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Abstract. This paper is concerned with the computable error estimates for the eigenvalue
problem which is solved by the general conforming finite element methods on the general meshes.
Based on the computable error estimate, we can give an asymptotically lower bound of the general
eigenvalues. Furthermore, we also give a guaranteed upper bound of the error estimates for the
first eigenfunction approximation and a guaranteed lower bound of the first eigenvalue based on
computable error estimator. Some numerical examples are presented to validate the theoretical
results deduced in this paper.
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1. Introduction

This paper is concerned with the computable error estimates for the eigenvalue
problem by the finite element method. As we know, the priori error estimates
can only give the asymptotic convergence order. The a posteriori error estimates
are very important for the mesh adaption process. Interested readers can refer to
[2, 6, 7, 8, 27, 28, 34] and the references cited therein for more information about
the a posteriori error estimate for the partial differential equations by the finite
element method.

This paper is to give computable error estimates for the eigenpair approxima-
tions. We produce a guaranteed upper-bound error estimate for the first eigen-
function approximation and then a guaranteed lower bound of the first eigenvalue.
The approach is based on complementary energy method from [15, 27, 28, 31, 32]
coupled with the upper and lower bounds of the eigenvalues by the conforming
and nonconforming finite element methods. The first eigenvalue is the key in-
formation in many practical applications such as Friedrichs, Poincaré, trace and
similar inequalities (cf. [29]). Thus the two-sided bounds of the first eigenvalue of
the partial differential operators are very important. Furthermore, the proposed
computable error estimates are asymptotically exact for the general eigenpair ap-
proximations which are obtained by the conforming finite element method. Based
on this property, we can provide asymptotically lower bounds for general eigenval-
ues by the finite element method. The most important feature and contribution
of this paper are that the method can also provide the reasonable accuracy even
on the general regular meshes which is different from the existed methods (cf.
[3, 10, 11, 16, 18, 19, 22, 23, 24, 37, 38]).

It is well known that the numerical approximations by the conforming finite
element methods are upper bounds of the exact eigenvalues. Recently, how to
obtain the lower bounds of the desired eigenvalues is a hot topic since it has many
applications in some classical problems [3, 10, 11, 16, 18, 19, 22, 23, 24, 29, 30, 33, 37,
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38]. Up to now, there have developed the nonconforming finite element methods
[3, 16, 18, 19, 22, 37, 38], interpolation constant based methods [10, 11, 23, 24]
and computational error estimate methods [29, 30, 33]. The nonconforming finite
element methods can only obtain the asymptotically lower bounds with the lowest
order accuracy. The interpolation constant method can only obtain the efficient
guaranteed lower bounds only on the quasi-uniform meshes since the accuracy is
determined by the global mesh size. The complementary method in [31, 32] for
computing the a posteriori error estimate of the finite element method gives a clue
to this paper.

An outline of the paper goes as follows. In Section 2, we introduce the finite
element method for the eigenvalue problem and the corresponding basic error esti-
mates. The computable error estimates for the eigenfunction approximations and
the corresponding upper-bound properties are given in Section 3. In Section 4,
lower bounds of eigenvalues are obtained based on the results in Section 3. Some
numerical examples are presented to validate our theoretical analysis in Section 5.
Some concluding remarks are given in the last section.

2. Finite element method for eigenvalue problem

This section is devoted to introducing some notation and the finite element
method for eigenvalue problem. In this paper, the standard notation for Sobolev
spaces Hs(Ω) and H(div; Ω) and their associated norms and semi-norms [1] will
be used. We denote H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the
sense of trace. The letter C (with or without subscripts) denotes a generic positive
constant which may be different at its different occurrences in the paper.

For simplicity, this paper is concerned with the following model problem: Find
(λ, u) such that

(1)

{
−∆u+ u = λu, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ Rd (d = 2, 3) is a bounded domain with Lipschitz boundary ∂Ω and
∆ denotes the Laplacian operator. We will find that the method in this paper can
easily be extended to more general eigenvalue problems.

In order to use the finite element method to solve the eigenvalue problem (1), we
need to define the corresponding variational form as follows: Find (λ, u) ∈ R × V
such that

a(u, v) = λb(u, v), ∀v ∈ V,(2)

where V := H1
0 (Ω) and

(3) a(u, v) =

∫

Ω

(
∇u · ∇v + uv

)
dΩ, b(u, v) =

∫

Ω

uvdΩ.

The norms ‖ · ‖a and ‖ · ‖b are defined as

‖v‖a =
√
a(v, v) and ‖v‖b =

√
b(v, v).

