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Abstract. In this paper, based on the finite element formulation, we focus on multiple

solutions and their evolution with time for a laminar flow in a permeable channel with

expanding or contracting walls. Both Newtonian fluid and micropolar fluid are consid-

ered. For the Newtonian fluid model, we find that the profile of the unique solution in

the case of injection remains the same for long time, which indicates that the solution

may be stable. On the other hand, in the case of large suction, the profile of multiple

solutions changes in time, which suggests that the multiple solutions may be unstable.

Similar behaviors and conclusions are observed for the micropolar fluid model under

different boundary parameters.
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1. Introduction

Studies of laminar flows in a porous channel have received considerable attention in

recent years due to their wide range of applications in a number of engineering and biolog-

ical models, for examples, the transport of biological fluids through vessels, the modeling

of blood and air circulation in a respiratory system.

In the study of the refrigeration of steam and the separation process of U235 (a ra-

dioactive isotope of uranium element whose neutron number is 143), or in a gas diffusion

process, Berman [1] obtained an asymptotic solution for small Reynolds numbers using a

regular perturbation method assuming a steady, incompressible and laminar flow through

a two dimensional porous channel with stationary walls in 1953. In the study, Berman also

assumed that normal velocity is independent of the stream-wise coordinate and a fully de-

veloped flow. One of the key ideas in the proof is to transform the Navier-Stokes equations
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to a system of nonlinear ordinary differential equations that contains only a permeation

Reynolds number by introducing the stream function.

In the following decades, many researchers have extended and generalized Berman’s

work, particularly in the following three directions.

First of all, numerous studies of channel flows through porous and rigid walls have

been conducted. For both small and large Reynolds numbers Re, for example, Terrill [2]

obtained the solutions using a perturbation method. Using an integral equations approach,

Proudman [3] also investigated the solution for large Reynolds number cases. Later on,

again using a singular perturbation method, Yuan [4] obtained solutions for the case of

a large injection rate. Using the average method, Morduchow [5] obtained an analytical

solution in the entire injection range.

Secondly, in seeking further generalization, Dauenhauer and Majdalani [6] considered

the case of a laminar flow in a porous channel with expanding or contracting walls in 2003.

By introducing an expansion ratio α and assuming it is a constant, the authors reduced

the governing equations to an ordinary differential equation only involving the Reynolds

number and the expansion ratio. The Runge-Kutta method coupled with a shooting method

is used to obtained asymptotic solutions over a modest range of Re and α. Furthermore,

not only the authors carried on the mechanism analysis to the related physical quantities

of their model, but also obtained the relations between Re and α.

Thirdly, the existence of multiple solution is revealed in the course of discussions on

Berman’s work. Raithby [7] first discovered two numerical solutions in the research of

the heat transfer in a rectangular channel at the entrance. In 1976, Robinson [8] carried

out a numerical research about the multiplicity of the solutions for the flow in a porous

channel and drawn the following conclusions. When Re < 12.165, the corresponding

ordinary differential equation by the similarity transformation has only one numerical so-

lution; but when 12.165≤ Re <∞, the ODE has three solutions, which are labeled type I ,

type I I , type I I I . Meanwhile, Raithby [7] also obtained two asymptotic solutions through

a singular perturbation method. As for the stability analysis on a laminar flow, Sobey and

Drazin [9] were the pioneers to investigate the stability and bifurcation of a symmetric

flow in a two-dimensional rectangular regions in 1986. According to Sobey and Drazin,

there is a unique solution which is stable for small Reynolds numbers. The unique solu-

tion will become unstable as the Reynolds reaches a critical value. Since then, many other

interesting studies on this subject have been appeared in the literature, for examples, by

Zaturska et al. [10], Waton et al. [11], Durlofsky and Brady [12], Cox and King [13].

