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Abstract

We investigate time domain boundary element methods for the wave equation in R3,
with a view towards sound emission problems in computational acoustics. The Neumann
problem is reduced to a time dependent integral equation for the hypersingular operator,
and we present a priori and a posteriori error estimates for conforming Galerkin approxima-
tions in the more general case of a screen. Numerical experiments validate the convergence
of our boundary element scheme and compare it with the numerical approximations ob-
tained from an integral equation of the second kind. Computations in a half-space illustrate
the influence of the reflection properties of a flat street.

Mathematics subject classification: 65N38, 656R20, 74J05.
Key words: Time domain boundary element method, Wave equation, Neumann problem,

Error estimates, Sound radiation.

1. Introduction

Motivated by the sound radiation of tires [2], this article analyzes time domain boundary
element methods for a scattering or emission problem for the wave equation outside a sound-
hard obstacle.

Let d > 2 and Q' C R be a bounded Lipschitz domain. We aim to find a weak solution to
an acoustic initial boundary problem for the wave equation in Q¢ = R¢ \@

2
%fm:o in R* x Q°, (1.1a)
u(0,2) = %(O,x) =0 in Q° (1.1b)
%:g on Rt xT. (1.1c)

n

Here n denotes the inward unit normal vector to I' = 99Q0¢, and 2g = g lies in a suitable Sobolev

space.
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This article reduces the boundary problem (1.1) to a time dependent integral equation on
R* x I' and studies Galerkin time domain boundary element methods for its approximation.
While we focus on the hypersingular integral equation, numerical examples compare it to an
integral equation of the second kind.

Time domain boundary integral formulations for hyperbolic equations and their numerical
solution were introduced by Friedman and Shaw [7], resp. Cruse and Rizzo [4]. A first math-
ematical analysis of time dependent boundary element methods goes back to Bamberger and
Ha-Duong [1,12], see also [9] for Dirichlet and acoustic boundary problems in a half-space. First
numerical experiments for integral equations of the second kind in the full space were reported
by Ding et al. [5], and the practical realization of the numerical marching-on-in-time scheme
include the Ph.D. thesis of Terrasse [19] as well as [14]. Also, fast collocation methods have
been developed in the engineering literature [21]. Some recent work around space-time adaptive
methods and applications is surveyed in [8]. A detailed exposition of the mathematical back-
ground of time domain integral equations and their discretizations is available in the lecture
notes by Sayas [18].

In this work we investigate the Neumann problem (1.1), present a priori and a posteriori
error estimates for the Galerkin solution of the time dependent hypersingular integral equation
of the first kind (with the normal derivative of the double layer potential). We compare the
numerical scheme for the hypersingular equation with numerical approximations of an integral
equation of the second kind (with the normal derivative of the single layer potential). We
analyze the integral equations in the more general setting of a screen T, i.e., allow 9" # 0,
which will prove relevant for work in progress on dynamic contact problems.

A motivation for these results comes from applications to traffic noise [2,9,10], where adap-
tive methods based on a posteriori error estimates are crucial to resolve singular geometries.
With this application in mind, we also present numerical results in an acoustic half-space. Here,
0 C Ri is a bounded domain with Ri \@ Lipschitz, and the Neumann boundary conditions
on T =00 N Ri are supplemented by acoustic boundary conditions

ou ou
— —a—=0 1.2
o ot (12)
on R¥™1 x {0} = OR%, a > 0. Screens arise naturally when Q' N OR% # (.

Notation: To simplify notation, we will write f < g, if there exists a constant C' > 0
independent of the arguments of the functions f and g such that f < Cg. We will write f <, g,
if C' may depend on o.

2. Time-domain Integral Equations and Discretization

2.1. Boundary integral equations

Space—time anisotropic Sobolev spaces on the boundary I' provide a convenient setting to
study the mapping properties of the time-dependent layer operators [3,13]. We more generally
consider the case of a screen, where the orientable, (d — 1)-dimensional Lipschitz submanifold
I' ¢ R? may have a boundary. If 9T' # (), first extend I to a closed, orientable manifold r.

For o > 0, s,7 € R the space H:(R™, H’(f)) consists of certain distributions ¢ on RT x f,
vanishing at ¢ = 0, such that in local coordinates the space—time Fourier—Laplace transform F¢
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satisfies

9|

o= (// jw + ia|2$(|w +io|* + |§|2) |Fp(w +io, &)|? dE dw) <00 .