It is well known that problem (2) has an eigenvalue sequence {λj} (cf. [5, 12]):

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and associated eigenfunctions

u1, u2, · · · , uk, · · · ,

where b(ui, uj) = 0 when i 6= j. The first eigenvalue λ1 is simple and in the sequence
{λj}, the λj are repeated according to their geometric multiplicity.
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Now, we introduce the finite element method for the eigenvalue problem (2).
First we decompose the computing domain Ω ⊂ Rd (d = 2, 3) into shape-regular
triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) to produce
the mesh Th (cf. [8, 14]). In this paper, we use Eh to denote the set of interior faces
(edges or sides) of Th. The diameter of a cellK ∈ Th is denoted by hK and the mesh
size h describes the maximum diameter of all cells K ∈ Th. Based on the mesh
Th, we can construct a finite element space denoted by Vh ⊂ V . For simplicity, we
only consider the Lagrange type conforming finite element space which is defined
as follows

(4) Vh =
{
vh ∈ C(Ω)

∣∣ vh|K ∈ Pk, ∀K ∈ Th
}
∩H1

0 (Ω),

where Pk denotes the space of polynomials of degree at most k.
The standard finite element scheme for the eigenvalue problem (2) can be defined

as follows: Find (λh, uh) ∈ R× Vh such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh.(5)

From [4, 5, 12], the discrete eigenvalue problem (5) has eigenvalues:

0 < λ1,h < λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and corresponding eigenfunctions

u1,h, · · · , uk,h, · · · , uNh,h,

where b(ui,h, uj,h) = δij (δij denotes the Kronecker function), when 1 ≤ i, j ≤ Nh

(Nh is the dimension of the finite element space Vh).
Let M(λi) denote the eigenspace corresponding to the eigenvalue λi which is

defined by

M(λi) =
{
w ∈ H1

0 (Ω) : w is an eigenfunction of (2)

corresponding to λi
}
,

and define

δh(λi) = sup
w∈M(λi),‖w‖b=1

inf
vh∈Vh

‖w − vh‖a.(6)

We also define the following quantity:

ηa(h) = sup
f∈L2(Ω),‖f‖b=1

inf
vh∈Vh

‖Tf − vh‖a,(7)

where T : L2(Ω) → V is defined as

(8) a(Tf, v) = b(f, v), ∀f ∈ L2(Ω) and ∀v ∈ V.

Then the error estimates for the eigenpair approximations by the finite element
method can be described as follows.

Lemma 2.1. ([4, Lemma 3.6, Theorem 4.4] and [12, 13]) When the mesh size is
small enough, there exists the exact eigenpair (λi, ui) of (2) such that each eigenpair
approximation (λi,h, ui,h) (i = 1, 2, · · · , Nh) of (5) has the following error estimates

‖ui − ui,h‖a ≤
(
1 + Ciηa(h)

)
δh(λi),(9)

‖ui − ui,h‖b ≤ Ciηa(h)‖ui − ui,h‖a,(10)

|λi − λi,h| ≤ Ci‖ui − ui,h‖
2
a ≤ Ciηa(h)‖ui − ui,h‖a.(11)

Here and hereafter Ci is some constant depending on i but independent of the mesh
size h.
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3. Complementarity based error estimate

In this section, we derive a computable error estimate for the eigenfunction
approximations based on complementarity approach. A guaranteed upper bound
of the error estimate for the first eigenfunction approximation is designed based
on the lower bounds of the second eigenvalue. We also produce an asymptotically
upper bound error estimate for the general eigenfunction approximations which are
obtained by solving the discrete eigenvalue problem (5).

First, we recall the following divergence theorem
∫

Ω

vdivzdΩ +

∫

Ω

z · ∇vdΩ =

∫

∂Ω

vz · νds, ∀v ∈ V and ∀z ∈ W,(12)

where W := H(div; Ω) and ν denotes the unit outward normal to ∂Ω.
We first give a guaranteed upper bound of the error estimate for the first eigen-

function approximation and the method used here is independent from the way
to obtain the solution. We only consider the eigenfunction approximation û1 ∈ V
and estimate the error u1 − û1 no matter how to obtain û1. In this paper, we set

b(û1, û1) = 1 and the eigenvalue approximation λ̂1 is determined as follows

λ̂1 =
a(û1, û1)

b(û1, û1)
= a(û1, û1).

Theorem 3.1. Assume we have an eigenpair approximation (λ̂1, û1) ∈ R × V
corresponding to the first eigenvalue λ1 and a lower bound eigenvalue approximation

λL2 of the second eigenvalue λ2 such that λ1 ≤ λ̂1 < λL2 ≤ λ2. There exists an exact
eigenfunction u1 ∈ M(λ1) such that the error estimate for the first eigenfunction
approximation û1 ∈ V with b(û1, û1) = 1 has the following guaranteed upper bound

‖u1 − û1‖a ≤
λL2

λL2 − λ̂1
η(λ̂1, û1,y), ∀y ∈ W,(13)

where η(λ̂1, û1,y) is defined as follows

η(λ̂1, û1,y) :=
(
‖λ̂1û1 − û1 + divy‖20 + ‖y−∇û1‖

2
0

)1/2
.(14)

Proof. We can choose u1 ∈ M(λ1) such that b(v, u1 − û1) = 0 for any v ∈ M(λ1)
by solving the equation: Find u1 ∈M(λ1) such that

b(u1, v) = b(û1, v), ∀v ∈M(λ1).