Recently, using a homotopy method, Xu et al. [14] investigated multiple solutions of

the Navier-Stokes equations for the Newtonian fluid model in a permeable channel with

orthogonally moving walls in the context of a suction process assuming constant Reynolds

number and the expansion ratio α. Two or three solutions are obtained under some values

of Re and α. The authors also considered a more general case that α is a function of

time and concluded that the solution reaches the steady state faster in the case of a larger

suction rate α(t) compared that with a constant α. Following Xu et al. [14]’s work, Si et

al. [15] investigated the same problem and obtained dual solutions for large suction rate

by using a singular perturbation method. Based on a finite element method, Xu et al. [16]
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Figure 1: A diagram of the set-up the problem, a porous domain and a moving channel.

further examined the problem described in [14] and obtained two or three numerical

solutions that agreed well with the corresponding analytic approximation solutions in [14]

with large suction rates. However, to our best knowledge, finite element methods are

rarely used to study the multiple solutions of the laminar flow in a channel. Moreover, few

research can be found in the literature about the time evolution of the multiple solutions.

Note that, many studies in the past are only for Newtonian fluids. However, in many

important applications, non-Newtonian fluids are equally or more important. For example,

quite a number of papers pointed out that the blood flow in a vessel can be simulated by

a micropolar fluid flow model which is non-Newtonian. The theory of micropolar fluids

was first established by Eringen [17, 18]. Intensive studies on the micropolar fluid flow

in a channel have been carried out by Darvishi et al. [19], Ashraf et al. [20], Rashidi et

al. [21], Ziabakhsh and Domairry [22], Joneidi et al. [23] and Si et al. [24]. Nevertheless,

so far, few literature deal with multiple solutions of a micropolar fluid in a porous channel

with accelerating walls.

Inspired by all the above-mentioned research, in this paper, we will study multiple

solutions and their spatial variations with time for laminar flows in a porous and moving

channel using a finite element method. We solve the full Navier-Stokes equations and

thus we have removed different restrictions in previous research using perturbation and

asymptotic expansions and changing PDEs to ODEs etc. Note that finite element methods

have been widely applied to solve the Navier-Stokes equations, see, example [25–27]. In

this paper we aim at examining the stability of multiple solutions by solving the unsteady

Navier-Stokes equations.

The rest of paper is organized as follows. In Section 2, we introduce two fluids flow

models in a porous channel with expanding or contracting walls, one is a Newton fluid

flow model, and the other is a micropolar fluid flow model. In Section 3, we derive the

variational form of the governing equations using the integration by parts and the Green

theorem. In Section 4, we will describe the fully discretized finite element scheme for the

two models. In Section 5, we present our numerical solutions and compare our results

with those in the literature.

2. Two models

2.1 Newtonian fluid flow model

As illustrated in Fig. 1, we assume that a rectangular channel is porous and expanding
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or contracting in the transverse direction simultaneously. Furthermore, the fluid is injected

or sucked uniformly at an absolute velocity vw through the opposing two walls. We assume

that the height of the channel is 2a(t), and its length is semi-infinite. The flow velocity

components are defined as u, v in the x -direction and y-direction, respectively. At x = 0,

the velocity u, v are assumed to be zero. The Navier-Stokes equations (see [6]) of the fluid

flow model are,

∂ u

∂ x
+
∂ v

∂ y
= 0, (2.1a)

∂ u

∂ t
+ u
∂ u

∂ x
+ v
∂ u

∂ y
= −

1

ρ

∂ p

∂ x
+υ

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

, (2.1b)

∂ v

∂ t
+ u
∂ v

∂ x
+ v
∂ v

∂ y
= −

1

ρ

∂ p

∂ y
+υ

�

∂ 2v

∂ x2
+
∂ 2v

∂ y2

�

, (2.1c)

where ρ,υ, t are the density, kinematic viscosity and time, respectively. The crossflow

Reynolds number is defined as Re = avw/υ , where Re > 0 is for injection and Re < 0 is for

suction. The corresponding boundary conditions are,

u = 0, v = −vw; y = a(t), (2.2a)

u = 0, v = vw; y = −a(t), (2.2b)

u = 0, v = 0; x = 0. (2.2c)

We nondimensionalize the governing equations and boundary conditions by introducing

the following dimensionless variables,

t∗ =
vw

a (t)
t, x∗ =

x

a (t)
, y∗ =

y

a (t)
, (2.3a)

u∗ =
u

vw

, v∗ =
v

vw

, p∗ =
ap

ρvwυ
. (2.3b)

