2
√
e(n+1/2)/k2 − e(n+1/2)/2k2 .

(20)

The probability density function supported on [αn, βn] is given by

µn(x) =
2k2

Nπx
arctan

√
(x− αn)(βn − x)

x+
√
αnβn

,

where N = n+ 1
2 . Note that µn(x) > 0 and

(21)

∫ βn

αn

µn(x)dx = 1.



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 197

The logarithmic potential of µn(x), i.e., the g-function is given by

(22) g(z) =

∫ βn

αn

log(z − s)µn(s)ds.

A closely related function is

φn(z) =
k2

N

∫ z

βn

1

ζ

{
2 log

[
ζ +

√
αnβn +

√
(ζ − αn)(ζ − βn)

]

− log
[
(
√
αn +

√
βn)

2ζ
]}

dζ

(23)

for z ∈ C \ (−∞, βn]; see [52, (3.30)-(3.31)]. The function

(24) ζn(z) :=
[3
2
φn(z)

]2/3

plays an important role in the theory of uniform asymptotic expansions. It arises
in the Liouville transformation for differential equations [38, p. 398], as well as in
the cubic transformation for integrals [55, p. 367]. Since (ζn)+(x) = (ζn)−(x) for
x ∈ (αn, βn), ζn(z) can be analytically continued to C \ (−∞, αn]. Finally, we
introduce the Lagrange constant

(25) ln = 2

(
n+

1

2

)
g(βn) + logw(βn)− log

βn − αn

4
.

Note that the g-function in (22) has been explicitly evaluated in [52]; see (23) above
and (3.7) and (3.37) in that paper.

THEOREM 2.2 With πn(z), ζn(z) and ln defined as above, we assume that the
condition in (18) holds. Then, we have

πn(z) =

√
πeln/2√
w(z)

{(
n+

1

2

)1/6

Ai

((
n+

1

2

)2/3

ζn

)
A(z, n)

−
(
n+

1

2

)−1/6

Ai′
((

n+
1

2

)2/3

ζn

)
B(z, n)

}
,

(26)

where A(z, n) and B(z, n) are analytic functions of z in C \ Sδ, Sδ = {z : 2π
3 6

arg(z−(αn+δ)) 6 4π
3 } and δ is any small positive number. Further, the asymptotic

expansions

(27) A(z, n) ∼ ζ
1/4
n (βn − αn)

1/2

[(z − αn)(z − βn)]1/4

[
1 +

∞∑

k=1

Ak(z)

nk

]
,

(28) B(z, n) ∼ [(z − αn)(z − βn)]
1/4

ζ
1/4
n (βn − αn)1/2

∞∑

k=1

Bk(z)

nk

hold uniformly, and the coefficient functions Ak(z) and Bk(z) are analytic functions
in C \ Sδ.

3. Hahn polynomials

The Hahn polynomials are explicitly given by

(29)

Qn(x;α, β,N) := 3F2(−n,−x, n+ α+ β + 1;−N,α+ 1; 1)

=

n∑

k=0

(−n)k(−x)k(n+ α+ β + 1)k
(−N)k(α+ 1)kk!

,
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where α, β > −1. These polynomials are orthogonal on the discrete set {0, 1, · · · , N}
with respect to the weight function

(30) ρ(x;α, β,N) =
(α+ 1)x

x!

(β + 1)N−x

(N − x)!
, x = 0, 1, · · · , N ;

that is,

(31)
N∑

k=0

Qn(k;α, β,N)Qm(k;α, β,N)ρ(k;α, β,N) = hN,nδn,m,

n,m = 0, 1, · · · , N, where

(32) hN,n =
(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
.

Formula (31) indicates that these polynomials are orthogonal on an interval
which is unbounded as n → ∞. To make the interval of orthogonality bounded, we
introduce a rescaling. Let XN denote the set defined by

(33) XN :=
{
xN,k

}N−1

k=0
, where xN,k :=

k + 1/2

N
.

The points xN,k are called nodes, and they all lie in the interval (0, 1). Furthermore,
we let

(34) PN,n(z) := Qn(Nz − 1

2
;α, β,N − 1)

and

(35) w(z) := N−α−βα!β!ρ(Nz − 1/2;α, β,N − 1).

It is readily verified that the polynomials PN,n(z) are orthogonal on the nodes xN,n

with respect to the weight wN,k := w(xN,k); i.e.,

(36)
N−1∑

k=0

PN,n(xN,k)PN,m(xN,k)wN,k = h∗
N,nδn,m,

where h∗
N,n = N−α−βα!β!hN−1,n.