The space H:(RT, H"(T")) is then defined as the closed subspace of distributions ¢ € H:(RT,
H™ (T)) with support in T, and HS(R*, H"(T)) as the quotient space HS (R, H™ (T')) /HS (R,
H™ (I'\T)). The corresponding norms are denoted by ||¢||s.,.r.« resp. ||¢||lsr. By truncation,
we also obtain anisotropic Sobolev spaces on finite time-intervals [0, ], H([0,T], H"(I')) and
H:([0,T),H"(T')). When r € i1Z, resp. s + r € 3Z, there are subtle distinctions between
the spaces of supported and extensible distributions, and the closure of C§°, as is known for
time-independent screen problems. See [9,13] for a more detailed discussion.

Layer operators allow to reduce the boundary problem (1.1) to an integral equation on the
boundary I', both in the case of the whole space R? and in the half-space with acoustic boundary
conditions (1.2). These operators are based on a Green’s function G for the wave equation. In
R3, G is explicitly given by

5t —s—r(ys3))

G(t—S,I,y): 47_(_7,,(y3)

)

and in R} by [15]

6(t—s—r(ys)  o(t—s—r(-y3))
471 (ys) dmr(—ys)

Gt —s,z,y) = +3, (2.1a)

with
a0 H(t = s = r(—ys))
208\ 5+ olrs + )+ (@ DIE |

(2.1b)

Here H denotes the Heaviside function, R? = (z1 —y1)% + (22 — y2)? and r(+y3)? = R*+ (z3 F
y3)2. The second and third terms on the right-hand side of G' represent the field reflected by
the plane 8R3_.

From a single layer potential ansatz for the solution u of (1.1):

uta) = [ Glt=ra) plrg) dr ds, 2:2)

with ¢(s,y) = 0 for s <0, one obtains an equivalent boundary integral equation of the second
kind for the unknown density ¢ on I':

ou
—Ild+K)p=2—=g. 2.3
(-ld+K)p=25"=¢g (2.3)
Here, the time—dependent adjoint double layer operator K’ is defined by
, oG
Klo(t,z) =2 (=7, 2,y) o(7,y) dr dsy. (2.4)
R+ xT N

Knowing ¢, one reconstructs the solution u of the wave equation from (2.2). Numerical schemes
based on (2.3) have been explored in [2]. However, little is known about the theoretical analysis
for discretizations of time dependent integral equations of the second kind.
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In this article we focus on an integral equation of the first kind, which we obtain from a
double layer potential ansatz for u:

u(t,z) = /R G (¢t wry) (ry) drds, (2.5)

+xT 6ny

with ¥(s,y) = 0 for s < 0. The wave equation (1.1) is then equivalent to a time—dependent
hypersingular equation for the unknown density ¢ on I':

ou
wy=20" =g (2.6)

where the time-dependent hypersingular operator W for the half-space is given by

Waip(t,x) = 2/ S

t—7,x, L) drds,.
. 0n10ny( T,2,y) Y(1,y) drds,

More generally than for I' = 052, we consider the integral equations (2.3) and (2.6) on an
orientable, (d — 1)-dimensional Lipschitz submanifold I' € R? with boundary. For the analysis
we recall the mapping and coercivity properties of K’ and W:

Theorem 2.1. a) The following operators are continuous for r € R:

K’ HPY(RT,H () — Hy(RT, H*()),
W HJPY(RY, H? (D) — Hy(RY, H2(I)).

b) The operator W0, is weakly coercive:

/ e~ 2 (We(t, 2))0, 0 (t, z) dtdsy =g (Y]
Rt xT

2
0,%,F,*'

See [13] for part a) when OI' = ). In this case part b) follows from Eq. (2.14), p. 174 in [12].
For the half-space or when OT" # (), a) is shown in [9]; the proof of b) is obtained by extending
Ha Duong’s proof in [13] for ' = ), using the modifications from [9].

The mapping and coercivity properties give a basic well-posedness theorem for the integral
equations (2.3) and (2.6).

Theorem 2.2. Let g € HP2(RT, H-3(I)).
a) There exists a unique solution ¢ € HS(RY, H=2(T)) to (2.3). It satisfies

lells,— 1,05 < Cllgllstz,—1.r

for some constant C independent of g.
b) There exists a unique solution ¢ € HsT (R*, H2 (")) to (2.6). It satisfies

||7/1Hs+1 1rs S CH9||5+2 —-ir

IR YT D
for some constant C independent of g.
The proof of part a) uses the equivalence of (2.3) with the original PDE problem (1.1). It does

not imply the well-posedness of the discretized problem. Part b) is a direct consequence of
the weak coercivity estimate in Theorem 2.1b); note that the solution is less regular in time
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than the mapping properties in Theorem 2.1a) might suggest, because coercivity only holds in
a weaker norm.