Now we set w = u1 − û1 and the following estimates hold

a(u1 − û1, w) − λ̂1b(u1 − û1, w)

=

∫

Ω

λ1u1wdΩ−

∫

Ω

∇û1 · ∇wdΩ−

∫

Ω

û1wdΩ− λ̂1

∫

Ω

u1wdΩ

+λ̂1

∫

Ω

û1wdΩ +

∫

Ω

wdivydΩ +

∫

Ω

y · ∇wdΩ

=

∫

Ω

(
λ̂1û1 − û1 + divy

)
wdΩ +

∫

Ω

(
y −∇û1

)
· ∇wdΩ

≤ ‖λ̂1û1 − û1 + divy‖0‖w‖0 + ‖y−∇û1‖0‖∇w‖0

≤
(
‖λ̂1û1 − û1 + divy‖20 + ‖y −∇û1‖

2
0

)1/2
‖w‖a, ∀y ∈ W.(15)
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Since b(v, u1 − û1) = 0 for any v ∈M(λ1), we know w = u1 − û1 ⊥M(λ1) and the
following inequalities hold (cf. [5, P. 698])

‖w‖2a
‖w‖2b

≥ λ2 ≥ λL2 ,(16)

where we used the min-max principle for eigenvalue problems.
Combining (15) and (16) leads to the following estimate

(
1−

λ̂1

λL2

)
‖w‖2a ≤ η(λ̂1, û1,y)‖w‖a, ∀y ∈ W.(17)

It means that we have

‖w‖a ≤
λL2

λL2 − λ̂1
η(λ̂1, û1,y), ∀y ∈ W.

This is the desired result (13) and the proof is complete. �

Remark 3.1. In (17), we can use the Cauchy-Schwarz inequality directly since the
energy norm in this paper is a standard H1(Ω) norm. If we solve the following
standard Laplace eigenvalue problem

{
−∆u = λu, in Ω,

u = 0, on ∂Ω,

the energy norm is a semi-norm | · |1 and we need to compute the upper bound of
Friedrichs’s constant to obtain the same result (13). For more information, please
refer to [32]. This is why we modify the standard Laplace eigenvalue problem to the
eigenvalue problem (1).

A natural problem is to seek the minimization η(λ̂, û,y) over W for the fixed

eigenpair approximation (λ̂, û). For this aim, we define the minimization problem:
Find y∗ ∈ W such that

η(λ̂, û,y∗) ≤ η(λ̂, û,y), ∀y ∈ W.(18)

From [31, 32], the optimization problem is equivalent to the following partial dif-
ferential equation: Find y∗ ∈ W such that

a∗(y∗, z) = F∗(λ̂, û, z), ∀z ∈ W,(19)

where

a∗(y∗, z) =

∫

Ω

(
divy∗divz+ y∗ · z

)
dΩ, F∗(λ̂, û, z) = −

∫

Ω

λ̂ûdivzdΩ.

It is obvious a∗(·, ·) is an inner product in the space W and the corresponding norm

is 9z9∗ =
√
a∗(z, z). From the Riesz theorem, we can know the dual problem (19)

has a unique solution.

Now, we state some properties for the estimator η(λ̂, û,y).

Lemma 3.1. ([31, Lemma 2]) Assume y∗ be the solution of the dual problem (19)

and let λ̂ ∈ R, û ∈ V and y ∈ W be arbitrary. Then the following equality holds

η2(λ̂, û,y) = η2(λ̂, û,y∗) + 9y∗ − y 92
∗ .(20)

In order to give a computable error estimate, the reasonable choice is a certain
approximate solution yh ∈ W of the dual problem (19). Then we can give a guar-
anteed upper bound of the error estimate for the first eigenfunction approximation.
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Corollary 3.1. Under the conditions of Theorem 3.1, there exists an exact eigen-
function u1 ∈ M(λ1) such that the error estimate for the eigenpair approximation

(λ̂1, û1) has the following upper bound

‖u1 − û1‖a ≤
λL2

λL2 − λ̂1
η(λ̂1, û1,yh),(21)

where yh ∈ W is a reasonable approximate solution of the dual problem (19) with

λ̂ = λ̂1 and û = û1.

We would like to point out that the quantity η(λi,h, ui,h,y
∗), where y∗ ∈ W is

the solution of (19) with λ̂ = λi,h and û = ui,h, is an asymptotically exact error
estimate for the eigenfunction approximation ui,h when the eigenpair approximation
is obtained by solving the discrete eigenvalue problem (5). Now, let us discuss the
efficiency of the a posteriori error estimate η(λi,h, ui,h,y

∗) and η(λi,h, ui,h,yh).

Theorem 3.2. Assume (λi,h, ui,h) be an eigenpair approximation of the discrete
eigenvalue problem (5) corresponding to the i-th eigenvalue λi. Then there exists
an exact eigenfunction ui ∈ M(λi) such that η(λi,h, ui,h,y

∗) satisfies following
inequalities

θ1,i‖ui − ui,h‖a ≤ η(λi,h, ui,h,y
∗) ≤ θ2,i‖ui − ui,h‖a,(22)

where y∗ ∈ W is the solution of the dual problem (19) with λ̂ = λi,h and û = ui,h
and

θ1,i := (1 − C2
i λi,hη

2
a(h)) and θ2,i :=

√
1 +

(
2(λi − 1)2 + 1

)
C2

i η
2
a(h).(23)

Furthermore, we have the following asymptotic exactness

lim
h→0

η(λi,h, ui,h,y
∗)

‖ui − ui,h‖a
= 1.(24)

Proof. Similarly to the proof of Theorem 3.1, we can also choose ui ∈ M(λi) such
that b(v, ui − ui,h) = 0 for any v ∈M(λi). Since

a(v, ui − ui,h) = λib(v, ui − ui,h), ∀v ∈M(λi),

the eigenfunction ui is the best approximation from M(λi) to ui,h which means ui
and ui,h satisfy the estimates (9)-(11).