In 1989, Sharapudinov [43] considered the asymptotic behavior of Qn(x;α, β,N)
when the degree becomes large. His result is an asymptotic formula forQn(x;α, β,N)

with n = O(N1/2) as n → ∞, which involves the Jacobi polynomial P
(β,α)
n (t), where

t is related to x via the formula x = (N − 1)(1 + t)/2. More recently, Baik et al
[3] used the Riemann-Hilbert method to investigate the asymptotics of discrete
orthogonal polynomials with respect to a general weight function. Their results
are very general, and it is difficult to use them to write out explicit formulas for
specific polynomials. With regard to Hahn polynomials, they only considered the
case of varying parameters, namely, α = NA and β = NB, where A and B are
fixed positive numbers. Furthermore, their results are more local in nature; that is,
one needs more asymptotic formulas to describe the behavior of these polynomials
in the whole complex plane.

By using a modified version of the Riemann-Hilbert method, Lin and Wong
[34] constructed globally uniform asymptotic formulas for the Hahn polynomials as
n → ∞. They considered the case when the parameters α and β are fixed and the
ratio n/N is a constant c ∈ (0, 1). To present their result, we need to recall some
terminologies used in the Riemann-Hilbert method, including equilibrium measure,
g-function, Lagrange constants, etc. In the existing literature, equilibrium mea-
sures are usually obtained by solving minimization problems of certain quadratic
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functions (see [3, 9]). In [34], the authors used a method introduced by Kuijlaars
and Van Assche [29]. To state their result, we let

(37) a :=
1

2
− 1

2

√
1− c2, b :=

1

2
+

1

2

√
1− c2,

where c := n/N . Define the function

(38) µ(x) =





2

πc
arcsin

( c

2
√
x− x2

)
, x ∈ (a, b),

1

c
, x ∈ [0, a] ∪ [b, 1].

and note that µ(x) > 0 and

(39)

∫ 1

0

µ(x)dx = 1;

that is, µ(x) is a probability density function. Also, note that

(40) a+ b = 1, a · b = c2/4.

The equilibrium measure associated with the Hahn polynomials is just the (indef-
inite) integral of µ(x). The g-function is the logarithmic potential of µ(x) defined
by

g(z) :=

∫ 1

0

log(z − s)µ(s)ds, z ∈ C \ (−∞, 1].(41)

An auxiliary function φ(z) is defined by

(42) φ(z) := l/2− g(z), z ∈ C \ (−∞, 1],

where l is the Lagrange constant given by

(43) l := 2

∫ 1

0

log |a− s| · µ(s)ds.

Moreover, we need a complex function ν(z) satisfying the requirement

(44) ν±(x) = ±πi

(
µ(x)− 1

c

)

for x ∈ (a, b), and the function is

(45) ν(z) :=
2

c
log
[
c/2−

√
(z − a)(z − b)

]
− 1

c
log(z − z2),

where
√
(z − a)(z − b) is analytic in C \ [a, b] and behaves like z as z → ∞, and

where log(z− z2) is an analytic function with branch cuts along (−∞, 0]∪ [1,+∞).
Now, we are ready to introduce the auxiliary function

(46) φ̃(z) :=

∫ z

a

ν(s)ds, z ∈ C \ (−∞, 0] ∪ [a,+∞),

where the path of integration from a to z lies entirely in the region z ∈ C\(−∞, 0]∪
[a,+∞), except for the initial point a. Similarly, we define

(47) φ∗(z) :=

∫ z

b

ν(s)ds, z ∈ C \ (−∞, b] ∪ [1,+∞),

where the path of integration from b to z lies entirely in the region z ∈ C\(−∞, b]∪
[1,+∞), except for the initial point b. The connection between the φ̃ - function (φ∗

- function) and the φ - function in (42) is given by the formulas
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(48) φ̃(z) = φ(z)± πi

(
1− 1

c
z

)

and

φ∗(z) = φ(z)± πi
1

c
(1− z)(49)

for z ∈ C±.

The two functions φ̃(z) and φ∗(z) defined above play an important role in the
construction of globally uniform asymptotic approximations given by Lin and Wong
[34], since the arguments of the leading terms in our two asymptotics expansions
are

f̃(z) =

(
−3

2
φ̃(z)

)2/3

,(50)

which is analytic in C \ (−∞, 0] ∪ [b,+∞), and

(51) f∗(z) =

(
−3

2
φ∗(z)

)2/3

,

which is analytic in C \ (−∞, a] ∪ [1,+∞).
Another important function used in our method is the D-function

(52) D(z) :=
eNzΓ(Nz + 1/2)√

2π(Nz)Nz
, z ∈ C \ (−∞, 0].

Two related functions are

(53) D∗(z) :=

√
2πeNz(−Nz)−Nz

Γ(−Nz + 1/2)
, z ∈ C \ [0,+∞),

and

D̃(z) :=

{
D∗(z), Re z < x0,
D∗(1 − z) Re z > x0,

(54)

where x0 is an arbitrary fixed point in the interval (a, b) and a, b are the numbers
defined in (37).