The original Navier-Stokes equations become

∂ u

∂ t
=

�

v2
w

a
−

vw t∗

a
ȧ

�

∂ u∗

∂ t∗
−

vw

a
ȧx∗
∂ u∗

∂ x∗
−

vw

a
ȧ y∗
∂ u∗

∂ y∗
, (2.4a)

∂ v

∂ t
=

�

v2
w

a
−

vw t∗

a
ȧ

�

∂ v∗

∂ t∗
−

vw

a
ȧx∗
∂ v∗

∂ x∗
−

vw

a
ȧ y∗
∂ v∗

∂ y∗
, (2.4b)

∂ u

∂ x
=

vw

a

∂ u∗

∂ x∗
,

∂ u

∂ y
=

vw

a

∂ u∗

∂ y∗
,

∂ 2u

∂ x2
=

vw

a2

∂ 2u∗

∂ x∗2
,

∂ 2u

∂ y2
=

vw

a2

∂ 2u∗

∂ y∗2
, (2.4c)

∂ v

∂ x
=

vw

a

∂ v∗

∂ x∗
,

∂ v

∂ y
=

vw

a

∂ v∗

∂ y∗
,

∂ 2v

∂ x2
=

vw

a2

∂ 2v∗

∂ 2 x∗2
,

∂ 2v

∂ y2
=

vw

a2

∂ 2v∗

∂ y∗2
. (2.4d)

Thus, Eqs. (2.1a)-(2.1c) and the corresponding boundary conditions (2.2a)-(2.2c) are

changed to the following,
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∂ u∗

∂ x∗
+
∂ v∗

∂ y∗
= 0, (2.5a)

�

Re−αt∗
� ∂ u∗

∂ t∗
−αx

∂ u∗

∂ x∗
−αy

∂ u∗

∂ y∗
+Re

�

u∗
∂ u∗

∂ x∗
+ v∗

∂ u∗

∂ y∗

�

=−
∂ p∗

∂ x∗
+

�

∂ 2u∗

∂ x∗2
+
∂ 2u∗

∂ y∗2

�

, (2.5b)

�

Re−αt∗
� ∂ v∗

∂ t∗
−αx

∂ v∗

∂ x∗
−αy

∂ u∗

∂ y∗
+ Re

�

u∗
∂ v∗

∂ x∗
+ v∗

∂ v∗

∂ y∗

�

=−
∂ p∗

∂ x∗
+

�

∂ 2v∗

∂ x∗2
+
∂ 2v∗

∂ y∗2

�

. (2.5c)

Without loss of generality, removing the asterisk, we have the equations and the boundary

conditions,

∂ u

∂ x
+
∂ v

∂ y
= 0, (2.6a)

(Re−αt)
∂ u

∂ t
−αx

∂ u

∂ x
−αy

∂ u

∂ y
+ Re

�

u
∂ u

∂ x
+ v
∂ u

∂ y

�

= −
∂ p

∂ x
+

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

, (2.6b)

(Re−αt)
∂ v

∂ t
−αx

∂ v

∂ x
−αy

∂ u

∂ y
+ Re

�

u
∂ v

∂ x
+ v
∂ v

∂ y

�

= −
∂ p

∂ x
+

�

∂ 2v

∂ x2
+
∂ 2v

∂ y2

�

, (2.6c)

u= 0, v = −1, y = 1, (2.6d)

u= 0, v = 1, y = −1, (2.6e)

u= 0, v = 0, x = 0. (2.6f)

2.2 Micropolar fluid flow model

Now we consider the micro-polar flow fluid in a channel as illustrated in Fig. 1. The

stream-wise and normal velocity components are defined as u, v and N is the micro-

rotation, respectively. We ignore the effects of body forces and their coupling. Then the

governing equations (see [24]) of the micropolar fluid flow in a channel are the following,

∂ u

∂ x
+
∂ v

∂ y
= 0, (2.7a)