Then from the similar process in (15), we have

‖ui − ui,h‖
2
a ≤ η(λi,h, ui,h,y)‖ui − ui,h‖a + λi,h‖ui − ui,h‖

2
b

≤ η(λi,h, ui,h,y)‖ui − ui,h‖a + C2
i λi,hη

2
a(h)‖ui − ui,h‖

2
a, ∀y ∈ W.(25)

It leads to

(1− C2
i λi,hη

2
a(h))‖ui − ui,h‖a ≤ η(λi,h, ui,h,y), ∀y ∈ W.(26)

From the definition (14), the eigenvalue problem (1) and ∇ui ∈ W, we have

η2(λi,h, ui,h,∇ui) = ‖∇ui,h −∇ui‖
2
b + ‖(λi,h − 1)ui,h − (λi − 1)ui‖

2
b .(27)

Then combining (20), (27) and Lemma 2.1, the following estimates hold

η2(λi,h, ui,h,y
∗) ≤ η2(λi,h, ui,h,∇ui)

= ‖∇ui,h −∇ui‖
2
b + ‖(λi,h − 1)ui,h − (λi − 1)ui‖

2
b

= ‖ui − ui,h‖
2
a + ‖(λi,h − 1)ui,h − (λi − 1)ui‖

2
b − ‖ui − ui,h‖

2
b

= ‖ui − ui,h‖
2
a + ‖(λi,h − λi)ui,h + (λi − 1)(ui,h − ui)‖

2
b − ‖ui − ui,h‖

2
b

≤ ‖ui − ui,h‖
2
a + 2|λi,h − λi|

2 +
(
2(λi − 1)2 − 1

)
‖ui − ui,h‖

2
b
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≤
(
1 + 2C2

i η
2
a(h) +

(
2(λi − 1)2 − 1

)
C2

i η
2
a(h)

)
‖ui − ui,h‖

2
a

≤
(
1 +

(
2(λi − 1)2 + 1

)
C2

i η
2
a(h)

)
‖ui − ui,h‖

2
a.(28)

The inequality (28) leads to the following estimate

η(λi,h, ui,h,y
∗) ≤

√
1 +

(
2(λi − 1)2 + 1

)
C2

i η
2
a(h)‖ui − ui,h‖a.(29)

From inequalities (26) and (29), we obtain the desired result (22) and (24) can be
deduced easily from the fact that ηa(h) → 0 as h→ 0. �

Corollary 3.2. Assume the conditions of Theorem 3.2 hold and there exists a
constant γi > 0 such that the approximation yh of y∗ satisfies 9y∗ − yh9∗ ≤
γi‖ui − ui,h‖a. Then the following efficiency holds

η(λi,h, ui,h,yh) ≤
√
θ22,i + γ2i ‖ui − ui,h‖a.(30)

Furthermore, the estimator η(λi,h, ui,h,yh) is asymptotically exact if and only if the
following condition holds

lim
h→0

9y∗ − yh9∗

‖ui − ui,h‖a
= 0.(31)

Proof. First from (20) and (22), we have

η2(λi,h, ui,h,yh) = η2(λi,h, ui,h,y
∗) + 9y∗ − yh 92

∗

≤ θ22,i‖ui − ui,h‖
2
a + γ2i ‖ui − ui,h‖

2
a

≤ (θ22,i + γ2i )‖ui − ui,h‖
2
a.(32)

Then the desired result (30) can be obtained and the asymptotical exactness of the
estimator follows immediately from the condition (31). �

4. Lower bound of eigenvalue

In this section, based on the guaranteed upper bound for the error estimate of
the first eigenfunction approximation, we give a guaranteed lower bound of the
first eigenvalue. Furthermore, we also give asymptotically lower bounds of the gen-
eral eigenvalues based on the asymptotically exact error estimates for the general
eigenfunction approximations which are obtained by solving the discrete finite ele-
ment eigenvalue problem (5). Actually, the process is very direct since we have the
following Rayleigh quotient expansion which comes from [4, 5].

Lemma 4.1. ([4, 5]) Assume (λ, u) is an exact solution of the eigenvalue problem
(2) and 0 6= ψ ∈ V . Let us define

λ̄ =
a(ψ, ψ)

b(ψ, ψ)
.(33)

Then we have

λ̄− λ =
a(u− ψ, u− ψ)

b(ψ, ψ)
− λ

b(u− ψ, u− ψ)

b(ψ, ψ)
.(34)

Theorem 4.1. Assume λ1 is the first eigenvalue of problem (1) and (λ̂1, û1) ∈
R × V (‖û1‖b = 1) be the eigenpair approximation for the first eigenvalue and
eigenfunction, respectively. Under the conditions of Theorem 3.1, we have the fol-
lowing guaranteed lower bound of the first eigenvalue

λ̂1 − λ1 ≤
αλL2

λL2 − α2η2(λ̂1, û1,yh)
η2(λ̂1, û1,yh),(35)
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where α = λL2 /(λ
L
2 − λ̂1) and yh ∈ W is a reasonable approximate solution of the

dual problem (19) with λ̂ = λ̂1 and û = û1 such that λL2 − α2η2(λ̂1, û1,yh) > 0.

