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Abstract. We construct a finite volume element method based on the constrained
nonconforming rotated Qj-constant element (CNRQ;-Py) for the Stokes problem.
Two meshes are needed, which are the primal mesh and the dual mesh. We approx-
imate the velocity by CNRQ; elements and the pressure by piecewise constants.
The errors for the velocity in the H! norm and for the pressure in the L? norm are
O(h) and the error for the velocity in the L? norm is O (h?). Numerical experiments
are presented to support our theoretical results.
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1 Introduction

Let Q) be a bounded, convex and open polygon of IR? with boundary Q). We consider
the following Stokes equations with the homogeneous Dirichlet boundary condition

—Au+Vp=Hf, in Q, (1.1a)
divu =0, in Q, (1.1b)
u=0, on dQ), (1.1c)

where u = (u!, u?) represents the velocity vector, p is the pressure and f indicates a

prescribed body force. Let L3(Q) be the set of all L?>(Q)) functions over () with zero
integral mean and let

H{(Q) := {u € H(Q) : u =00noQ}.
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The variational formulation of (1.1a)-(1.1c) is: find a pair (u, p)€HL(Q)? x L3(Q2) such
that (see [10])

a(u,v)+b(v,p) = (f,v), Vv € H)(Q)?, (1.2a)
b(u,q) =0, Vg € L3(O), (1.2b)
where

a(u,v) = (Vu, Vv), b(v,p) = —(p,divv).

Finite volume method (FVM) is an important numerical discretization technique
for solving partial differential equations, especially for those arising from physical
conservation laws including mass, momentum and energy. In general, FVM has both
simplicity in implementation and local conservation property, so it has enjoyed great
popularity in many fields, such as computational fluid dynamics, computational aero-
dynamics, petroleum engineering and so on. About some recent development of FVM,
readers can refer to the monographs [6,7,9,13,16,19,20,27,28] for details.

In recent years, there have been a lot of studies on the mixed finite element meth-
ods and mixed finite volume element methods for the Stokes problem. Among these
studies, some lower order quadrilateral finite elements seem to be more attractive,
e.g., the conforming bilinear Q;-Py element [7,17,24,26], the conforming bilinear Q;-
Q1 element [1, 14] and nonconforming rotated Q;-Py element [25] with some vari-
ants [4,13]. All the approximation finite elements for the velocity need at least four
degrees of freedom on each quadrilateral. In [23], Park and Sheen have introduced a
Pi-nonconforming quadrilateral element which has only three degrees of freedom on
each quadrilateral. Later, Man and Shi [20] proposed the P;-nonconforming quadrilat-
eral FVM for the elliptic problem by using a dual partition of overlapping type. Fol-
lowing the line of the finite element in [23], Hu and Shi [12] presented a constrained
nonconforming rotated Q; (CNRQ;) element and applied it to the second order el-
liptic problem. In [12], the authors also point out that the CNRQ; element and the
Pi-nonconforming element are equivalent on a rectangle since the constraint and the
continuity are the same, however, the two elements are different on a general quadri-
lateral. Afterwards, Hu, Man and Shi [11] and Mao and Chen [21] investigated and
analyzed the CNRQ1-Py finite element method for the Stokes problem on rectangular
meshes. The application of the CNRQ; element to the nearly incompressible planar
elasticity problem can be referred to [11,22]. Meanwhile, Mao and Chen [21] and Liu
and Yan [18] discussed the supconvergence of the finite element scheme for the Stokes
problem on rectangular meshes.

The purpose of this paper is to investigate a new mixed FVM for solving the Stokes
problem on quadrilateral meshes. We will approximate the velocity by the CNRQ; el-
ement (see [12]) based on the primal quadrilateral partition, while the test function
space of the velocity is the piecewise constant space associated to the nonoverlapping
dual partition. Following the ideas presented in [11, 18,21, 24], we employ a piece-
wise constant approximation for the pressure. We also analyze the stability of this
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new mixed FVM under certain reasonable assumptions and obtain the optimal con-
vergence rate for the velocity in the broken H' seminorm and the pressure in the L?
norm. In addition, an optimal convergence rate for the velocity in the L? norm is
derived.

The organization of this paper is as follows. In Section 2, we investigate the CNRQ1-
Py finite volume element scheme for the Stokes problem on quadrilateral meshes. The
stability of this FVM are discussed in Section 3. In Section 4, we prove the optimal
convergence error estimates for this new method. Finally, in Section 5 numerical ex-
amples are presented on three types of quadrilateral meshes to confirm our theoretical
results.

Throughout this paper, we denote C without subscripts as a generic positive con-
stant which is not the same at different places and independent of the discretization
parameters.

2 Finite volume element scheme

For a subdomain T C R?, (+,-)r and (-, -)51 denote the L?>(T) and L?(9T) inner prod-
ucts, respectively. Let || - ||s,r and | - |s,7,5 > 0 be the norm and the seminorm of the
standard Sobolev space H*(T) or H*(T)?, respectively. The subscript T is omitted if
T =0Q.

Let 7, = {K}, which is called primal partition, be a strictly convex and nonover-
lapping quadrilateral partition of (). We denote the numbers of the elements and the
interior nodes of 7, by N and N7, respectively.

For a given K&, its four vertices and midpoints of edges are denoted by P; =
(xi,vi),1 <i<4and M;, 1 <i < 4incounterclockwise order (see Fig. 1), respectively
and V(K) denotes the set of four vertices of K. The point Cx denotes the joint of M; M3
and MMy, which is the averaging center of K, then Cx becomes the midpoint of both
M1M3 and M2M4. Set

_ _— m
nmyp = |M1M3|, my = |M2M4|, K = WT?I 0= 4M3CKM2.