Both formulations, (2.3) and (2.6), will be discretized from their variational formulations,
which admit a unique solution when g € H: (R*, H=2(T")), resp. g € H2(RT, H~2(I)), i.e. for
sufficiently smooth functions of time. They are given as:

o Find ¢ € HZ (R, H#(I')) such that for all ¥ € HZ (R*, H#(I')) there holds:

/ e 2 (—Id+ K')p Vdtds, = / e 2tg Wdtds, . (2.7)
R+ xT

R+xT"

e Find ¢ € HL(R*, H2(I)) such that for all ¥ € HL(R*, Hz(I')) there holds:

/ e 2N W) 0,V dt ds, = / e g 0,V dtds, . (2.8)
RtxT RtxT

Because of the coercivity in Theorem 2.1b), the Galerkin scheme (2.8) admits a unique solution
and is stable in the norm of the space HO(R*, Hz (T')).

2.2. Discretization

We consider dimensions d = 2 and 3. If I is not polygonal we approximate it by a piecewise
polygonal curve resp. surface and write I' again for the approximation. For simplicity, when
d = 3 we will use here a surface composed of N triangular facets I'; such that I' = UN | T;.
When d = 2, we assume I' = UY_; T; is composed of line segments I';. In each case, the elements
I'; are closed with int(I';) # 0, and for distinct I';, I'; C T the intersection int(I';) Nint(T';) = 0.

For the time discretization we consider a uniform decomposition of the time interval R*
into subintervals I,, = (t,,—1,t,] with time step |I,| = At, such that ¢, = nAt (n=0,1,...).

Let P? be the space of polynomials of degree at most p. We choose a basis ¢V, - - - ,cp]]”\,g of
the space &

v,f:{¢;raR;¢

r, € PP Vi (and ¢ continuous and ¢|or = 0 if p > 1)}
of piecewise polynomials in space and a basis %9, , V9 of the space
V3 = {¢ :RT = R:¢l;, €P? V¥n (and ¢ continuous and ¢(0) = 0 if ¢ > 1)}

of piecewise polynomials in time.

Let Ts = {T4,--- ,Tn,} be the spatial mesh for I and Ty = {(0, t1], (t1, 2], -+, (tn,—1, 1]}
the time mesh for a finite subinterval (0, T7.

We consider the tensor product of the approximation spaces in space and time, V; and V3,
associated to the space-time mesh 7g 1 = Tg X T, and we write

ViR, =VEeVy,. (2.9)
These approximation spaces lead to Galerkin formulations for (2.7) and (2.8). They are
given in terms of the discretized right hand sides g a¢, resp. (0:9) h.At AS:
e Find ¢p ar € VP, such that for all test functions Wy ar € V71, there holds:

/ e*QUt(fIJr K onat Ynardtds, = / e*Qthh,At Uy ardtdsy . (2.10)
Rt xI R+ xID
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e Find ¢, ar € VP, such that for all test functions ¥ A, € V71, there holds:

/ 6_20t(W¢h,At) OVh At dtds, = / e_QUtgh,At OVWh ardtds, . (2.11)
RtxT RtxT

3. Error Estimates for the Hypersingular Integral Equation

3.1. An a priori error estimate

Our first error estimate proves the convergence of the Galerkin method (2.11) if the exact
solution is sufficiently smooth and the discretization is based on piecewise polynomials of suffi-
ciently high order. In the numerical experiments in Section 5, we shall observe convergence for
more practical discretizations. See also [12], p. 182, Thm. 3, for a similar statement for closed
manifolds I' € R? without proof.

As ingredient, we require an inverse estimate like (3.182) in [11], namely

1
Ion,atli e S zzlenatllo, .00 (3.1)
provided ¢p a¢ € Vi'A,, the space of piecewise polynomials defined in (2.9).

Theorem 3.1. Let 1 € HL(R', H2(T)) be the solution of (2.8), Un.as € ViiX; the solution of
(2.11). Then there holds:

Hd’ - wh,AtHO,%,F,*

Sllgnae =gl —gr+ (1+@D7) inf = dnadl g e

p,q 22970
bn,at€VIA,

Proof. We start with the coercivity estimate, Theorem 2.1b), applied to ¥n At — ¢n.ar €
HX(R*, H3(T)), where ¢j, a¢ € V4, is arbitrary:

NN R

S/R e 2N W (Yn.at — dn.ar)) 0 (Vn.at — dn.ae) dtds,
+xT
= [ nst — )0~ i) deds,
Rt xT
+ /]R e 2T W (Y — dn.at))Oc(Vn.at — dn.ar) dt ds,.
+xT

In the second line we have added and subtracted the term with . For the first term we obtain
using the discretized weak form (2.11) and the continuity of the duality pairing:

/]R e 27 W (Yn,at — V)0 (Vn,at — bn,at) dt ds,
+xT

:/ 6720t(9h,At — 9)0c(Vn, At — On,At) dt dsy
Rt xID

<llgn,at = glly,—1 rllOc(Vn,at = dr.ad)ll 1,1 p s -

IR
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For the second term the continuity of duality pairing and the mapping properties of W in
Theorem 2.1a) show:

/ 27 (W (4 — b))k (Yn.ae — b ae) dt dss
R+ xT

<[[W() — én,at)llo,—1.,0ll0:(Vn,ae — dn.ai)llo,1r

I ER]
Sl — én.adl

1,%,F,*Hwh,At - QJ)h,AtHL%’R* .

We use the inverse inequality (3.1) in the time variable to estimate second factor:

1
[Unat = dnadllgre S 5 l1¥nat = dnatllos .

IR} IR

Therefore we obtain

W’mAt - d)h,At”O,%,F,* S ||9h,At - 9||1,7%,F + (At)71||1/1 - ¢h,At||1,%,F,*-

With the triangle inequality, one concludes

0,11, < |W*¢h,At|

¥ — ¥n.atllo 1 r,
Slgnae = glli 10 + 14 = ¢nadllo 1 r e + (A) T = dnaclli 1 p .-

IR IR

011+ 1Unae — on,adl

1
y30L s 0,5,0,*

520t

The a priori estimate follows. O

3.2. An a posteriori error estimate

In this section we derive a simple computable error estimate, which can be used to steer
adaptive mesh refinements based on the four steps

SOLVE — ESTIMATE — MARK — REFINE |,

as shown for the single layer potential in [8,10,11]. Because in practical computations we set
o = 0, we derive the estimate on finite time intervals [0, 7], but as in these sources also R™
could be considered. Also, for simplicity we assume g = gp a¢. The weak formulation on [0, 7]
reads as: Find ¢ € HZ([0,T], H2(T")) such that for all & € HZ([0,T], H2(I')) there holds:

/ (W) 0yV dtds, = / g O dtds,. (3.2)
[0,T)x [0,T]xT

Its Galerkin discretization is given by: Find ¢n a¢ € V)4, such that for all test functions
Wy ae € VPA, there holds:

/ (W¢}17At) OVh ardtds, = / g OWh Ardtds,. (3.3)
[0,T1xT [0,T1xT

Instead of the coercivity estimate in Theorem 2.1b, the analysis of the scheme may be directly
based on considerations of the energy

1
Blut) = /QUQ (@w)? + 1Vul?) d.
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Following Ha Duong [13], if u satisfies the wave equation outside T', the representation formula
and Green’s identity may be used to express the energy at time ¢ in terms of the hypersingular
operator and u|r, — u|r_ = ¢, where u|r, denote the upper, resp. lower, side of I'":

E(u,t) =/ (W) ds, dr.
[0.1]
The time dependent version of the trace theorem for functions of finite energy [13],
T
|‘U|Fi||g7%,r7* STA E(u,t) dt,

therefore results in:

Proposition 3.1. For every ¢ € H}([0,T], H2 (T)) there holds:

_F*NT/ / (We)p ds, dr dt.
[0,¢]xT

We may now derive an a posteriori error estimate.

Theorem 3.2. Let o) € HL([0,T], Hz(T')) be the solution of (3.2), hn.as € Vivx, the solution
of (3.3). Assume that

R = g— Wenai € H(0,7], HV/A(T)).
Then there holds:

1 — Yn.atllo.L 1

IR

L SURIL _yr
Proof. From Proposition 3.1 we first note that
T
[0~ tnaillyr. S [ OV~ 0n00)00 ~ nar) dsdr .
o Jo Jr

Using the continuous weak formulation (2.8), then its discretization (2.11), we have for all
Wy, At € fo,,gt:

/T /t/(W( — Vn.at)0 (VY — Y at) dsg dT dit

o Jo Jr

:/OT /Ot/rg O — Y ar) dsg dr dt — /OT /Ot/F(th,At)@t(w — hpat) dsg dr dt
AT At/g O(p — WUy at) ds, dr dt — AT At/F(W%’At)at(w — Upne) dsg dr dt

/ / / — Wn,at)0 (Y — Wp ar) ds, dr dt.