Proof. Similarly to the proof of Theorem 3.1, we can also choose u1 ∈M(λ1) such
that b(v, u1− û1) = 0 for any v ∈M(λ1). We also set w = u1− û1 and from Lemma
4.1, (15) and ‖û1‖b = 1, we have

λ̂1 − λ1 − (λ̂1 − λ1)‖w‖
2
b = a(u1 − û1, u1 − û1)− λ̂1b(u1 − û1, u1 − û1)

≤ η(λ̂1, û1,yh)‖u1 − û1‖a.(36)

Combining (13), (16) and (36) leads to the following inequalities

λ̂1 − λ1 ≤
‖w‖a

1− ‖w‖2b
η(λ̂1, û1,yh) ≤

‖w‖a

1− 1
λL

2

‖w‖2a
η(λ̂1, û1,yh)

≤
αλL2

λL2 − α2η2(λ̂1, û1,yh)
η2(λ̂1, û1,yh).(37)

This is the desired result (35) and the proof is complete. �

The result (35) trivially implies the following guaranteed lower-bound result

λ̂L1 := λ̂1 −
αλL2

λL2 − α2η2(λ̂1, û1,yh)
η2(λ̂1, û1,yh) ≤ λ1,(38)

where λ̂L1 denotes a lower bound of the first eigenvalue λ1.

Remark 4.1. From (13) and (35), the guaranteed results depend on the constant

λL2 /(λ
L
2 − λ̂1) which may be large when the gap λL2 − λ̂1 is small with respect to λL2 .

It is reasonable in some sense since when the gap between λ1 and λ2 is small, we
need to use fine enough finite element space to resolve them. How to improve the
efficiency of the guaranteed results is also desired.

From the derivation in Theorems 3.1 and 4.1, it is easy to know the current
method here can also obtain the guaranteed lower bounds for the first m eigenvalues
if provided the separation condition λm < λLm+1 ≤ λm+1 and the value λLm+1.

Theorem 4.2. Assume the conditions of Theorem 3.2 hold. Then the following
inequalities hold

1− λiC
2
i η

2
a(h)

θ22,i
η2(λi,h, ui,h,y

∗) ≤ λi,h − λi ≤
1

θ21,i
η2(λi,h, ui,h,y

∗),(39)

where y∗ ∈ W is the solution of the dual problem (19) with λ̂ = λi,h and û = ui,h.
Furthermore, we have the following asymptotic exactness

lim
h→0

λi,h − λi
η2(λi,h, ui,h,y∗)

= 1.(40)

Proof. From Lemma 2.1, (22) and (34), we have

λi,h − λi = ‖ui − ui,h‖
2
a − λi‖ui − ui,h‖

2
b

≥ ‖ui − ui,h‖
2
a − λiC

2
i η

2
a(h)‖ui − ui,h‖

2
a

= (1− λiC
2
i η

2
a(h))‖ui − ui,h‖

2
a

≥
1− λiC

2
i η

2
a(h)

θ22,i
η2(λi,h, ui,h,y

∗).(41)
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From (22) and (34), the following inequalities hold

λi,h − λi ≤ ‖ui − ui,h‖
2
a ≤

1

θ21,i
η2(λi,h, ui,h,y

∗).(42)

The desired result (39) can be obtained by combining (41) and (42). Then we can
deduce the asymptotic exactness easily by (39) and the property ηa(h) → 0 as
h→ 0. �

Based on the result (39), we can produce an asymptotically lower bound for the
general eigenvalue λi by the finite element method.

Corollary 4.1. Under the conditions of Theorem 4.2, when the mesh size h is
small enough, the following asymptotically lower bound for each eigenvalue λi holds

λLi,h := λi,h − κη2(λi,h, ui,h,yh) ≤ λi,(43)

where κ is any number larger than 1 (for example κ = 2) and yh ∈ W is a

reasonable approximate solution of the dual problem (19) with λ̂ = λi,h and û = ui,h.

Proof. From Lemma 3.1 and (39), we have the following inequalities

λi,h − λi ≤
1

θ21,i
η2(λi,h, ui,h,y

∗) ≤
1

θ21,i
η2(λi,h, ui,h,yh).

Combining (23) and ηa(h) → 0 as h → 0 leads to θ21,i → 1 as h → 0. Then the
lower bound result (43) holds when the mesh size h is small enough. �

Remark 4.2. It is easy to know that if we choose κ closer to 1, the mesh size
h need to be smaller. For example, we can choose κ = 2 and has the following
eigenvalue approximation

λLi,h := λi,h − 2η2(λi,h, ui,h,yh),

which is a lower bound of the eigenvalue λi when h is small enough.

Corollary 4.2. Assume the conditions of Corollary 4.1 hold and there exists a
constant γi such that the approximation yh of y∗ satisfies 9y∗ − yh9∗ ≤ γi‖ui −
ui,h‖a. Then the following efficiency holds

η2(λi,h, ui,h,yh) ≤
(
1 +

γ2i
θ21,i

) θ22,i
1− λiC2

i η
2
a(h)

(λi,h − λi).(44)

Furthermore, the estimator η2(λi,h, ui,h,yh) is asymptotically exact for the eigen-
value error λi,h − λi if and only if the condition (31) holds.