∂ u

∂ t
+ u
∂ u

∂ x
+ v
∂ u

∂ y
= −

1

ρ

∂ p

∂ x
+

�

υ+
κ

ρ

�
�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

+
κ

ρ

∂ N

∂ y
, (2.7b)

∂ v

∂ t
+ u
∂ v

∂ x
+ v
∂ v

∂ y
= −

1

ρ

∂ p

∂ y
+

�

υ+
κ

ρ

�
�

∂ 2v

∂ x2
+
∂ 2v

∂ y2

�

−
κ

ρ

∂ N

∂ x
, (2.7c)

ρ j

�

∂ N

∂ t
+ u
∂ N

∂ x
+ v
∂ N

∂ y

�

= −κ
�

2N +
∂ u

∂ y
−
∂ v

∂ x

�

+ γ

�

∂ 2N

∂ x2
+
∂ 2N

∂ y2

�

, (2.7d)
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where ρ,υ,κ, j,γ, t are the density, kinematic viscosity, micro-rotation parameter, micro-

rotation density, spin-gradient velocity, time, respectively, just as in [24], and γ is assumed

to be

γ=

�

µ+
κ

2

�

j, (2.8)

in which µ is the dynamic viscosity. The corresponding boundary conditions are

u = 0, v = vw, N = −s
∂ u

∂ y
; y = a(t), (2.9a)

u = 0, v = −vw, N = −s
∂ u

∂ y
; y = −a(t), (2.9b)

u = 0, v = 0, N = 0, x = 0, (2.9c)

in which s is a boundary parameter that is used to model the extent to which micro-

elements are free to rotate in the vicinity of the channel walls, and there is a concrete

description for different values of s in [24].

We introduce the dimensionless variables as (2.3), and for the micro-rotation N , it is

defined as N ∗ = a(t)N/vw , thus we get,

∂ N

∂ t
= −

vw

a
ȧN ∗−

�

v2
w

a
−

vw

a
ȧ

�

∂ N ∗

∂ t∗
−

vw

a
ȧx∗
∂ N ∗

∂ x∗
−

vw

a
ȧ y∗
∂ N ∗

∂ y∗
, (2.10a)

∂ N

∂ x
=

vw

a2

∂ N ∗

∂ x∗
,

∂ N

∂ y
=

vw

a2

∂ N ∗

∂ y∗
,

∂ 2N

∂ x2
=

vw

a3

∂ 2N ∗

∂ x∗2
,

∂ 2N

∂ y2
=

vw

a3

∂ 2N ∗

∂ y∗2
. (2.10b)

Combing with (2.4a)-(2.4d) and removing the asterisk, Eqs. (2.7a)-(2.7d) are finally trans-

ferred to,

∂ u

∂ x
+
∂ v

∂ y
= 0, (2.11a)

(Re−αt)
∂ u

∂ t
−αx

∂ u

∂ x
−αy

∂ u

∂ y
+ Re

�

u
∂ u

∂ x
+ v
∂ u

∂ y

�

=−
∂ p

∂ x
+ (1+ K)

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

+ K
∂ N

∂ y
, (2.11b)

(Re−αt)
∂ v

∂ t
−αx

∂ v

∂ x
−αy

∂ u

∂ y
+ Re

�

u
∂ v

∂ x
+ v
∂ v

∂ y

�

=−
∂ p

∂ x
+ (1+ K)

�

∂ 2v

∂ x2
+
∂ 2v

∂ y2

�

− K
∂ N

∂ x
, (2.11c)

(Re−αt)
∂ N

∂ t
−αN −αx

∂ v

∂ x
−αy

∂ u

∂ y
+ Re

�

u
∂ N

∂ x
+ v
∂ N

∂ y

�

=− K

�

2N +
∂ u

∂ y
−
∂ v

∂ x

�

+

�

1+
K

2

�
�

∂ 2N

∂ x2
+
∂ 2N

∂ y2

�

. (2.11d)
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These are coupled with the following boundary conditions,

u= 0, v = 1, N = −s
∂ u

∂ y
, y = 1, (2.12a)

u= 0, v = −1, N = −s
∂ u

∂ y
, y =−1, (2.12b)

u= 0, v = 0, N = 0, x = 0. (2.12c)

Since the solution domain in which finite element method is adopted has to be closed,

we need to choose a closed region of the channel and give four corresponding boundary

conditions at four boundaries of the domain. While boundary conditions of the channel are

already known along the left, bottom, and upper boundaries, which are shown in (2.2a)-

(2.2c) for the first model and (2.9a)-(2.9c) for the micropolar fluid model, we just need to

construct a boundary condition along the right side of the closed domain.