To state the result in [34], we need to first introduce two more functions:

(55)

m(z) :=
(z − a)1/2 + (z − b)1/2

2(z − a)1/4(z − b)1/4

(
z + c/2 + (z − a)1/2(z − b)1/2

2z

)α

×
(
1− z + c/2− (z − a)1/2(z − b)1/2

2(1− z)

)β

and

(56)

m∗(z) :=
(z − b)1/2 − (z − a)1/2

2(z − a)1/4(z − b)1/4

(
z + c/2− (z − a)1/2(z − b)1/2

2z

)α

×
(
1− z + c/2 + (z − a)1/2(z − b)1/2

2(1− z)

)β

.

Note that in view of (40), m(z) is analytical in C \ [a, b]. But, the function m∗(z)
has additional cuts (−∞, 0] and [1,+∞). Next, we divide the complex plane into
the three regions I, II and III as shown in Figure 1, where δ is any positive number
and x1 is an arbitrary fixed number in (0, a).
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Figure 1: The regions I, II, III.

Recall the polynomial PN,n(z) defined in (34), and note that the leading coeffi-
cient of this polynomial is

kN,n :=
Nn(n+ α+ β + 1)n
(α + 1)n(−N + 1)n

.(57)

Hence, the monic Hahn polynomials πN,n(z) are given

πN,n(z) =
1

kN,n
PN,n(z).(58)

Let Ω+ = {z ∈ C : 0 < Re z < 1 and 0 < Im z < δ} and Ω− = {z : z̄ ∈ Ω+}.

THEOREM 3.1. Let I, II and III be the regions shown in Figure 1, and let l
denote the Lagrange constant given in (43). With φ(z) and D̃(z) defined in (42)
and (53) − (54), respectively, the asymptotic formula of the polynomial πN,n(z) is
given by

πN,n(z) = enl/2
{
D̃(z)e−nφ(z)m(z)

[
1 +O

( 1
n

)]
+ δ(n)

}
(59)

for z ∈ I, where δ(n) = 0 for z ∈ I\Ω± and δ(n) is exponentially small in compari-
son with its leading term for z ∈ I∩Ω±. More precisely, δ(n) = O(Nmax(α,β)enφ(z)),
where Re φ(z) is negative when Re z is bounded away from the interval (a, b).

Let f̃(z) be defined as in (50). We have

(60) πN,n(z) = (−1)n
√
πenl/2

{
Ã(z, n)

[
1 +O

( 1
n

)]
+ B̃(z, n)

[
1 +O

( 1
n

)]}

for z ∈ II, where

(61)

Ã(z, n) =
[
n2/3f̃(z)

]1/4[
m(z) +m∗(z)

]

×
{
sin(Nπz)Ai

(
n2/3f̃(z)

)
+ cos(Nπz)Bi

(
n2/3f̃(z)

)}

and

(62)

B̃(z, n) =
[
n2/3f̃(z)

]−1/4[
m(z)−m∗(z)

]

×
{
sin(Nπz)Ai′

(
n2/3f̃(z)

)
+ cos(Nπz)Bi′

(
n2/3f̃(z)

)}
.
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Similarly, with f∗(z) defined in (51),

(63) πN,n(z) = (−1)N
√
πenl/2

{
A∗(z, n)

[
1 +O

( 1
n

)]
+B∗(z, n)

[
1 +O

( 1
n

)]}

for z ∈ III, where

(64)

A∗(z, n) =
[
n2/3f∗(z)

]1/4[
m(z)−m∗(z)

]

×
{
cos(Nπz)Bi

(
n2/3f∗(z)

)
− sin(Nπz)Ai

(
n2/3f∗(z)

)}

and

(65)

B∗(z, n) =
[
n2/3f∗(z)

]−1/4[
m(z) +m∗(z)

]

×
{
cos(Nπz)Bi′

(
n2/3f∗(z)

)
− sin(Nπz)Ai′

(
n2/3f∗(z)

)}
.

From (59), one can deduce asymptotic formulas for the Hahn polynomials Qn(x;α,
β,N − 1) when x is a fixed number. First, we note that with

x = Nz − 1/2,(66)

it follows from (34) and (58) that

(67)

Qn(x;α, β,N − 1) = Qn(Nz − 1/2;α, β,N − 1)

=
Nn(n+ α+ β + 1)n
(α+ 1)n(−N + 1)n

πN,n(z).