The last term may be estimated by interchanging the time integrals and duality:

/ / / WA (6 — Upay) ds, dr dt

:/ (T — t)/( —Wionat)0e (Y — Up Ar) dsy dt
0 r

<T Rl sl — Wnadlo s r.

We use ¥, aAr = Y5 A to obtain the estimate. ]
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4. Algorithmic Considerations

4.1. Implementation of W

We set 7 =t — |x — y| and use o0 = 0. Citing a formula for W from Ha-Duong [12], Lemma
4b), we have:

/ (W) 0, dt ds,
Rt xT

g - Ny bt (curlp ¥)(1,y) - (curlp W) (¢, z) o ds
o [ i) + QLo s, doadt. (41

We use piecewise linear ansatz functions ¢} (z)5™!(¢) from the space Vhl”it (see (2.9)) in space
and time:

dnata) = 30 Sl (2)8m ), (4.2)

m=1 i=1

where 8™ 1(t) = (AL ((t = tm-1)y"(t) = (t — tms1)y™T(t)) and 49 (t) = 70 is the char-
acteristic function of (t;_1,t;]. For algorithmic reasons, to obtain the time-stepping scheme
below, we choose test functions Wj, a¢(t, x) =pj(x)y"(t), which are piecewise constant in time
and piecewise linear in space. Expanding (4.1) for ansatz functions 1 a¢ of the form (4.2)
results in:

W¢}17At(t,x) at‘l/h,At(t, ac) dt ds, = A — B,

R+xT
with
S TYL

Amzlz

P 27 Jrxr |x_y|

/ /rxr |z — <Z Z e Bm ()l (y )) Y™ () (x)dsy dsydt
= z:lz

3 Be Ty, / gml(r )dt>dsds
= 2 Fxr|$—y| < !

Using, in particular, that the derivative 4™ = d;, , — &, is a difference of Dirac distributions,
we first compute

/ ™ (1) curlr @} (y) 4™ (t) curlp cp} (x)dtds,ds,,

| o
~(A) ™ (2(H (tam — [ = y1) = H (b1 = |2 = 9])) = H(tn-m1 — |2 = )
+ H(tnm — & = 1) = Hltn-mr = 2 = y]) + H(tn-m—2 — |2 = y]))

— (A (X (#9) = 2B () XB s

Here, for [ € Ny we define the light cone E; = {(x,y) e T xT:¢; < |z —y| < tj41} CT'x T, and
xe, (z,y) = 1if (x,y) € E;, and = 0 otherwise. The second equality is verified by calculating
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both sides for (z,y) € E;. To conclude:

o (na - ny) (AE) " o) (y); (7)
_ Ty i J
B= Z Zc{” [ — / Sy r— dsyds,
m=1i=1 Ev
o / (nz -1y (A Toi W)gj (@) / (s - my)(A) i (y)pj () |
27| — y| yerE 27| — y| vl
En—m-1 En—m-2

We now consider A:
A=

N: Ng m [e'e)
= Z > / —|cur1p o} (y)curlp gojl (ac)/ BTy (t) dtds,ds,.
0

m=1i=1 rxr |2

B (7)eurlr ¢} (y) 7" (t)curly ) (x)dtds, ds,
xT |99 =yl Jo

An explicit calculation of the integral shows
o0 (oo}
|t de= [ 007 (o = vl -ty - o~ )
0 0
~(t = J2 = yl=tm )y (= o —y]) )" ()t

=@ [ = b=yl =t~ e~y O

0
@07 [Tt o sl =t = o~ )
=(2At)7! (|x —yl* =2l — yltn_mi1 + ti,mH)x%,m (x,v)
+ 2807 (Jo =y = 200 = Yltn-m-2 + 22 XBu (@)
+ A0 (= 20e = yP20e = Yl(tam + taom )= (B + 1) + 20 XB, 0 (21)
="z, y).
Here we use the definition of E; from above. Therefore

A= 22%/

m=1 i=1

| curlp o1 (y)curlp cp} () T""™(z,y) dsy dsq.
rxr [T —

4.2. Marching-on-in-time scheme

In terms of the coeflicients ¢} with respect to the basis functions we note from the formulas
for A and B in Section 4.1 that
Ny
Wb ae(t, ) 0rWn ae(t, ) dbds, = Y W™,

R+xTI m=1

Here W™~ is a matrix which has A — B as entries.
Similarly we have for the right hand side

gn.ai(t,z) = Zzglnﬂml )i ().

m=1 i=1
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In matrix-vector notation we obtain using the stiffness matrix I; j = [ &(x)&; () ds,:

N
At
Z Wrnmmem — ?I(gn—l + gn)’

m=1

i.e., an explicit time stepping scheme, known as the marching-on-in-time (MOT) algorithm:

At —
0On __ n—1 n n—m, m
Wie" = —-1(g gt =y W

4.3. Leading contribution of absorbing boundary conditions to K’

To consider the leading contribution of an absorbing half-space, we show that the leading
part of the new term ¥ in the fundamental solution (2.1a) for the absorbing half-space can
be implemented as a minor modification of the pure Neumann problem, o = ¥ = 0. For
this, let ¥’ = (y1,y2, —y3) the reflection of y on the y3 = O-plane, ¥ = z3 + y3 and R? =
(x1 —y1)? + (2 — y2)?. We compute that the contribution of ¥ to the operator K’ as in (2.4),

3
(Klp, U) := 2/]R+ F/]R+ . gn (t—m1,2,y) o(1,y) U(t,z)dr ds, dt ds, ,
X X xT

is given by

a 0 0 H(t—7—-l|z—1))
a 9 ) | Wt 2)ds,drds,dt .
W/}R+xr/R+xr . <a7'[\/(t—7'+a’l93)2+(042—1)R2](p(7— y) | O(t, x)ds,drds

If we define

At,7) :==/(t — 7 + a¥3)? + (a2 — 1)R2,

an integration by parts in 7 shows that

(Khp, w) = -2 / / aiz ([H(t _2(; 'T”g =YDy, y)) U(t, 2)ds, dsydrdt

Rt XT Rt
In a physically motivated approximation, we neglect the z-derivative of A:

9 H(t—T—Ix—y’l)]_ - (@ —y')

T (= et ey 173 R

With piecewise constant ansatz and test functions in space and time, we obtain

yonsn U =2 [ @A) (0" taor + 1o =) 2"t + o — 1)
I'xT’
. na - (z—y')
o= YTt + 2~ Yo tn 1)

dsgdsy .

This term is easily included in the contributions of the first two terms of the fundamental
solution, see [2].
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5. Numerical Results

5.1. Neumann problem exterior to the sphere

In the following, we present numerical results for the Neumann problem (1.1), using the
time domain boundary element formulations of the first, resp. second kind, (2.8) and (2.7).

In the special case where I' = S? = {z € R3 : |z| = 1} is the unit sphere, for simple
right hand sides exact solutions for the densities may be found in [20]. We recall that for the
hypersingular equation W1 = g with g(t,2) = g(¢), the solution has the following form [20]:

Y(t,x) =P(t) = —/ g(t — 1) cosh(r)dr

0
[t/2) &
+ Z Z ’““/ cra(T —2k)F e =2k g(t — 7)dr . (5.1)

k=1 l=1

o (B 2k~
T ) (k=1 1)

For the corresponding equation of the second kind, (—Id + K') ¢ = g, again with g(t, ) = g(t),

Here

the exact solution is given by

[t/2] [t/2]

o(t,z) = — Z (t —2k) + Z/ 2R gt — 1) dr . (5.2)

As ¢ is independent of z, the L*(T") norm turns out to be [|¢(¢)||L2(r) = 2v/7|¢(t)], and similarly
for 4.

Example 1. In the first numerical experiment we look for solutions to W) = g, resp. (—Id+
K') ¢ = g with g(t,z) = g(t) = sin (% )cos (t?) on T = S2 for the time interval [0,12]. We
use the time domain boundary element formulations (2.8) and (2.7) and compare the numerical
solutions with the exact solutions from (5.1), resp. (5.2). For the discretization, we use the
discretized tensor product spaces V,f’, 7, from (2.9) and follow Section 4. In particular, we use
piecewise linear ansatz functions Vhl”it for (2.8), resp. piecewise constant ansatz functions V,g ’gt
for (2.7). The choice of test functions allows us to solve the discretised space time equations
using the marching-on-in-time scheme from Section 4.2. To approximate the sphere, we start
from a regular icosahedron with 20 faces. In each refinement step, we divide both the time
step At and mesh size h by 2 and project the new nodes back onto S?. The ratio At/h ~ 0.6
remains approximately constant.

Figure 5.1 depicts ||1n,atl|z2(r,) for the numerical solution as a function of ¢ for meshes with
320, 1280, 5120, resp. 20480 triangles and compares it to |4 (t)|[z2(ry. In Figure 5.2 we show
that the absolute value of the difference ||vn,a¢| z2(r,,) — 19|l £2(r) remains uniformly bounded
as a function of time. When the number of degrees of freedom is increased, this error tends to
0 uniformly over the whole time interval, as is expected for a space-time Galerkin method.