Let m(K) be the measure of K. And we shall give the following assumptions on 7j,.

Py

My

T T2

Py

Figure 1: The element K and the element .
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Py Py Py

Py
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P PQ Py
Figure 2: The bilinear mapping Fx : K =K.

The primal partition 7}, is supposed to be regular in the sense that there exist J, >
01 > 0and 0 < ¢ < 1independent of 1 such that for any K€7j:

51 <k < 52/ (21&)
| cosOk| < 0. (2.1b)

And suppose T, is quasi-uniform, i.e., there exists a positive constant C such that
Ch* <m(K) <h?, VKET, (2.2)

where h is the maximum meshsize of the partition.
We also assume each quadrilateral K in 7}, satisfying quasi-parallel quadrilateral
condition, i.e.,

PP} + PyP}| < CI2. 23)
Let K = [~1,1] x [-1,1] in the 7-plane be a reference element with vertices P; =

(-1,-1), P, = (1,-1), P; = (1,1), P, = (—1,1). Define the bilinear transformation
Fx:K—=K:

7. x =co+ 18+ con + 1287,
K- y =do+di¢ + don + d12C1,

where
co dy 1 1 1 1 X1 N
C1 dl . 1 —1 1 1 -1 X2 Y2
¢ do T4 -1 -1 1 1 X3 Y3
C12 d12 1 -1 1 -1 X4 VY4

The Jacobian matrix of the bilinear transformation Fx can be expressed as

or ox
| 9 o | [ atcrn o+l
Tk, 1) = dy | ( di +dpy  dy+ dind ) ,
a¢  Jy
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with the determinant
]K<’§/ 77) =Jo+ ]1§+ ]2771

where
Jo =ci1dy —codi = m(K), J1 =cidia —ciod1, Jo = c12dy — c2d1a,

and its inverse is

o d¢
~ ox oy 1 dy +di2d  —c2—c2f
TN &) = = :
k(&) 9y 9y Jk(&7) ( —dy —dpn o+ )
ox 9y
In terms of the aforementioned mesh parameters, (2.3) implies (see [12])
lc12| + |d1a| < CH?, (2.4a)
||+ |]2] < CH. (2.4b)

For convenience, we give a brief introduction of the constrained nonconforming
rotated Q; quadrilateral element proposed in [12]. For any edge I C 0K, the edge
functional i;l is defined as

. 1
it (v) = il /lvds,

for any v€L?(K). Let P;(K) be the linear function space on the reference element K.
Then the constrained nonconforming rotated Q; quadrilateral element space CNR"
and its homogenous space CNR}: read
CNR" = {v € L*(Q) : v|x = 00 Fg !, 0 € P1(K), vis continuous regarding il, VK € Tn},
CNRE = {v € CNR" : il (v) =0, VI C 9Q}.
On the space CNR", we define the broken H! seminorm and the H! norm as follows,

1

1
2 2
= (X i)’ il = (X lualic)’, Van € CNR
KeT, KeT,

On the reference element K, define

~

431:[11(1—‘:—’7)1 o =

A 1 ~
4’3:1(1+C+’7)1 Py =

(1+&—mn),

(1-¢&+mn),

[T I N

which are associated to vertices P, i = 1,2,3,4 of K, respectively. It has been proven
in [12] and [23] that ¢;, i = 1,2,3,4 span P;(K). For each interior node P;, let

E(j) = Ui_1Kij,
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Figure 3: The dual element Kl*jj.

where K; ; denotes the element with the node P; as one of its vertices, we define

#i(x) = { $i(Fl(x), x€KeE()),

0, xeKeT,\E(j), 25)

where the subscript i is determined by P; = Pjx = F, K(pi), with Pg, i = 1,2,3,4, four
vertices of element K. It is easy to see that ¢;, j = 1,- -+, N/ are linearly independent,

N? . . . . .
therefore {¢;} -1 1s @ basis of CNR}l. Then we introduce an interpolation operator

T, : HY(Q) — CNR" defined by

Ny
TR0 = ZZ)(P])(P], v e H1<Q)
j=1

We also need to construct the dual partition 7, and the test function space. Di-
vide each quadrilateral of the primal partition into four smaller quadrilaterals by
connecting the opposite midpoints as shown in Fig. 1. The dual grid is defined as
a union of polygons, each of which is made up of four smaller quadrilaterals. As
shown in Fig. 3, the dual element associated to the node P; is made up of the four
small quadrilaterals which share the node P; as a common base. Carrying out the
construction for every interior node in the primal partition generates a dual parti-
tion for the domain. We denote the dual element based at P; by the polygonal region
K}Sj with vertices CKW Mll]-, CKZJ., le]', CK&],, M3’]‘, CK4J’ M4,]-, and the dual partition by
T, = {K*j,]' =1,---,N}. Set

W, = {wh € LZ(Q) : wh|K;j = Const and wy|yn =0, Kl*] = Ki; OK}SJ_, Ki; € E(])}

Define an operator j, : CNR! — W, such that

N/ 4
YhOn = Z Z (Uh|1<i,,~)(Pj)Xi,j, Vo, € CNRL,
j=li=1
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where x; ; is the characteristic function of K7.
By virtue of this operator, the scalar test function space corresponding to 7," can
be defined by

Vi = span{goj L@ = ] =10 'Nz'v},
where ¢; is given by (2.5).

Remark 2.1. Obviously, V;, C Wj,. For each interior node P;, N(j) denotes the set of
the adjacent nodes of P; in 7, and N(j) = {P : PP; is an interior edge in 7}, then

in K}",j,

Al

0 — , in K}NE(j), for P € N(j),
;=

—i, in K3 E(j), for P € N(j)\N(j),

L 0, else.