The final result is summarized in the following
Corollary 3.2. For fixed values of x, we have

(68)
Qn(x;α, β,N − 1) ∼ Γ(α+ 1)Γ(N − n)

Γ(N)Γ(−x)enn2x+2α+2

× (1 + c)n+N+α+β+1/2Nx+n+α+1

as n → ∞.
Note that equation (68) is only an asymptotic equality, and is not an equation.

So, even when the right-hand side of the equation vanishes when x is a positive
integer or zero, the polynomial on the left-hand side may not vanish. An error
estimate for the approximation in (68) can be obtained by using the order estimates
in (59).

4. Racah polynomials

Within the Askey scheme [39, p. 464] of hypergeometric orthogonal polynomi-
als, Racah polynomials stay on the top of the hierarchy and they generalize all of
the discrete hypergeometric orthogonal polynomials. These polynomials are named
after Racah, because their orthogonal relation is equivalent to that of Racah coef-
ficients or 6-j symbols; see [2]. In [54], Wilson defined the Racah polynomials in
terms of a 4F3 hypergeometric function. Let λ(x) := x(x + γ + δ + 1) and N be a
nonnegative integer. Define
(69)

Rn(λ(x);α, β, γ, δ) := 4F3

(
−n, n+ α+ β + 1, −x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1

∣∣∣∣∣1
)
,
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where n = 0, · · · , N and one of the following equalities is satisfied : α + 1 = −N
or β + δ + 1 = −N or γ + 1 = −N. Let

(70)

An := − (n+ α+ 1)(n+ α+ β + 1)(n+ β + δ + 1)(n+ γ + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
,

Cn := −n(n+ α+ β − γ)(n+ α− δ)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
.

The Racah polynomials (69) satisfy the recurrence relation [26, (9.2.3)]

λ(x)Rn(λ(x)) = −AnRn+1(λ(x)) + (An + Cn)Rn(λ(x)) − CnRn−1((λ(x)).

This recurrence relation can be normalized as

(71)
πn+1(z) = (z − An − Cn)πn(z)−An−1Cnπn−1(z),

π0(z) = 1, π1(z) = z −A0,

where

(72) πn(λ(x)) :=
(α + 1)n(β + δ + 1)n(γ + 1)n

(n+ α+ β + 1)n
Rn(λ(x)).

In addition to the variable x and the degree n, the polynomials in (69) involve four
free parameters. This inevitably makes the problem of deriving their asymptotic
formulas much more complicated. By approximating the ratio of two shifted fac-
torials in the hypergeometric representation (69), Chen, Ismail and Simeonov [5]
obtained several asymptotic formulas in terms of hypergeometric function 3F2 or

2F1, when the parameters are fixed. Recently, Wang and Wong [49] studied the
large -n behavior of πn(z) with varying parameters α, β, γ, δ. More precisely, we
set

(73) α+ 1 = Na, β = Nb, γ + 1 = Nc, δ + 1 = Nd,

where either a = −1 or b + d = −1 or c = −1. For simplicity, we assume An > 0
and Cn > 0. From Favard’s theorem, these conditions guarantee that the zeros of
πn(z) are all real and simple; see [6, Sections 1.4 and 1.5]. Thus, we require some
additional conditions:

1. when a = −1, we assume b, c, d > 0 and b > c+ 1;
2. when b + d = −1, we assume a, b, c > 0 and a+ b+ 1 < c;
3. when c = −1, we assume a, b, d > 0 and a+ 1 < d.

Let n/N = p be a fixed number in (0,1). To present the results in [49], we need to
introduce some notations. From (70) and (73), we have

lim
N→∞

An

N2
= A(p); lim

N→∞

Cn

N2
= C(p),

where

(74)

A(t) := − (t+ a)(t+ a+ b)(t+ b+ d)(t + c)

(2t+ a+ b)2
, 0 6 t 6 p,

C(t) := − t(t+ a+ b − c)(t+ a− d)(t+ b)

(2t+ a+ b)2
, 0 6 t 6 p.

To use the asymptotic results from difference equation theory, we also need the
concept of transition points (or turning points). These are the points where the
characteristic roots of equation (71) coincide; see [50]. For t ∈ [0, p], we define

(75) y±(t) := A(t) + C(t)± 2
√
A(t)C(t);

These are transaction points when t = p. From (74), it is readily seen that C(0) = 0.
Thus, y±(0) = A(0). For simplicity, in [49] Wang and Wong considered only the
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case when y+(x) is increasing and y−(t) is decreasing for t ∈ [0, p]. Following [49],
we adopt the notations