For comparison, in Figure 5.3 we plot ||¢n atllz2(r,) for the numerical solution of the dis-
cretized equation of the second kind. Figure 5.6 compares the L?([0, 7] x I')-norm of the error
for the resulting densities ¢ (pink) resp. ¢ (blue) vs. the number of degrees of freedom, i.e. the
number of time steps times spatial degrees of freedom. The rate of convergence for the Galerkin
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Fig. 5.1.: L?(I'y,)-norm of the solution to the hypersingular equation (2.8) for Example 1.
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Fig. 5.2.: Absolute error [|9n atlz2(r,,) — %]l z2(r) as a function of time for the hypersingular
equation (2.8), Example 1.

solutions of the hypersingular equation is approximately 1.0 in terms of degrees of freedom, or
3.0 in terms of h, compared to a rate 0.65 in degrees of freedom, 1.96 in h, for the Galerkin
solutions of the integral equation of the second kind. Even for the coarsest discretization with
320 triangles and 60 time steps (19200 DOF for (2.7), 9720 DOF for (2.8)) the Galerkin error
in L2([0,T] x T) for the density 1 is significantly lower for the hypersingular equation (2.8).

Example 2. We complement Example 1 with a second experiment in the same geometry,
where g(t,z) = t*e2!. In this case, the exact solution 1 to the hypersingular equation is
approximately linear in the time interval [2, 12], see Figure 5.4. Figure 5.6 shows a correspond-
ingly higher rate of convergence 1.6 in degrees of freedom, 4.8 in h (light blue curve), down to
L2-errors of 1078, Even though the solution to the equation of the second kind (Figure 5.5)



Time Domain Boundary Element Methods for Neumann Problem 83

is far from linear, the rate of convergence 1.34 in degrees of freedom, 4.1 in A, from Figure 5.6
similarly indicates higher regularity of the solution compared to Example 1.

In both examples, the rates of convergence go beyond what our a priori estimates from
Section 3 would indicate even for discretizations with higher polynomial degrees, for a general
geometry.

—exact solution

——320 triangles, At=0.2

—1280 triangles, At=0.1

——5120 triangles, At=0.05 | N
20480 triangles, At=0.025 |

10

L2-Norm in Space
e

Fig. 5.3.: L?(I'y,)-norm of the solution to the integral equation (2.7) for Example 1.
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Fig. 5.4.: L?(I'y,)-norm of the solution to the hypersingular equation (2.8) for Example 2.

5.2. Acoustic boundary conditions in a half-space

In a further numerical experiment, we include the leading contribution of an acoustic half-
space Ri in our computations. The additional complications of the singular horn geometry
between the emitter I' and R? x {0} are crucial for applications in traffic noise, and there is
particular interest in properly modeling the reflectivity « of the street [2]. The Neumann and
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Fig. 5.6.: L2([0,T] x I) error vs. degrees of freedom of the space-time mesh in Examples 1 and
2, for the integral equations (2.7) resp. (2.8).

Dirichlet problems correspond to a reflectivity of & = 0 resp. a = oo, or physically hard vs. soft

scattering.

Example 3. Again we consider the model geometry of the unit sphere, but now centered in
(0,0,1.63) in the half space Ri with acoustic boundary conditions

o o,
on Yot

on R? x {0}. We implement the Green’s function corresponding to these boundary conditions

in the half-space with an approximate third term, as described in Section 4.3. On I' Neumann

conditions are imposed, g—z = % g.
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Fig. 5.7.: Sound pressure at (-, 0, %) in Ri as a function of the reflectivity a.
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Fig. 5.8.: Sound pressure at (2.8m,0,1.0m) as emitted by a car tire, Dirichlet or Neumann
boundary conditions on the street.

We use the exact solution

ult, z) :T;rzt [1 + cos (Mﬂ H(R —|ry —t|)

7
T [Hcos <%)} H(R ~ |r— — 1))

r_
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]

Fig. 5.9.: Mesh of the passenger car tire, Example 4.

of the Neumann problem with o = 0 to prescribe g on I':

t ’/T(T+ — t) T™ry — t . 7T(7"+ — t)
=|— (1 Sk il 720 I R H(R — |r. —
g {27& < +cos( 7 >) R o, sin 7 (R—|ry —t|)
2 +y? + 22— 1.632 t m(r_ —1t)
P ([ (e ()

7%7;: " in <7T(TR t)ﬂ H(R—|r_ — t|)) .