We now can propose the CNRQ;-Py finite volume method for the Stokes problem

now. Choose
U, = CNR} x CNRE,

as the trial function space and
VvV, =V, xV,

as the test function space for the velocity. Set
Hh:ﬂhXT(h and I"h:wzx'yh.

Therefore we can easily check that the operators I1j, and I';, have the following approx-
imation properties for any K7}, (see [2,8,12,15]):

|u —TTul|ux < CH2™|ulyk, Yu € H*(Q), m=0,1, (2.6a)
Vi = Twvillox < Chlva|yk, Vv, € Uy, (2.6b)

In fact, the estimate (2.6a) is the same as (3.7) in [12] when & = 1. Write P; = (xj,y;),
by Taylor’s expansion we have

Vi — rthHo,K;jj =||vj, — Vh‘K,-,j(Pj)HO,K;].

LY T Y T
<Ch|vp|ik; -

Then (2.6b) can be obtained.
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M1 K2 i3 Ha

Figure 4: Local basis functions of P]; on K.

For the pressure, we assume that the subdivision 7}, is obtained from 7, = {7}
by dividing each element of 7y, into four smaller quadrilaterals through connecting
the opposite midpoints. Let P; be a function space which consists of piecewise con-
stant functions with respect to 7j,. The reference element K can be partitoned into
subdomains

Rum={@n)ekm-2<f<m—-1,n-2<ny<n-—1mn=12},

and the local basis functions for P} on a 2 x 2 patch of K are defined by (see Fig. 4)

~

filg, =1 t2lg, = (1" i3

b = (1" filg,, = (1", mn=1,2

By [11,18,21,24], the finite element space for pressure has the form of
3

Po={p € 13(Q) : ple = L Ao o', VT € T
i=1

Next we define the interpolation operator J, : L3(Q) N HY(Q) — P, with respect to T

1
pr——ar, =14,
il =4 %
hp T . 1 )
Pi + Elxl’/ 1= 2131

where 1
wo=pl -t pi Rl pf= e [ vy,

and 7;, i = 1,2,3,4, are smaller elements in T (see Fig. 1). A direct calculation shows
that

1 4
Jwple = 7 [( 0 PF)iT + (=Pt + p3+p5 — p)KS + (—pT = p5 + p3 + P,
i=1

which implies that J,p€P, for peL3(Q), where uf = fi;o F71,i = 1,2,3,4. It is easy
to check that (see [2,8])

lp = Jupllo < Chlph, Vp € L§(Q) NH'(QY). 27)
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The FVM for the Stokes problem (1.1a)-(1.1c) investigated in this paper is: find a
pair (uy, pp) €U, X Py, such that

an(ap, vi,) + by (v, pin) = (£, vi), Vv, € Vy, (2.8a)
b;l(uh,qh) =0, th € Ph/ (2.8]:))
where
N? 4
! Juy,
uh, Vh vy |K / dS (29&)
j=1 1:21 ( ) aKP MK on
N 4
/ ds, 2.9b
(Vi Pr) ;; h’Kl] /8K;;_m1<l-,j pnnds (2.9b)
bl (wy, qn) = 2 / (divey)qndxdy. (2.9¢)
KeTy,

3 Stability

In this section, we will show that the bilinear form ay,(-, -) is coercive and the bilinear
form by, (-, -) satisfies the in f-sup condition.

Lemma 3.1. It holds that

bu(Tnvi, qn) = by (Vi qn),  Yvi € Up,  qn € Py (3.1)
Proof. As P, C Pj, we only have to prove that
bu(Tuvi, qn) = by (i, qn), (Vi q1) € Uy, X Py, 3.2)

Set v;, = (v}, v?). Using the notations in Fig. 1, the right-hand side of (2.9b) can be
rewritten as

N 4
(Vlk,;) ( )'/ qpnds = bk (T, qn), (3.3)
where
bk (Tnvi qn) = Y (Vh|K)(P)'/ qpnds
PEVIK) aKNK
- L )(P / dy — (02|x) (P / d
PG;K)(UMK)( ) aK;;quh y — (vp]x) (P) aK;;quh X

=qnl{ — da (v} |k (P2) — 03|k (P1)) — d2 (0} |k (P3) — v} |k (Py))

+ dy (vy]k (Py) — 03|k (P1)) + d1 (v |k (P3) — 03|k (P2))
+ c2 (03 |k (P2) — 03|k (1)) + c2(vh]k (P3) — 03|k (Pa))
— 103k (Py) — 03]k (P1)) — c1(03]k(P3) — 03|k (P2)) }-



J. Qi, W. Tian and Y. H. Li/ Adv. Appl. Math. Mech., 4 (2012), pp. 46-71 55

On the other hand,
vl 9v?
b;(vh,qh) /lethhdxdy— Z EIh|K/ < h + ah>dxd]/
KeTy, KeT, Y
av avh avh avh
K;T4qh‘K(d2 otk " Ty ko Ik Ty B
With
v 1
*h E(Uhh((PZ) + 0|k (P3) — 0|k (Ps) — 0|k (P1)),
av; 1 l.
3 Ik 4(Uh|I<(P3) + 0|k (Py) — 0|k (P1) — 0|k (P2)),
where i = 1,2, we can obtain (3.2) by summing over K. O

Now we define a discrete norm on Uy;:

lhasll= (3 el ) (34)

KeT,
where
gl = [lu(Mz) — uy (Ma)[* + [lup(Ms) — uy (M),
and || - || = (-,-)!/? is the Euclidian norm of vectors.