Proof. First from (20), (22) and (39), we have the following estimates

η2(λi,h, ui,h,yh) = η2(λi,h, ui,h,y
∗) + 9y∗ − yh 92

∗

≤ η2(λi,h, ui,h,y
∗) + γ2i ‖ui − ui,h‖

2
a

≤ η2(λi,h, ui,h,y
∗) +

γ2i
θ21,i

η2(λi,h, ui,h,y
∗)

≤
(
1 +

γ2i
θ21,i

)
η2(λi,h, ui,h,y

∗)

≤
(
1 +

γ2i
θ21,i

) θ22,i
1− λiC2

i η
2
a(h)

(λi,h − λi).

This is the desired result (44) and the asymptotically exactness result follows im-
mediately from the condition (31). �
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Remark 4.3. From Corollaries 3.2 and 4.2, the estimators η(λi,h, ui,h,yh) and
η2(λi,h, ui,h,yh) are asymptotically exact for ‖ui−ui,h‖a and λi,h−λi, respectively,
when the condition lim

h→0
γi = 0 holds.

5. Numerical results

In this section, two numerical examples are presented to validate the efficiency
of the a posteriori estimate, the upper bound of the error estimate and lower bound
of the first eigenvalue proposed in this paper. Here, the eigenvalue problems are
solved by the multigrid method from [13, 35, 36] because of its optimal efficiency.

In order to give the a posteriori error estimate η(λi,h, ui,h,yh), we need to solve
the dual problem (19) to produce the approximation yh of y∗. Here, the dual
problem (19) is solved using the same mesh Th. We solve the dual problem (19)
to obtain an approximation y∗

h ∈ Wh ⊂ W with the H(div; Ω) conforming finite
element space Wh defined as follows [9]

W
p
h =

{
w ∈ W : w|K ∈ RTp, ∀K ∈ Th

}
,(45)

where RTp = (Pp)
d + xPp. Then the approximate solution y

p
h ∈ W

p
h of the dual

problem (19) is defined as follows: Find y∗
h ∈ W

p
h such that

a∗(y∗
h, zh) = F∗(λi,h, ui,h, zh), ∀zh ∈ W

p
h.(46)

After obtaining y∗
h, we can compute the a posteriori error estimate η(λi,h, ui,h,y

∗
h)

as in (14).
We can obtain the lower bound λL2,h of the second eigenvalue λ2 by the non-

conforming finite element method from the papers [11, 23]. Based on λL2,h, we can
compute the guaranteed upper bound of the error estimate for the first eigenfunc-
tion approximation u1,h as

ηUh (λ1,h, u1,h,y
∗
h) :=

λL2,h
λL2,h − λ1,h

η(λ1,h, u1,h,y
∗
h),

and the guaranteed lower bound of the first eigenvalue λ1 as follows

λL1,h := λ1,h −
αλL2

λL2 − α2η2(λ̂1, û1,yh)
η2(λ̂1, û1,yh) ≤ λ1,

where α = λL2 /(λ
L
2 − λ1,h).

5.1. Eigenvalue problem on unit square. In the first example, we solve the
eigenvalue problem (2) on the unit square Ω = (0, 1)×(0, 1). In order to investigate
the efficiency of the a posteriori error estimate η(λi,h, ui,h,y

∗
h), the guaranteed

upper bound ηUh (λ1,h, u1,h,y
∗
h) of the error estimate ‖u1 − u1,h‖a and the lower

bound λL1,h of the first eigenvalue λ1, we produce the sequence of finite element
spaces on the sequence of meshes which are obtained by the regular refinement
(connecting the midpoints of each edge) from an initial mesh. In this example, the
initial mesh is showed in Figure 1 which is generated by Delaunay method.

First we solve the eigenvalue problem (5) by the linear conforming finite element
method and solve the dual problem (46) in the finite element space W0

h and W1
h,

respectively. The corresponding numerical results are presented in Figure 2 which
shows that the a posteriori error estimate η(λ1,h, u1,h,y

∗
h) is efficient when we solve

the dual problem byW1
h. Figure 2 also shows the validation of the guaranteed upper

bound ηUh (λ1,h, u1,h,y
∗
h) for the error ‖u1−u1,h‖a and the eigenvalue approximation

λL1,h is really a guaranteed lower bound for the first eigenvalue λ1 = 1+2π2 despite

the way to solve the dual problem by W0
h or W1

h.
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Figure 1. The initial mesh for the unit square.
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Figure 2. The errors for the unit square domain when the eigen-
value problem is solved by the linear finite element method, where
η(λh, uh,y

0
h) and η(λh, uh,y

1
h) denote the a posteriori error estimates

η(λ1,h, u1,h,y
∗

h) when the dual problem is solved by W0
h and W1

h, re-

spectively, and λ
0,L

h and λ
1,L

h denote the guaranteed lower bounds of the
first eigenvalue λ1 when the dual problem is solved by W0

h and W1
h,

respectively.

We also solve the eigenvalue problem (5) by the quadratic finite element method
and solve the dual problem (46) with the finite element space W1

h and W2
h, respec-

tively. From Figure 3, we can find that the a posteriori error estimate η(λ1,h, u1,h,y
∗
h)

is efficient when we solve the dual problem byW2
h. Figure 3 also shows η

U
h (λ1,h, u1,h,

y∗
h) is really the guaranteed upper bound of the error ‖u1 − u1,h‖a and the eigen-

value approximation λL1,h is also a guaranteed lower bound of the first eigenvalue
λ1.