(76a) A1(t) := t+ a, A2(t) := t+ a+ b, A3(t) := t+ b+ d,

(76b) A4(t) := t+ c, C1(t) := t, C2(t) := t+ a+ b− c,

(76c) C3(t) := t+ a− d, C4(t) := t+ b, D(t) := 2t+ a+ b,

and

(77a) A
∗(t) :=

4A1A2A3A4 − (A1A2A3 + A1A2A4 + A1A3A4 + A2A3A4)D

D(t)3

(77b) C
∗(t) :=

4C1C2C3C4 − (C1C2C3 + C1C2C4 + C1C3C4 + C2C3C4)D

D(t)3

Furthermore, we put

(78) S(y; t) :=
√
(y −A(t)− C(t))2 − 4A(t)C(t) =

√
[y − y−(t)][y − y+(t)],

(79) T (y; t) := y −A(t)− C(t) + S(y; t) =
[√

y − y−(t)
]
+
[√

y − y+(t)
]2/

2,

and

(80) G(y; t) := T (y; t) [A∗(t) + C∗(t)] + 2 [A(t)C∗(t) +A∗(t)C(t)] .

Despite all these notations, the functions in (76), (77) and (78)−(80) are simple
and elementary. To state the results in [49], we also need the two integrals

(81) Ω0 =

∫ p

0

[
A(t)− C(t)

D(t)S(y; t)
− 2A(t)C(t)E (t)

S(y; t)T (y; t)

]
dt

and

(82) Ω1 =

∫ p

0

G(y; t)

2S(y; t)2
dt.

We are now ready to state their main results.
Theorem 4.1. Let πn(z) be the monic Racah polynomials satisfying the recur-

rence relation (71). Assume n/N = p is a fixed number in (0, 1). Let A(t), C(t)
and y±(t) be defined as in (74) and (75). Also, let Ω0(y) and Ω1(y) denote, respec-
tively, the integrals in (81) and (82). Assume that y+(t) is increasing and y−(t) is
decreasing for t ∈ [0, p]. Then, for y ∈ C \ [y−(p), y+(p)], we have

(83) πn(N
2y) =

(
N2

2

)n

eNg(y)+r(y)

[
1 +O

(
1

n

)]
,

where the main term g(y) is given by

(84) g(y) :=

∫ p

0

lnT (y; t)dt,

and the correction term r(y) is given by

(85) r(y) :=
1

2
ln

T (y; p)

T (y; 0)
+ Ω0(y) + Ω1(y).

To derive the asymptotic formula of πn(N
2y) for y in the interval of oscillation,

i.e., y ∈ [y−(p), y+(p)], Wang and Wong simply added the limits of the approximant
in (83) as y approaches the real axis from above and below. The reason behind
their argument is based on the phenomenon that the real part of an asymptotic
approximant for orthogonal polynomials in the complex plane is always half of the
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corresponding asymptotic approximant in the interval of orthogonality on the real
line. This fact was apparantly known to Heine [18, p. 175] and Szegö [45, p. 196,
Theorem 8.21.9].

Theorem 4.2. Let πn(z) be the monic Racah polynomials satisfying the recur-
rence relation (71). Assume n/N = p is a fixed number in (0, 1). Let A(t), C(t) and
y±(t) be defined as in (74) and (75). We further assume that y+(t) is increasing
and y−(t) is decreasing for t ∈ [0, p]. Then we have

(86)

πn(N
2y) =

(
N2

2

)n
{
eNg+(y)+r+(t)

[
1 +O

(
1

n

)]

+ eNg−(y)+r−(y)

[
1 +O

(
1

n

)]}

for y ∈ (y−(p), A(0)) ∪ (A(0), y+(p)).
As a corollary, Wang and Wong [49] also gave an asymptotic formula for the

Racah polynomials when the variable z is fixed. The exact result is stated below.
Corollary 4.1. Let πn(z) be the monic Racah polynomials satisfying the recur-

rence relation (71). Assume n/N = p is fixed in (0, 1). Let A(t), C(t) and y±(t) be
defined as in (74) and (75). We further assume that A(t) > C(t), y+(t) is increas-
ing and y−(t) is decreasing for t ∈ [0, p]. Then as n → ∞, we have for any fixed
z,

(87)

πn(z) =(−N2)n exp

[
N

∫ p

0

lnA(t)dt

]

×
√

ac(b+ d)(2p+ a+ b)

(p+ a)(p+ c)(p+ b+ d)(p+ a+ b)

[
1 +O

(
1

n

)]
.

5. Pseudo-Jacobi polynomials

Pseudo-Jacobi (P-J) polynomials Pn(z; a, b) are also known as the Romanovski-
Routh polynomials. They are solutions to the second-order differential equation

(88) (x2 + 1)
d2y

dx2
+ 2 [(1 + a)x+ b]

dy

dx
− n(n+ 2a+ 1)y = 0.