Lemma 3.2. Assume that the partition Ty, satisfies (2.2), then for any u, €Uy, there exist
positive constants B1 and By independent of h such that

Billlwill < [wnlyn < Ballfull (3.5)

Proof. Set u, = (u}, u?), then we only have to show the equivalence of |u} |; x and
1, where

el = [ (Ma) — ud (Ma)]? + [} (Ms) — ud (M1)] 2.
Write

According to [8,16]
IVup > < 1 TG mIEIVuIP IVl < 1Tk (@ mIEI Vgl

where || - || denotes the Frobenius norm of a matrix. So

uplix = /KIIVMiIIdedy < HE MK IV *dEdy, (3-6)
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and

2
Jo iz < [ 1€ mIEIva gz < [ ITEDIE Ry, 6

Because of || Jx (¢, ) ||r < Ch and (2.2), we obtain

_ Ik @G m)lE

This inequality together with (3.6) and (3.7) leads to

1T & mIFTk (&)

1 A
Glubx < [ 1 9ub gy < Cluf 9

Through direct calculation, we have
N 2 2
J bz = [} (M) — uh(Ms)]* + [1h (M) — uh(M1) ]
Therefore ||u}|[[x and |u}|1 k are equivalent by (3.8). O

Lemma 3.3. Suppose that the partition Ty, satisfies the conditions (2.1)-(2.3), then for suffi-
ciently small h, there exists a constant Co > 0, such that

ah(uh, Fhuh) > C0|uh|ih, Yu;, € Uy, (3.9)

Proof. Using the notations in Fig. 1, we rearrange the line integrals of the right-hand
side of (2.9a) to get

ay(up, Tpwy,) = Y Ix(wy, Tyuy),

KeT,
where
ou
Ix(uy, Thuy) = — {(“h|K(P1) — wfk(P2)) - / Thds
9K, NOK;, on
Jduy,
+ (up,|x(Py) — up| (P / —_ds
(up|x(Py) — uy|x(Ps)) oK ok, On
ou
(P —wlk(P))- [ S
9Kp, NoKp - on
auh
(| (Ps) — wp |k (P2)) 9K}, NIK}, on }
Noticing that

wy |k (Pr) — uy|k(P2) = wp|k(Py) — wp|k(Ps) = up(Ms) — up(Ma),
uy |k (Py) — uy|k(Pr) = wp|k(Ps) — wp|k(P2) = uy(Ms) — wy(My),
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SO

M, Juy,

Ix(up, Tpuy) = (w,(My) — up,(My)) - /M aa“hds — (up(M3) —u(My)) - /M o —ds.

It is easy to see by the geometry transformation and chain rule that on M; M3 (¢ = 0)

/M3 O g / P PN
M,

M; on dx oy
auh 86 duy, 7] Ay duy, 0F | dwy, Iy ax
/ a(;‘ ax 817 ax)(ag C+ d ) (ag ay+ o 3y)(8§ d’?)
1 Ju ou
= 43 + B3) =L + (—dydy — c1cp — (dyod gy,
/_1 ](0,;7) {( Cz) ag JF( 142 Cc1C2 ( 12 2+012C2)17) 817} i

and on MyM, (1 = 0)
M, ouy, N M, ou, ou,
/ n T /M4 Wdy oy E

_/ aalthgg aal;lyth)(ag “ ’7) (aaughngraal;th)(ag ‘H ;)

1 9
= TG0 [(dﬂiz + 102 + (diodz + C12C2)C) a{: +(—di —¢}) uh}dé
With 5 . 5 .
u u
ET; = 5 (wy(M2) —w,(My)) and Fr 5 (wi(Ms) —uy,(M1)),
we can rewrite the above bilinear form with quadric form
Ix(up, Tyuy,) = aWal = %uc(W +WhaT

where a = (z!,2?) is a composite line vector with

z' = (uj(Ma) — ul, (My), ul(M3) — ul(My)), i=1,2,

v=(43)

The entries of the matrix A;., are specified as follows

and the partition matrix is

_ 2 1 - 2 !
(A)11 = [M1M3| /IIK(O,iy)dW' (A)22 = |MyMy| /Imdé,

_ . 1 _ (PzPl + P4P3) . M1M3 n

(A)12 = — M Ms - MyM, /I RO : / s,
1 (RR PP MM [ €

(A)ar = — M Ms - MyM, /1 e - / g



58 J. Qi, W. Tian and Y. H. Li/ Adv. Appl. Math. Mech., 4 (2012), pp. 46-71

Since each quadrilateral K in 7}, satisfies quasi-parallel quadrilateral condition, we
assume that K is a parallelogram first, then define

~ 1
A = E(A + AT)/
as follows:
i 4 | My M3/ —Mi M3 - MyM;
=—7x _ ——
m(K) \ —M;M; - MyM, | MM, |2
_ 4m3 1 —% cos @ _ 4m? i
m(K) \ —xcos@ i2 m(K)" "

Obviously the matrix Ay is positive definite with its minimum eigenvalue A, > 0.
Using the regularity conditions (2.1) and noticing that m(K) = mjm; sin fg, we obtain

2
am 4 > CA,,

(A) >
Amin(A4) 2 AKm(K) = Mksinfx —

where Amin(A) denotes the minimum eigenvalue of A.
Next we should consider the difference between the matrix A on a parallelogram
and the matrix (A + AT)/2 on an almost parallelogram. Set

D:%(A+AT)—A.