In this section, we also check the efficiency of the error estimates η2(λi,h, ui,h,y
∗
h)

(i = 2, 3) for the second and third eigenvalues which are shown in Tables 1 and 2.
In Table 1, we solve the eigenvalue problem (5) by the linear finite element method
and the dual problem (46) with the finite element space W0

h and W1
h, respectively.

In Table 2, the eigenvalue problem (5) is solved by the quadratic finite element
method and we solve the dual problem (46) with the finite element space W1

h and
W2

h, respectively.
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Figure 3. The errors for the unit square domain when the eigen-
value problem is solved by the quadratic finite element method, where
η(λh, uh,y

1
h) and η(λh, uh,y

2
h) denote the a posteriori error estimates

η(λ1,h, u1,h,y
∗

h) when the dual problem is solved by W1
h and W2

h, re-

spectively, and λ
1,L

h and λ
2,L

h denote the guaranteed lower bounds of the

first eigenvalue λ1 when the dual problem is solved by W1
h and W2

h,
respectively.

Table 1. The errors for the unit square domain when the eigen-
value problem is solved by the linear finite element method, where
η(λi,h, ui,h,y

0
h) (i = 2, 3) and η(λi,h, ui,h,y

1
h) denote the a posteri-

ori error estimates η(λi,h, ui,h,y
∗
h) when the dual problem is solved

by W0
h and W1

h, respectively.

Number of elements λ2,h − λ2 η2(λ2,h, u2,h,y
0
h) η2(λ2,h, u2,h,y

1
h)

208 1.9304e+00 7.2113e+01 1.9875e+00
832 4.8497e-01 1.6651e+01 4.8866e-01
3328 1.2164e-01 4.0794e+00 1.2188e-01
13312 3.0450e-02 1.0147e+00 3.0469e-02
53248 7.6161e-03 2.5337e-01 7.6182e-03
212992 1.9043e-03 6.3322e-02 1.9047e-03

Number of elements λ3,h − λ3 η2(λ3,h, u3,h,y
0
h) η2(λ3,h, u3,h,y

1
h)

208 1.9386e+00 7.0685e+01 1.9968e+00
832 4.8728e-01 1.6198e+01 4.9098e-01
3328 1.2227e-01 3.9655e+00 1.2252e-01
13312 3.0615e-02 9.8627e-01 3.0634e-02
53248 7.6578e-03 2.4625e-01 7.6599e-03
212992 1.9148e-03 6.1543e-02 1.9151e-03

The numerical results in Tables 1 and 2 show that η2(λi,h, ui,h,y
∗
h) (i = 2, 3) is a

very efficient error estimator for the eigenvalue approximation λi,h when the error
of the dual problem (46) is small compared to the error of the primitive problem
(5). This phenomenon is in agreement with Theorem 4.2, Corollary 4.1 and Remark
4.2.

5.2. Eigenvalue problem on L-shape domain. In the second example, we solve
the eigenvalue problem (2) on the L-shape domain Ω = (−1, 1) × (−1, 1)/[0, 1)×
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Table 2. The errors for the unit square domain when the eigen-
value problem is solved by the quadratic finite element method,
where η(λi,h, ui,h,y

0
h) (i = 2, 3) and η(λi,h, ui,h,y

1
h) denote the a

posteriori error estimates η(λi,h, ui,h,y
∗
h) when the dual problem

is solved by W0
h and W1

h, respectively.

Number of elements λ2,h − λ2 η2(λ2,h, u2,h,y
0
h) η2(λ2,h, u2,h,y

1
h)

208 1.3955e-02 4.6633e-01 1.3818e-02
832 9.0239e-04 2.9777e-02 9.0013e-04
3328 5.7163e-05 1.8719e-03 5.7128e-05
13312 3.5934e-06 1.1718e-04 3.5928e-06
53248 2.2519e-07 7.3268e-06 2.2519e-07

Number of elements λ3,h − λ3 η2(λ3,h, u3,h,y
0
h) η2(λ3,h, u3,h,y

1
h)

208 1.4340e-02 4.6548e-01 1.4193e-02
832 9.2527e-04 2.9950e-02 9.2287e-04
3328 5.8616e-05 1.8858e-03 5.8578e-05
13312 3.6855e-06 1.1809e-04 3.6849e-06
53248 2.3101e-07 7.3849e-06 2.3100e-07

(−1, 0]. Since Ω has a re-entrant corner, the singularity of the first eigenfunction
is expected. The convergence order for the eigenvalue approximation is less than 2
by the linear finite element method which is the order predicted by the theory for
regular eigenfunctions. We investigate the numerical results for the first eigenvalue.
Since the exact eigenvalue is not known, we choose an adequately accurate approx-
imation λ1 = 10.6397238440219 obtained by the extrapolation method [20] as the
exact first eigenvalue for the numerical tests. In order to treat the singularity of the
eigenfunction, we solve the eigenvalue problem (2) by the adaptive finite element
method (cf. [8]). For simplicity, we set λ := λ1, u := u1, λh := λ1,h and uh := u1,h
in this subsection.