For the Newtonian fluid model, we propose new conditions of u, v at the right side as
∂ u

∂ x
+ ∂ v

∂ y
= 0, ∂ v

∂ n
= 0, respectively, where n is the outward normal direction of the domain,

motivated by the mass conservation law and the outlet conditions ∂ u

∂ n
= 0, ∂ v

∂ n
= 0 proposed

in [16]. Then we obtain the dimensionless conditions

∂ u

∂ x
+
∂ v

∂ y
= 0,

∂ v

∂ n
= 0

through (2.3) and removing the asterisk.

Similarly, for micropolar fluid model, we can construct the dimensionless boundary

conditions of u, v, N at the right side as

∂ u

∂ x
+
∂ v

∂ y
= 0,

∂ v

∂ n
= 0, N −

∂ N

∂ n
= 0.

3. Variational formulation

Let Ω be the domain of the channel, Γ be the boundary which consists of Γ1,Γ2,Γ3,Γ4,

representing the bottom, right, upper, left, of the rectangular channel. We assume that Γ is

smooth. All unknown variables should be in appropriate Sobolev space. We consider u, v in

H1 (Ω) and p in L2 (Ω), thus a weak formulation or direct variational of Eqs. (2.6a)-(2.6c)

may be drived by multiplying with q in L2 (Ω), w1, w2 in H1 (Ω), respectively, then using

integration by parts and the Green theorem.

As in Hua et al. [28] and Shi et al. [29], we use the penalty formulation to deal with

the divergence-free conditon (2.6a), which not only avoids applying an artificial boundary

condition of the pressure, but also improves the stability of the problem. The penalty form

is
∫ ∫

Ω

�

∂ u

∂ x
+
∂ v

∂ y
+ ǫp

�

qd xd y = 0, (3.1)
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where ǫ is a small penalty, which is ǫ = 10−7 in our computation. Note that the larger the

ǫ is, the more stable the problem will be.

According to the discussions above, we have the weak form of the Eqs. (2.6a)-(2.6c)

as follows,

∫ ∫

Ω

�

∂ u

∂ x
+
∂ v

∂ y
+ ǫp

�

qd xd y = 0, (3.2a)

∫ ∫

Ω

�

(Re−αt)
∂ u

∂ t
w1 −αx

∂ u

∂ x
w1 −αy

∂ u

∂ y
w1 + Re

�

u
∂ u

∂ x
w1 + v

∂ u

∂ y
w1

�

− p
∂ w1

∂ x

+

�

∂ u

∂ x

∂ w1

∂ x
+
∂ u

∂ y

∂ w1

∂ y

��

d xd y +

∫

Γ2

pw1ds+

∫

Γ2

w1

∂ v

∂ y
ds = 0, (3.2b)

∫ ∫

Ω

�

(Re−αt)
∂ v

∂ t
w2 −αx

∂ v

∂ x
w2 −αy

∂ v

∂ y
w2 + Re

�

u
∂ v

∂ x
w2 + v

∂ v

∂ y
w2

�

− p
∂ w2

∂ y

+

�

∂ v

∂ x

∂ w2

∂ x
+
∂ v

∂ y

∂ w2

∂ y

��

d xd y = 0. (3.2c)

For micropolar fluid model, using the same procedure as for the Newtonian fluid model,

we can get the variational form of (2.11a)-(2.11d),

∫ ∫

Ω

�

∂ u

∂ x
+
∂ v

∂ y
+ ǫp

�

qd xd y = 0, (3.3a)