Under the condition (2.3), we see from [16,28] that

: UK(@/”)‘ _
Hm ) Y

which verifies that when & is small enough,

h3

_ <i,7<2.
m(K)' 1<4,7<2

|(D)ijl <C

Since the partition is quasi-uniform, then
Amax(D) < ||Dlle < 2[(D);j| < Ch,

where Amax (D) denotes the maximum eigenvalue of the matrix D.
Combining the results above with the definition (3.4), for sufficiently small & we
have

Ix (wy, Thuy) > C(CAx — Ch)|luyf > Clfus|k-

By (3.5), summing over all quadrilaterals yields (3.9). O
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Lemma 3.4. The pair (Uy, Py,) satisfies a uniform inf-sup condition, i.e., there holds

sup bn(Cnv, an) Cllgullo, Van € Py (3.10)

O#VEU;, | |1,h

Proof. Let Vy;, be the standard conforming bilinear finite element space and V), =
Vi X Vipy,. For any u€Vyy,, we can see from the definition of ITj, that

/ div(u — ITju)dxdy = 0.
K
Then taking v = ITj,u, we have

(diVll, qh)K = (diV‘_/,E]h)K, (divu, qh)Q = (diV\_’, E]h)Q, th & Ph. (311)

Therefore the pair (Uj, P;) shares the same stable property of (Vy, P,).
By the references [3,10,24], the pair (Vy,, Py) satisfies

b (v,
sup M Z CthHo, th e Ph. (3.12)

O#VEVM ‘V | 1

We can state an equivalent formulation of (3.12) as in [21]: for any g, € P}, there is a
function ueVy, such that

(diva, g4) = llgnll§ and |uls < Cligullo.

Then noticing o u
V|in < cluly,

we can complete the proof of the assertion by virtue of (3.1) and (3.11). O

Remark 3.1. Thanks to Lemma 3.1, (3.9) and (3.10) are equivalent to (see [3,10,29])

ap (Wi, Tpvy) 4 by (T, xn) + by, (Wi, qi)

sup
(0,0)7&(Vh,qh)€Uh><Ph |Vh|1;h + thHO
2C(1walvp + llxnllo), V(Wi xu) € Uy x By (3.13)

4 Error estimates

In this section, we will present error estimates for the finite volume element scheme
(2.8a)-(2.8b). First we will derive two lemmas which are important to our error esti-
mates.

Lemma 4.1. Suppose (u, p)€(Hg(Q) N H*(Q))? x (L3(Q) N HY(Q)). Then
|ah(u —IIju, Fhvh)| < Ch|u|2|vh‘1,h/ Vvh e Uy, (41&)

|bn (Tpvn, p— Tup)| < Chlpli|vilin Vv, € Uy, (4.1b)
|by,(w — ITu, q5)| < Chlulz||Igxllo, Vay € Py. (4.1¢)
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Proof. With the notations in Fig. 1, by (2.9a) we have

ah(u — Hhu, Fhvh) = 2 IK(u — Hhu, Fhvh),
KeTy,

where

Ix(u — ITyu, Tpvy)

1 o(u—ITju
=*<VhIK<Pz>+vh|K<P3)—vh|K(P1)—vh|K(p4>)./ (u —ITyu)
2 M M; on
1 d(u—ITu
2 MM, on
d(u—ITHu
Z(Vh(Mz)—vh(M4))-/ (ah)ds
M]M3 n
d(u—ITu
—(Vh(Mg,)—vh(Ml))./ (ah)ds'
M4M2 n
It follows from the definitions (3.4) and (3.5) that
[V (M2) =vi(Ma) || < |vilog,  [[va(Ms) = vi (M) || < [vi|ok- (4.2)

Using the Cauchy-Schwarz inequality and the trace theorem, by (2.6a) we can show
that

Hhu
H/M1M3 on dSH < Ch2 (|u — TTyu] (v

<Ch? (lu— Hhu’l,K‘u - Hhu‘zi,K)

SCh|u|2,K. (4.3)
Similarly,

| 2 s < Chtular
MyM> on

Therefore,

| Ik (u — ITyu, vy,) | < Chlulok|Vilik,

which leads to (4.1a) by summing over K. In the same way, (3.3) implies that

(p — Jup)nds

bk (Tnvi, p = Jup) = — (va(M2) — v, (Ms)) - /M

14V13

+ (vi(Ms) — vy (My)) - /W(p — Jup)nds.

44V12
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And using similar approach in (4.3) we can show

| [ o= Jipimas| < Chiphe, || [ (p— Jup)nds]| < Chlplix
Owing to (4.2) and (2.7), there holds

by, k (Tnvi, p — Tnp)| < Chlplik|valik.

Then (4.1b) follows. At last, the Cauchy-Schwarz inequality and the interpolation
estimate (2.6a) lead to

by, (w = TTu, q)| = | ) (div(u—TITu), g, )k|
KeT,

< Y lu—TILulkllgnllox < Chlul2|lgnllo-
KeTy,

So, the lemma is proved. O

Lemma 4.2. Under the hypothesis of Lemma 4.1, we have

| (0, Typvp)| < Chlulz| Vi1, Vv, € Uy, (4.4a)
|6y (Twvi, p)| < Chlvilialph, Vv € Uy, (4.4b)
where
G Twv)=— Y Y (oul)(P)- / 9, (4.52)
KET; PeV(K) AKNK; I
b Fhvh, Z Z Uh|K / pnds. (45b)
KeT, PEV aKﬂKT,

Proof. Rearrange the line integrals of the right-hand side of (4.5a) to give

ap(u, Tyvy) = — Y L(u,Tpvy),
ecé

where & is the set of the interior edges in 7j,.