We present this example to validate the results in this paper also hold on the
adaptive meshes. In order to use the adaptive finite element method, we define the
a posteriori error estimator as follows: Define the element residual RK(λh, uh) and
the jump residual JE(uh) as follows:

RK(λh, uh) := λhuh +∆uh − uh in K ∈ Th,(47)

JE(uh) := −∇u+h · ν+ −∇u−h · ν− := [[∇uh]]E · νE on E ∈ Eh,(48)

where E is the common side of elements K+ and K− with outward normals ν+

and ν−, νE = ν−.
For each element K ∈ Th, we define the local error indicator ηh(λh, uh,K) by

η2h(λh, uh,K) := h2T ‖RK(λh, uh)‖
2
0,K +

∑

E∈Eh,E⊂∂K

hE‖JE(uh)‖
2
0,E .(49)

Then we define the global a posteriori error estimator ηad(λh, uh) by

ηad(λh, uh) :=

(
∑

K∈Th

η2h(λh, uh,K)

)1/2

.(50)

We solve the eigenvalue problem (5) by the linear conforming finite element
method and solve the dual problem (46) in the finite element space W0

h and W1
h,
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respectively. Figure 4 (left) shows the corresponding adaptive mesh. The cor-
responding numerical results are presented in Figure 5 which shows that the a
posteriori error estimate η(λh, uh,y

∗
h) is also efficient even on the adaptive meshes

when we solve the dual problem by W1
h. Figure 5 also shows the validation of the

guaranteed upper bound ηUh (λh, uh,y
∗
h) for the error ‖u− uh‖a and the eigenvalue

approximation λLh is really a guaranteed lower bound of the first eigenvalue despite
the way to solve the dual problem by W0

h or W1
h.

Mesh after 12 iterations Mesh after 17 iterations

Figure 4. The triangulations after adaptive iterations for L-shape
domain by the linear element (left) and the quadratic element
(right).

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

Number of elements

E
rr

o
rs

Errors for linear finite element method

η
ad

(λ
h
,u

h
)

η(λ
h
,u

h
, y

h
0)

η(λ
h
,u

h
, y

h
1)

η
h
U(λ

h
,u

h
, y

h
0)

η
h
U(λ

h
,u

h
, y

h
1)

slope=−0.5

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of elements

E
rr

o
rs

Errors for linear finite element method

λ
h
−λ

η2(λ
h
,u

h
, y

h
0)

η2(λ
h
,u

h
, y

h
1)

λ−λ
h
0,L

λ−λ
h
1,L

slope=−1

Figure 5. The errors for the L-shape domain when the eigen-
value problem is solved by the linear finite element method, where
η(λh, uh,y

0
h) and η(λh, uh,y

1
h) denote the a posteriori error estimates

η(λh, uh,y
∗

h) when the dual problem is solved by W0
h and W1

h, respec-

tively, and λ
0,L

h and λ
1,L

h denote the guaranteed lower bounds of the first

eigenvalue when the dual problem is solved byW0
h andW1

h, respectively.

In this example, we also solve the eigenvalue problem (5) by the quadratic finite
element method and the dual problem (46) with the finite element space W1

h and
W2

h, respectively. The corresponding adaptive mesh is presented in Figure 4 (right).
Figure 6 shows the corresponding numerical results. From Figure 6, we can find
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that the a posteriori error estimate η(λh, uh,y
∗
h) is efficient when we solve the dual

problem by W2
h. Figure 6 also shows ηUh (λh, uh,y

∗
h) is really the guaranteed upper

bound of the error ‖u− uh‖a and the eigenvalue approximation λLh is also really a
guaranteed lower bound of the first eigenvalue.
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Figure 6. The errors for the L shape domain when the eigenvalue prob-
lem is solved by the quadratic finite element method, where η(λh, uh,y

1
h)

and η(λh, uh,y
2
h) denote the a posteriori error estimates η(λh, uh,y

∗

h)

when the dual problem is solved by W1
h and W2

h, respectively, and λ
1,L

h

and λ
2,L

h denote the guaranteed lower bounds of the first eigenvalue

when the dual problem is solved by W1
h and W2

h, respectively.

6. Concluding remarks

In this paper, we give a computable error estimate for the eigenpair approxi-
mation by the general conforming finite element methods on general meshes. Fur-
thermore, the guaranteed upper bound of the error estimate for the first eigen-
function approximation and the guaranteed lower bound of the first eigenvalue can
be obtained by the computable error estimate and a lower bound of the second
eigenvalue. If the eigenpair approximations are obtained by solving the discrete
eigenvalue problem, the computable error estimates are asymptotically exact and
we can also give asymptotically lower bounds for the general eigenvalues. Some
numerical examples are provided to demonstrate the validation of the guaranteed
upper and lower bounds for the general conforming finite element methods on the
general meshes (quasi-uniform and regular types [8, 14]).

The method here can be extended to other eigenvalue problems such as Steklov,
Stokes and other similar types [21, 29]. Especially, we would like to say that the
computable error estimate can be extended to the nonlinear eigenvalue problems
which are produced from the complicated linear eigenvalue problems. Furthermore,
the method in this paper can be used to check the modeling and discretization errors
for the models (nonlinear eigenvalue problems) in the density functional theory
comes from the linear Schrödinger equation [17, 26].

The guaranteed upper bound of the error for the first eigenfunction approxima-
tion and the guaranteed lower bound of the first eigenvalue hold even the eigenvalue
problem (5) and the dual problem (46) are not solved exactly. Then the efficient
solvers such as local computing scheme can also be adopted to provide an approx-
imation yh of y. These will be our future work.
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