These polynomials (of degree n) are orthogonal with respect to the weight function

(89) w(x) = (x2 + 1)ae2b arctan x, x ∈ (−∞,∞),

only when the moments

µn =

∫ ∞

−∞

x2nw(x)dx

exist; that is, only when n < −a − 1/2. If a = −N − 1 with N being a positive
integer, then the orthogonal polynomials Pn(x; a, b) are well-defined with respect
to w(x) only for n = 0, · · · , N . Therefore, for fixed a < −1, we have only a finite
number of orthogonal polynomials, in contrast to the classical Hermite, Laguerre
and Jacobi polynomials.

The polynomials Pn(x; a, b) were first discovered by Romanovski [41] in 1929 (in
French) within the context of probability distribution functions in statistics. They
also belong to a general family of Routh polynomials [42] introduced in 1884. For
a historical account, see [35, 36]. Since they have not been discussed in standard
books on orthogonal polynomials and special functions (e.g., [37, 45]), they are
not known to most of the researchers in the field. In view of its close connection
with the Jacobi polynomials of purely imaginary argument and complex parameters
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(see (91) below), in 1996 Lesky [31] (in German) coined the term “Pseudo-Jacobi
polynomials”. Later these polynomials are also included in the monograph [26].
It was probably the review article [40] that brought attention to the community
of people working in orthogonal polynomials. This article discusses various appli-
cations of this polynomial ranging from quantum mechanics and quark physics to
random matrix theory (see [16] and the references in [40]). For instance, they arise
in the solutions of Schrödinger equations with certain non-central electric potential
obtained by separation of variables in spherical coordinates; their role is similar to
that of the associated Legendre functions; see [1] and [14].

The definition of monic P-J polynomials in terms of hypergeometric functions is
given in [26], with parameters N and ν related to the parameters a and b in (89);
more precisely, with a = −N − 1 and b = ν, the monic P-J polynomials are defined
by

(90) Pn(x; a, b) =
(−2i)n(1 + a+ bi)n

(n+ 2a+ 1)n
2F1

(
−n, n+ 2a+ 1

1 + a+ bi
;
1− ix

2

)
.

By comparing the definitions of the P-J polynomials and Jacobi polynomials P
(α,β)
n ,

we have the relation

(91) Pn(x; a, b) = (−i)nP (a+bi, a−bi)
n (ix).

This relation has also been used as the definition of P-J polynomials in [19, p. 508]
and [23]. In view of the symmetry property of Jacobi polynomials, the P-J polyno-
mials satisfy

(92) Pn(z; a,−b) = (−1)nPn(−z; a, b);

see [23]. Since the coefficients of P-J polynomials are real, it also follows that

(93) Pn(z; a, b) = Pn(z; a, b),

where an overbar means the complex conjugate. For other properties such as or-
thogonality, recurrence relations and Rodrigues formula, we refer to [26, p. 231-233].

Probably due to their close relation with Jacobi polynomials, recently P-J poly-
nomials have attracted much attention [23, 24]. Properties of the zeros of P-J
polynomials, including their asymptotics and bounds, have been studied in [23].
As a special case, the zeros of the pseudo-ultraspherical polynomials have been in-
dependently investigated in [13] almost at the same time. In [44], Song and Wong
have investigated the asymptotic behavior of the P-J polynomials as the degree n
goes to infinity. Note that, for fixed a or a > −n, there is no real-line orthogonality
anymore; see [23, 28] for their orthogonality. For fixed parameters a and b, in view
of (90) the asymptotics of these polynomials can be obtained as a special case of
that of the hypergeometric functions investigated in [22, 25]. In [44], Song and
Wong consider the case when the parameters depend on the degree n,

(94) an = −(An+A0), (A > 1); bn = Bn+B0,

where A,A0, B,B0 are real constants. Their goal is to derive asymptotic formu-
las for Pn(z; an, bn) (with varying parameters) for z in the whole complex plane.
Their main tool is the well-developed method for differential equations with a large
parameter as presented in Olver [38, Chapter 11]. Their other goal is to use this
example as an illustration to show that this method is easy to understand and can
be used in many problems in physical applications.

They first deal with the asymptotics when the variable z lies outside the inter-
val where the zeros are located. To do this, they let {xn,j}|nj=1 be the zeros of
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Pn(x; an, bn) and define the sequence of discrete measures λn by

λn(f) ≡
1

n

n∑

j=1

f(xn,j) =

∫
f(x)dλn(x),

where f is any continuous function. They give a brief derivation of the result that
there is a unique measure λ, which is the weak-∗ limit of λn as n → ∞, and the
measure λ is supported on [γ−, γ+] and given by

(95) dλ =
(A− 1)

√
(x− γ−)(γ+ − x)

π(x2 + 1)
dx,

where

(96) γ± =
AB ±

√
(2A− 1)[(A− 1)2 +B2]

(A− 1)2
.