We only have to discuss the left situation as shown in Fig. 5. The right situation in
Fig. 5 is similar. Let P;, P, be the two nodes of the interior edge e, M1, be the midpoint
of e and K;, Kg be the two primal cells which share the common edge e, then

Le(w,wi) = ((val)(Pr) = (vl ) (P1) ) - /p 3*“‘1“ (Whli)(P2) = (Wulia) (P2) ) './'Pz =

Py M, On

— (M) = vi(0z) + v () — vy () - ([ Soas— [ Pas),
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where My;_1 and M,; are the midpoints of adjacent edges of e in Ki,, i = 1,2. Using
Lemma 3.2, we get

HVh(M}Q) —Vh(Mig)H < Iviligi < [vilip =12 (4.6)

By Lemma 4.5.3 in [2] and mean value theorems of integral and differential, we obtain

My 9 P.
H/ "o s —/ ’ a—uulsH < CH?|U|ye0 < Ch|U|s,
p  on My, On ,

which together with (4.6) implies (4.4a). A similar argument yields (4.4b). U

Ps

M;

or P1

M,

P4 ]V[l P1 ]\/[g PG

Py
Figure 5: The elements K} and K2.

From Lemmas 4.1 and 4.2, we can prove the following error estimate result.

Theorem 4.1. Let the pair (u, p)€(H}(Q) N H?(Q))? x (L3(Q) N HY(QY)) be the solution
of (1.1a)-(1.1c) and (uy, pp) €Uy, x Py be the solution of (2.8a)-(2.8b). If the conditions (2.1)-
(2.3) hold, there exists a positive constant C independent of h such that

[u—wlin + l[p = pullo < Ch([lulla + [[pll)- (47)
Proof. Replacing wy, by uj, — II,u and xj, by p,, — J;p in (3.13), respectively, we have

C(lwy, = Ipulyp + || pn — Tnpllo)
ap(uy, — Iyu, Tyvy,) + by (Typvy, pr — Jup) + b, (uy, — T, q5)

< sup . (4.8)
(0,0)7 (Vi 4n) €U x Py [Vilun + ll4nllo
For (v, q5,) €Uy, x Py, from (2.8a)-(2.8b), there holds
ap(an, Tpvy) + by (Tyvy, pu) + by, (an, qin) = (£,Tyvp). (4.9)

Multiplying (1.1a) by I',v, and (1.1b) by g;,, respectively, we can show that

ah(u, l"hvh) + dy (u, l"hvh) + bh(l"hvh, p) + Eh(rhvh, p) + b;l(u, C]h) = (f, Fth). (410)
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Subtracting (4.10) from (4.9) gives

ay(wy — w,Tyvy) + by (Tyvy, p — p) + by (wy, — w, qy) + 8, (w, Tyvy) + by (T, p) = 0. (411)
Combine (4.8) with (4.11) to get

C(luy — ITyulyp + llpn — Inpllo)
< sup ap(u —TTyu, Tyvy,) + by (Tyvy, p — Jup) + by, (u — Ty, gp,)
(0,0) (Vi) €Uy < Py Vil 10+ [lqnllo
a, (u, Tyvy,) + by, (Tpvy, p)
Vilin + llgnllo

Using Lemmas 4.1 and 4.2 gives

[ = Tl + [lpn = Jupllo < Ch(Jul2 + [ply).

Finally, an application of the triangle inequality and the interpolation estimates imply
[u—apf1 + [|p = pallo
<|lu—TTulyy + [Thu —wly, + lp = Tupllo + 1kp — pallo
<Ch(ullz + llplly )

Therefore, the proof is completed. O

To establish the error estimate in the L? norm, we consider the following dual
problem,

— AP+ VY =u—uy, in Q, (4.12a)
divd =0, in Q, (4.12b)
® =0, on dQ). (4.12¢)

Assume that the problem (4.12a)-(4.12c) is regular, i.e.,
[@l2+ ¥l < Cllu — uyllo. (4.13)
Lemma 4.3. Suppose (2.3) is satisfied, then for any v, €Uy, we have
H /K(Vh - I’hvh)dxdyH < Ch3’Vh’1,K. (414)

Proof. Exact computations show that (see Fig. 1)

/K(Vh — Tyyvy)dxdy = %h [Vi(My) — vi(M2)] + %Iz[vh(Ml) — v, (Ms)],

which together with (2.4b) and (3.4) yields (4.14). O
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Lemma 4.4. For any weH}(Q)? U Uy, there hold

d
Y (52 whok| < Chllv|aiwl,, v € (HY(Q) N H2(Q)?, (4.152)
KeTy, n

‘ y (q,w-n)aK‘ < Chllg|s[wly Vg € HY(Q). (4.15b)
KeT,

Proof. Similar to [4] and [5], (4.15a)-(4.15b) can follow from the approximation
properties, the Cauchy-Schwartz inequality and a standard trace theorem. O

Lemma 4.5. Suppose (2.3) is satisfied, then for any f€ H' (Q))?, there exists a positive constant
C independent of h, such that

(£ 11,® — T, 1L, ®@)| < CR?|f[1 [ @[, V@ € Hy(Q)% (4.16)
Proof. The operator 7 is defined by
1
mofl = | fxy)dxdy, VK e T,

which gives
If — 7ofllo < Ch|lf|ly and ||7oflk || < ChV||f]lo-

Employing (2.6b), we have

(£, 11, @ — T,11,®@)|
§|(f — mof, 11, ® — l"hIIhd>)| + |(7T()f, I1I,® — Fhth))]

<€ = 7ofo|T1® — TuIL@ o+ Y- Imofll|| [ (11,® — 1, @) ety

KeTy
<CH?(||£l|1 11, @1 + (| £llo[ 11, @] 1)
<Cr?|f]l1]|@]l2-
Thus, the proof is completed. O

Define the following parameters:

0 1 1 Jo— I 01 1 Jo+ 2
Ap=] —rdf= 1m0 J2 Ap=[ — gg=—n-20Tl2
. L e DT T T 12 /71 e = T T

1 1 1. Jo—h+N | 1. Jo+h+]
A= ——  de= 2271 Ap= | —— ge=_—1p0 27N
2= ) e % 2= [ e N