∫ ∫

Ω

�

(Re−αt)
∂ u

∂ t
w1 −αx

∂ u

∂ x
w1 −αy

∂ u

∂ y
w1 + Re

�

u
∂ u

∂ x
w1 + v

∂ u

∂ y
w1

�

−p
∂ w1

∂ x
+ (1+ K)

�

∂ u

∂ x

∂ w1

∂ x
+
∂ u

∂ y

∂ w1

∂ y
− K
∂ N

∂ y
w1

��

d xd y

+

∫

Γ2

pw1ds+ (1+ K)

∫

Γ2

w1

∂ v

∂ y
ds = 0, (3.3b)

∫ ∫

Ω

�

(Re−αt)
∂ v

∂ t
w2 −αx

∂ v

∂ x
w2 −αy

∂ v

∂ y
w2 + Re

�

u
∂ v

∂ x
w2 + v

∂ v

∂ y
w2

�

−p
∂ w2

∂ y
+ (1+ K)

�

∂ v

∂ x

∂ w2

∂ x
+
∂ v

∂ y

∂ w2

∂ y

�

+ K
∂ N

∂ x
w2

�

d xd y = 0, (3.3c)

∫ ∫

Ω

�

(Re−αt)
∂ N

∂ t
w3 −αN w3 −αx

∂ v

∂ x
w3 −αy

∂ u

∂ y
w3 + Re

�

u
∂ N

∂ x
w3 + v

∂ N

∂ y
w3

�

+K

�

2N +
∂ u

∂ y
−
∂ v

∂ x

�

w3 +

�

1+
K

2

��

∂ N

∂ x

∂ w3

∂ x
+
∂ N

∂ y

∂ w3

∂ y

��

d xd y

−
�

1+
K

2

�
∫

Γ2

w3N/xds = 0. (3.3d)
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4. Fully discretized iterative finite element scheme

Similar to the approaches discussed in [16] and [29], in this paper, solutions of the

weak formulation (3.2a)-(3.2c) and (3.3a)-(3.3d) are approximated by a finite difference

scheme in time and a conformal C0 finite element method in space. In the temporal

direction, explicit-implicit(or semi-implicit) first order schemes are often adopted, namely

the nonlinear terms are approximated explicitly and the linear terms are treated implicitly.

We suppose that V h
2 ⊂ H1 (Ω) is the finite element space for velocity u, v and the space

for pressure p is V h
1 ⊂ L2 (Ω). For the micropolar fluid model, finite element space for

micro-rotation N is also V h
2 ⊂ H1 (Ω). As usual, we shall take V h

2 to be piecewise quadratic

polynomials P2 and V h
1 to be linear polynomials P1, which is the standard Taylor-Hood

finite element for the velocity-pressure pair, satisfying the inf-sup condition. If △t > 0

represents a time step size, and
�

un
h
, vn

h
, pn

h

�

is an approximation of

u (tn) = u
�

n△t
�

, v (tn) = v
�

n△t
�

, p (tn) = p
�

n△t
�

,

respectively, at the time t = n△t. Then the approximation solution
�

u
(n+1)

h
, v
(n+1)

h
, p
(n+1)

h

�

in (V h
2 )

2 × V h
1 at the next time t = (n+ 1)△t can be obtained by the following typical

temporal iterative scheme,

∫ ∫

Ω

 

∂ u
(n+1)

h

∂ x
+
∂ v
(n+1)

h

∂ y
+ ǫp

(n+1)

h

!

qd xd y = 0, (4.1a)

∫ ∫

Ω



(Re−αt)
u
(n+1)

h
− un

h

△t
w1 −αx

∂ un
h

∂ x
w1 −αy

∂ un
h

∂ y
w1 + Re

�

un
h

∂ un
h

∂ x
w1 + vn

h

∂ un
h

∂ y
w1

�

−p
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h

∂ w1

∂ x
+

 

∂ u
(n+1)

h

∂ x

∂ w1

∂ x
+
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(n+1)

h

∂ y

∂ w1

∂ y

!

 d xd y

+

∫

Γ2

p
(n+1)

h
w1ds+

∫

Γ2

w1

∂ v
(n+1)

h

∂ y
ds = 0, (4.1b)

∫ ∫

Ω



(Re−αt)
v
(n+1)

h
− vn

h

△t
w2 −αx

∂ vn
h

∂ x
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∂ y
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�
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�
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∂ v
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h

∂ x

∂ w2

∂ x
+
∂ v
(n+1)

h

∂ y

∂ w2

∂ y

!

 d xd y = 0, (4.1c)

for all
�

w1, w2,q
�

∈ (V h
2 )

2 × V h
1 .