Here, H (t) denotes the Heaviside function, vy = ||y, 22, 23 — 1.63]| and r— = ||x1, 2, 3 + 1.63]|
and R = 0.9. While for Neumann boundary conditions (o = 0) a single pulse is emitted from

| =

I" and reflected on R? x {0}, the exact solution is not known for acoustic boundary conditions
with reflectivity a € (0, 00) or Dirichlet boundary conditions, o = oo.

This acoustic problem is solved using the integral equation (2.7) of the second kind, where
K’ is defined from the modified Green’s function as in Section 4.3. We use tensor products
V,g ’gt of piecewise constant ansatz and test functions in space and time on a fixed uniform mesh
of 1280 triangles and At = 0.1. Figure 5.7 shows the sound pressure up a¢(t, ) in the point
T = (\/L? 0, %) as a function of ¢ for different values of the coefficient o. We note that the
solution is independent of the boundary condition until the first reflected wave arrives in the
point z. Increasing « from the Neumann problem o = 0 (blue) via o = 0.1, 0.5, 5, 10, 1000
to the Dirichlet problem o = +o00 (brown), we obtain a family of solutions which interpolates
monotonously between these boundary conditions.

Depending on the reflectivity, we observe strong interference between the direct and reflected
waves. Similar effects due to the singular horn geometry between the emitter and R? x {0} are
observed in the sound emission of tires [2].

In the case of traffic noise, the resulting dependence on the reflectivity of the street will be
crucial to take into account. This application is the content of our final example.

Ezxample 4: For a problem in traffic noise, we illustrate the influence of the boundary conditions
on the solution for the extreme cases of Dirichlet and Neumann conditions on the street. In
this case I' is given by the mesh in Figure 5.9 with 6027 nodes of a grown slick 205/55R16
passenger car tyre, of diameter around 60cm, at 2 bar pressure and subject to 3415N axle load
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(a) (b) (c)
Fig. 5.10.: Visualization of the density for At = 0.01, time step: 100 (a), 200 (b), 300 (c).
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Fig. 5.11.: Sound pressure at (2.8m,0,1.0m) in frequency domain, as emitted by a car tire.

at 50 km/h on a street with an ISO 10844 surface [6]. The right hand side g is obtained from
simulations of the particle velocity %—7; on I} as supplied by the work group of W. Kropp at the
Chalmers University in Gothenburg within the LeiStra3 cooperation and then converted from
frequency to the time domain, see [2] for details.

In this experiment we consider the tire centered above x = y = 0, elevated 2.1cm above the
street. In our units with the speed of sound ¢ = 1, we choose At = 0.01, so that At/h =~ 0.2 and
solve the integral equation (2.7) of the second kind for both Dirichlet and Neumann boundary
conditions on GRi. The density is plotted in snapshots at the time steps 100,200 and 300 in
Figure 5.10 (for the Dirichlet problem). See [2,8] for similar density profiles for the Neumann
problem. Figure 5.8 shows the resulting sound pressure in the point (2.8m,0,1.0m). The
influence of the boundary conditions is clearly observed once the reflected wave has reached the
point of observation, especially in the transient dynamics for short times. For long times, the
Dirichlet conditions show a persistent oscillation of period around 7At¢. Figure 5.11 shows the
absolute value of the Fourier transform of the sound pressure from Figure 5.8 for times > 5.145.
The oscillations in time for the Dirichlet problem clearly manifest themselves as a broad peak
around frequency 4800Hz, in physical units. For the Neumann problem a smaller resonance
may be noticed around 1000Hz. In [2] we showed that such broad-band frequency results agree
and are competitive with direct computations in frequency domain for passenger car and truck
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Fig. 5.12.: A-weighted sound pressure for Dirichlet and Neumann conditions, averaged over
321 points.

tires Imm above the street over a sound-hard street; they qualitatively agree with experiments.

In practice, it is often average characteristics and the human perception of the sound emis-
sion that are of interest. Figure 5.12 depicts an average over 321 points on the hemisphere
{z € R3 : [|z]2 = 2} of emission spectra like in Figure 5.11, also averaged over bands of fre-
quencies. Here the A-weighted sound pressure level is plotted for frequencies up to 2000Hz,
which provides an approximation to the human perception of noise. We observe that Dirichlet
and Neumann conditions lead to similar average noise emission for frequencies between 300
and 800Hz. For higher frequencies, the noise level is significantly higher in the Neumann case,
reflecting the resonance already observed in Figure 5.11. The possibility of such analyses gives
time-domain boundary element methods a role in the study of traffic noise.
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