_(° ¢ N T _ 0 g I

By —/71 mdé— ]1(1 (Jo—J2)A11), 312—/71 ]K(C,l)dg_ A (1= (Jo+ J2)A12),

_ [t ¢ _la_g - _t_¢ Ll
Bz1—/0 ]K(C,*l)dé—h(l (Jo = J2)An), Bzz—'/o ]K(é,l)dé_h(l (Jo+J2)A2),

0 2
C11=/ 67115:11

1 _ 0 2 1,1
1 k(@ =) 7(*5 —(Jo—h)B11), Cin= /71 ]K(é,l)dg = H(7E —(Jo+ J2)Br2),

1 T2 1

g2 1 1
o= [ pEn =G U B, Ca= [ edt = (5 o+ 2B
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According to (2.4b) and using Taylor expansion of In(1 + x), (x — 0), one can get

Al —An =01, Apn—Apn=00"), An-—An—-Apn+An=0(1), “l7a)
Bi1+ By =0(h™"), Bip+Bn=0(Mh""), By +By—Bp—Bn=0(Q1), (4.17b)
Bi1— By =0(h?), Bin—Bp=0(h?), Biy—Bn—Bp+Bp=00"), (“l1%)
Ci+Cn=00?), Cp+Cn=0h72), Cu+Cy—Cp—-Cnp=0(0"). (417d)

Lemma 4.6. Suppose (2.3) holds, there exists a positive constant C independent of h, such
that for any uy,, v, €Uy,

| (un, Tivi) — a(un, vi)| < CH*[uy|1 Vi1 (4.18)
Proof. Making use of integral by parts, we have (see [6])

ap(un, Typvy) —a(up, vy) := E1 + Ey,

where
azu 0%u
/ Awy, - (v, — Tywy)dxdy = ) / axzh h) (vy — Tyvy)dxdy
KeTy, KeT,
8 uy uy
— —n. (Vh — rhvh)dxdy+/ o (Vh _ Fhvh)dxdy )
K;rh{ 0x? K 0y? }
Jdu
S —
8uh a
= K;; /BK { o (v = Tpvy)dy + By (v — rth)dx]-

Using the chain rule of differentiation, we get

duy 02 g duy 02 /B
rth dxdy + / - Fhvh)dxdy
K;/ oF ox2 K;’ 9 9%
8uh E) Cj auh 8 1’]
+ (v, = Tpvy) dxdy + / — Fhvh)dxdy
KEZT X% KEET a1 ay?

=h+ Db+ 13+ .
We shall only estimate the first term of E;, the estimate of the rest is analogous. Set
7
ox2  9x2l(z=0y=0)
It can be verified that
ouy, 0°¢

KeTy,

9 9%F 9 ¢
=) au(fh { /K (E)Tcg B Taﬁ) (v — Tpvi) JxdGdy + aTcg(Vh B rhvh)h(déd”}'

KeT,

L =
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By the definitions (3.4) and (3.5), we obtain
ou 1
H L= 5 (M) = wi (M) < Cluug (4.19)
Notice that

2 <ot ana [(25- ) <o

from Proposition 2 and Proposition 7 in [19], where | - |« k is the norm of the space
L*(K). And use the Cauchy-Schwarz inequality and (4.14) to give

‘ Y ouy A (aig _E) (vy — Fth)IKdCdU‘

KT o¢ ox2  ox?
<Ch* Y~ Jwlikllvie = Tuvillo g < CH [y valine
KeTy
allh ﬁ
(viy — Typvy,) Jxddy
L5 fow |
<cn 'y \uh|1,1<‘ /(Vh —Tth)Idede’ < CH? [y |1 Vi |1 -
KeTy, K

Hence, we get
|Ex| < CH?[ay |1 Vi1

To estimate E», set
. auh 8uh
EaK,z] = /P,P] |:— g . (Vh — Fth)dy + @ . (Vh — Fhvh)dx} .

It can be verified that

E; = Y (Esk12 + Eok s + Eoxaa + Eoxa1)-
KeT,

We consider the sum of integrals on one pair of opposite edges: Ejk 12 + Eyk 34. Write

e; = didy +cicy, ey =dydip +cicrp, ez = dadip + cocio,

[ d%z + C%Z, e5 = d% + C%.
Then
Ju
Ejk 2 + Eak 34 :Tg < le1(A11 — Apyy — A1p + A + Byg + Byg — Bip — By)

—e3(A11 — Ay + A1p — Ap + Big + By + Bio + Bo)
+e2(B11 — By1 — Bip + Bop + Ci1 + C1 — Cip — Cp2)

v
—e4(B11 — By1 + B1z — By + C11 4+ Co1 + Ci2 + Co)| agh
Ju
+ aiﬂh - [2e2(A11 — A1 + A1p — Agp + By1 + By1 + Bio + By)

th

— (es +e4)(A11 — Ay — A1p+ Ap + Big + Byg — Bio — Bo)| =
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which, combined with (4.17a)-(4.17d) and (4.19), implies
|Eak 12 + Eak sl < CH? [y |1,k |vi |1 k-
Similarly, we can show
|Eak 23 + Eax a1l < CH? [y |1 k| val1k-
Gather over all elements to yield
|Ea| < CH? [y |1,V |11

Thus, the desired result is obtained. ]

From Lemmas 4.4-4.6, the result of the L?-error estimate for the velocity can be
proved as follows.