This result was actually given earlier in [23]. To state the first main result in [44],
we introduce the functions

(97)

ξ∗(z) = 2(A− 1) log(
√
z − γ− +

√
z − γ+)− C1

− (A+ iB) log(
√
1 + iγ−

√
z − γ+ +

√
1 + iγ+

√
z − γ−)

− (A− iB) log(
√
1− iγ−

√
z − γ+ +

√
1− iγ+

√
z − γ−)

and

(98)

χ∗(z) = 2(A0 − 1) log(
√
z − γ− +

√
z − γ+)− C2

− (A0 + iB0) log(
√

1 + iγ−
√
z − γ+ +

√
1 + iγ+

√
z − γ−)

− (A0 − iB0) log(
√

1− iγ−
√
z − γ+ +

√
1− iγ+

√
z − γ−),

where

(99)
C1 = 2(A− 1) log 2− 1

2
Bπ − (A+ iB) log(

√
1 + iγ− +

√
1 + iγ+)

− (A− iB) log(
√
1− iγ− +

√
1− iγ+)

and

(100)
C2 = 2(A0 − 1) log 2− 1

2
B0π − (A0 + iB0) log(

√
1 + iγ− +

√
1 + iγ+)

− (A0 − iB0) log(
√
1− iγ− +

√
1− iγ+).

In the last four equations, A,A0, B and B0 are the constants in (94).
We also need the definition of a domain D in three separate cases: (i) γ− 6 0 6

γ+, (ii) 0 < γ− < γ+ and (iii) γ− < γ+ < 0. In case (i), D denotes the set

(101) D = {z| Re z > 0, Im z > 0} \ [0, γ+], γ− < 0 < γ+,

where exclusion of the interval [0, γ+] is understood to mean the exclusion of a small
neighborhood in the first quadrant containing the interval [0, γ+]. In case (ii), we
put

(102) ξ(z) = ξ∗(z) +
1

2
(A+ iB) log(1 + iz) +

1

2
(A− iB) log(1 − iz)

and let ξ0 = ξ(γ+). Define a curve L1 in the first quadrant of the z-plane by

(103) Re ξ(z) = ξ0, or equivalently Re

(∫ z

γ−

√
(t− γ−)(t− γ+)

1 + t2
dt

)
= 0,
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which connects γ− and a point z1 = iy1 (0 < y1 < 1) on the positive imaginary
axis, and denote the region bounded by the axes and L1 by Ω1; i.e.,

(104)
Ω1 = {z| Re z ≥ 0, Im z ≥ 0,

ξ0 6 Re ξ(z) 6 Re ξ(0), Im ξ(z1) 6 Im ξ(z) 6 Im ξ(0)}.
The domain D is now defined by

(105) D = {z| Re z > 0, Im z > 0} \ ([γ−, γ+] ∪Ω1), 0 < γ− < γ+,

where small neighborhoods of the interval [γ−, γ+] and the curve L1 are again
excluded. (For details; see Figure 2 in [44].) The final case (i.e., case (iii)) can
be handled in a similar manner. We define a curve L2 in the second quadrant of
z-plane by

(106) Re ξ(z) = ξ0, or equivalently Re

(∫ z

γ+

√
(t− γ−)(t− γ+)

1 + t2
dt

)
= 0,

which connects γ+ and a point z2 = iy2 (0 < y2 < 1) on the positive imaginary
axis, and denote the region bounded by the axes and L2 by Ω2; i.e.,

(107)
Ω2 = {z| Re z 6 0, Im z > 0,

ξ0 6 Re ξ(z) 6 ξ(0), 0 6 Im ξ(z) 6 Im ξ(z2)}.
The relevant domain D is defined by

(108) D = {z| Re z > 0, Im z > 0} ∪ Ω2 \ [γ+, γ+ + δ], γ− < γ+ < 0,

where a small neighborhood of L2 can be included but a small neighborhood of the
point γ+ is excluded (δ > 0); see Figure 3 in [44].

Note that the excluded region Ω1 in case (ii) is the mirror image of the region
Ω2 in case (iii) with respect to the imaginary axis. Based on this observation and
the symmetry properties (92) and (93) of the P-J polynomials, Song and Wong
[44] proved that the domain D defined as in (101), (105) and (108) for each of the
three cases considered above can be used to cover the whole complex plane except
a neighborhood of the critical interval [γ−, γ+]. Their first main result is stated
below.

Theorem 5.1. For z ∈ D given by (101), (105) or (108), the P-J polynomials
Pn(z; an, bn) with parameters in (94) have the uniform asymptotic expansion

(109)

Pn(z; an, bn) ∼ ebnπ/2[(z − γ−)(z − γ+)]
−1/4

× e−nξ∗(z)−χ∗(z)
∞∑

s=0

(−1)sws(z)

ns

as n → ∞, where ξ∗(z) and χ∗(z) are given in (97) and (98), respectively, and the
coefficients ws(z)(s > 1) can be determined by a recursive formula with w0(z) = 1.