Theorem 4.2. Let (u, p)€(H}(Q) N H2(Q))? x (L3(Q) N HY(Q)) and (up,, py) €Uy, X Py
be the solutions of (1.1a)~(1.1c) and (2.8a)-(2.8b), respectively. If f€ H(Q))?, then
Ju = willo < CH? (ffull2 + llplly + 1€l )- (420)

Proof. Multiplying (4.12a) and (4.12b) by u — u;, and p — pj, respectively, integrat-
ing by parts and using Green’s formula on each element, we can get
&by p g
[u—up[|§ =a(u—up, @) +b(u—up, ¥) +b(D,p - p)
0P
- (Gou-um) Y (F(w-u) e (42D)

KeT, KeT,
Replacing (vy, q5) by (T I1,®, J,'¥) in (2.8a)-(2.8b) yields
ap(uy, TpI1,®@) + by, (T, 11, ®, py) + by, (up, 1Y) = (£, T,11,®). (4.22)

Multiply (1.1a) and (1.1b) by I1,® and J,¥ with Green’s formula on each element to
show that

Ju
a(u,HhCI)) +b(Hh<I), ]9) -I-b(u,]h‘I’) — —,Hhcl)
K;Fh <8n >az<
+ Y (p, I, @ - n)ox = (£ 11,P). (4.23)
KeTy,
Note that

Ju

) <$’¢>a1< =0, Y (p,® n)sk = 0. (4.24)

KeT, KeTy,
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Applying (4.22)-(4.24), (4.21) can be rewritten as
|u—upl|3 =a(u —up, ® — I1,®) + b(u —up, ¥ — J;¥) + b(® — [1,®,p — p)

Jdu
+ D — th) - <p, ((I) — th)) : n>aK
K;; <8n >aI< Kngh
0P
— Z <ﬁ,u—uh>a + Z u uh >aK
KeT, KeT,
- a(uh, th)) + ah(uh, thh(I)) + (f, th) — thhCD). (425)

Since the bilinear forms a(-,-) and b(-, ) are continuous, with (2.6a), (2.7) and (4.7) we
can deduce that

\a(u —up, P — Hh(D) + b(u —up, ¥ — ]h‘II> + b<q> — Hhcb,p — Ph)‘
<C(Ju—unliyi+ lp = pallo) (1@ = T+ ¥ — Ji¥o)
< (J[ull2 + plh ) (@12 + 1]l )

It can also be seen from (4.15a)-(4.15b) and (4.7) that

Ju
o —-11,®) - (p,® —I1;,® - n)yx
£ (e, -1 \
<Ch(|ull2+ [lpll)|® — T, @15 < CH*(Jlull> + l|p]l) | @]l2,

‘ 2 < ,u— uh>a + 2 (u—up) )aK‘

KeT, KeT,
<Ch([[ @2+ [¥ll)Iw = wil1n < CH(J[ull2 + [[pl) (I1®[l2 + [1¥]1)-

Combining the above three inequalities with (4.16) and (4.18), we complete the proof
under the assumption (4.13). O

5 Numerical examples

In this section, we present some numerical results to confirm the theoretical error esti-
mates obtained in this paper. We consider numerical experiments of Stokes equations
(1.1a)-(1.1c) with Q = [0,1] x [0, 1], where

ul = %sinz(nx) sin(27ty), (5.1a)
u? = —% sin(27x) sin?(7ry), (5.1b)
p = cos(7tx) cos(y). (5.1¢)

Three kinds of quadrilateral meshes are used in our experiments. The first kind is
the usual square mesh, the second one is a trapezoidal mesh and the third one is a
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igure 6:

Square mesh.

Figure 7: Trapezoidal mesh.

Figure 8: Random mesh.

69

random mesh. The way of refining meshes is symmetric refinement of quadrilaterals
via bisection on edges. The meshes used in our experiments illustrated by Fig. 6-Fig. 8
and the corresponding numerical results are listed in Table 1-Table 3, from which we
can see that the optimal convergence rate for the velocity in the broken H! seminorm
and the pressure in the L? norm are of first order and the optimal convergence rate for
the velocity in the L2 norm is of second order.

Table 1: Numerical results on square mesh.

1/h | lu—wyllo order | [u—wuy|;, order | ||p—ppullo order
4 0.033059 0.80097 0.27969
8 0.0081705  2.0166 0.39738 1.0112 0.10426 1.4237
16 0.0020693  1.9813 0.19703 1.0121 | 0.043597 1.2578
32 | 0.00051851 1.9967 | 0.098263  1.0037 | 0.020497  1.0888
64 | 0.00012969 1.9993 | 0.049098 1.001 | 0.010078  1.0243
128 | 3.2427e-005 1.9998 | 0.024545 1.0002 | 0.0050172 1.0062




70 J. Qi, W. Tian and Y. H. Li/ Adv. Appl. Math. Mech., 4 (2012), pp. 46-71

Table 2: Numerical results on trapezoidal mesh.

1/h| lu—wullp order | lu—wyl;;, order | |[p—pyllo order
4 0.056164 0.91456 0.69364
8 0.012644 2.1512 0.47338 0.95006 0.19862 1.8042
16 0.0030822  2.0364 | 0.23264 1.0249 | 0.063431  1.6468
32 | 0.00076453 2.0113 0.11567 1.0081 0.026124  1.2798
64 | 0.00019069 2.0034 | 0.057749 1.0022 | 0.012296 1.0872
128 | 4.7643e-005 2.0009 | 0.028864 1.0005 | 0.0060496 1.0233

Table 3: Numerical results on random mesh.

1/h| lu—wyllo order | [u—wuyl;;, order | |[p—ppullo order
4 0.042335 0.87868 0.27727
8 0.010205 2.0526 0.43856 1.0026 | 0.13623  1.0252
16 0.0025288  2.0127 0.21666 1.0174 | 0.049859  1.4501
32 | 0.00063072 2.0034 0.10791 1.0056 | 0.022227  1.1655
64 | 0.00015757  2.001 0.0539 1.0015 | 0.010756  1.0472
128 | 3.9384e-005 2.0003 | 0.026943  1.0004 | 0.0053324 1.0122
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