The second main result in [44] is an asymptotic expansion for Pn(z; an, bn) which
holds uniformly in a region that contains a turning point and a large part of the
critical interval [γ−, γ+]. By symmetry, we can concentrate on the turning point
z = γ+. In the previous case, the function ξ(z) in (102) is not well-defined near γ+,
which is a branch point. Following the method illustrated in [38, p. 426], Song and
Wong modified the function ξ(z) and defined

(110) ζ(z) :=

[
3

2
(ξ(z)− ξ0)

]2/3
, ξ0 := ξ(γ+).
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To state their next result, we need some new notations. First, put

(111) n := N + α with α := − 2A0 − 1

2(A− 1)
,

(112) χ(z) := χ∗(z) +
1

2
(A0 + iB0) log(1 + iz) +

1

2
(A0 − iB0) log(1− iz),

where χ∗(z) is given in (98), and

(113) Φ (ζ(z)) := ζ−1/2(z)[χ(z)− χ0], χ0 := χ(γ+).

Define

(114) Φ̂(ζ) :=

[
Φ(ζ) +

2

3
αζ

]

and

(115) ζN := N2/3ζ +N−1/3Φ̂(ζ).

We now restrict z to the domain

(116) D∗ = {z| γ− + δ 6 Re z < +∞, | Im z| 6 δ1},
where δ, δ1 are some positive numbers. Clearly, D∗ is a complex neighborhood of a
semi-infinite real interval.

Theorem 5.2. For z ∈ D∗, the Pseudo-Jacobi polynomials Pn(z; an, bn) with
parameters in (94) have the uniform asymptotic expansion

(117)

Pn(z; an, bn) ∼Cne
bnπ/2[w(z)]−1/2

[
ζ

(z − γ−)(z − γ+)

]1/4

×
{
Ai(ζN )

∞∑

s=0

Xs(ζ)

Ns
+N− 4

3Ai′(ζN )

∞∑

s=0

Ys(ζ)

Ns

}

as n → ∞, where w(z) is given in (89), γ± are given in (96) and ζ(z) is given by
(110). The constant Cn, independent of z, has an asymptotic series representation
in powers of N−1 with explicit expressions for the coefficients. The coefficient
functions Xs(ζ) and Ys(ζ) can be determined by recursive formulas with X0(ζ) ≡ 1.

An immediate consequence of the above theorem is the following corollary.
Corollary 5.1. For z ∈ D∗ defined in (116), the P-J polynomials Pn(z; an, bn)

with parameters in (94) have the leading asymptotic behavior

(118)

Pn(z; an, bn) ∼ 2
√
πN1/6e−(nξ0+χ0)+bnπ/2[w(z)]−1/2

×
[

ζ

(z − γ−)(z − γ+)

]1/4
Ai(ζN )

as n → ∞, where w(z) is given in (89), γ± are given in (96), ζN = N2/3ζ+N−1/3Φ̂

and ζ, ξ0, Φ̂, χ0, N are given by (110), (114), (113) and (111).
As a biproduct, Song and Wong [44] also obtained an asymptotic formula for the

zeros of the P-J polynomials. To describe this result, we let the zeros be arranged
in decreasing order:

(119) γ− < xn,n < xn,n−1 < · · · < xn,2 < xn,1 < γ+,

and introduce the functions

(120) fi(z) =
Qi(z)

(1 + z2)2
, i = 0, 1,
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where

(121)
Q0(z) = (A− 1)2z2 − 2ABz +B2 + 1− 2A = (A− 1)2(z − γ−)(z − γ+),

Q1(z) = (A− 1)(2A0 − 1)z2 − 2(A0B +AB0)z + 1−A− 2A0 + 2BB0.

Corollary 5.2. Let the parameters an and bn be given as in (94), and let the
zeros of Pn(z; an, bn) be arranged as in (119). For each fixed k, we have
(122)

xn,k = γ+ + c
−2/3
0 ãkN

−2/3 − f1(γ+)c
−2
0 N−1 − f ′′

0 (γ+)

10c
10/3
0

ã2kN
−4/3 +O(N−5/3)

as n → ∞, where N is given in (111), ãk is the kth negative zero of the Airy
function Ai(x) and the O-symbol depends on k. The constant γ+ is given in (96),
and the constant c0 is given by

(123) c0 =
(A+ 1)

√
γ+ − γ−

1 + γ2
+

> 0.

The functions fi(z), i = 0, 1, are given in (120).
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