For the micropolar fluid model u, v, N ∈ V h
2 , p ∈ V h

1 , then by the similar pattern,

the approximation solution (u
(n+1)

h
, v
(n+1)

h
, N

(n+1)

h
, p
(n+1)

h
) in (V h

2 )
3 × V h

1 at the time t =
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(n+ 1)△t can be obtained by the following iterative finite element scheme,

∫ ∫

Ω

 

∂ u
(n+1)

h

∂ x
+
∂ v
(n+1)

h

∂ y
+ ǫp

(n+1)

h

!

qd xd y = 0, (4.2a)

∫ ∫
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∫ ∫
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for all
�

w1, w2, w3,q
�

∈ (V h
2 )

3 × V h
1 .

5. Numerical results

In this section, we present a numerical example. The computational domain Ω is

[x , y] ∈ [0,5]× [−1,1] with a 40× 10 grid shown in Fig. 2 for solving the cases when

the channel is driven for injection or small suction. For large suctions, we should use finer

meshes since boundary layers appearing at the two opposing walls. All the solutions are

shown at x = 2 and we choose d t = 0.0001. The numerical results are obtained by using

Freefem++ platform, and MATLAB.
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Figure 2: A triangular mesh of the rectangular channel domain Ω.
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Figure 3: The time evolution of the axial velocity F ′/Re for Re = 5,α= 0.

5.1 Numerical solutions for Newtonian fluid model

In this part, cases of injection and suction are taken into consideration respectively.

we first consider two injection cases, Re = 5,α = 0 and Re = 20,α = −5 and obtain

a unique solution for each case which agrees substantially well with numerical solutions

in [6]. The time evolution of the axial velocity for each solution at t = 0.5, t = 0.75, t =

1, t = 2 is displayed in Figs. 3 and 4 respectively, from which we can have that the results

beyond t = 1 can not be visually distinguished, indicating that the steady-state solution

obtained in [6] of each state may be stable.

Figs. 5-6 shows two solutions obtained for Re = −20,α= 1, a case of suction, where we

can see that the two solutions match well with the analytical solutions in [14] at t = 0.01.

The figures also display the spatial variation of two different solutions with time. what’s

more, in order to make a clear view of the form of the solution at different time, we enlarge

the images partly. However, the profile of every solution changes into different forms by

time, thus an obvious conclusion can be drawn that the two steady-state solutions given

in [14] may be unstable.

5.2 Numerical solutions for micropolar fluid model

We use the similar computation to study multiple solutions and their spatial variation

for micropolar fluid model, a work has not been done by others. Thus in order to test

the accuracy of our results, on the other hand, we obtain the approximation solutions
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Figure 4: The time evolution of the axial velocity F ′/Re for Re = 20,α=−5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

y 

F’
/R

e

 

 
analytical solution

t= 1

t= 5

t= 2

t= 0.5

t= 0.01

Figure 5: Evolution of F ′/Re with time for the first solution under Re =−20,α = 1.
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Figure 6: Evolution of F ′/Re with time for the second solution under Re =−20,α = 1.

from the perspective of ordinary differential equations (15)-(16) in [24] with the help of

the MATLAB boundary value problem solver bvp4c by following the footsteps of previous

work. In our computation, we let K = 0.2 and two different boundary parameters s = 0 or

s = 0.02.

First, we investigate cases when the boundary parameter s = 0, which means that the

micro-elements close to the two walls of the channel are unable to rotate.

As Fig. 7 indicated, we obtain the steady-state solution given in [24] for Re = 5,α =

−3, a case of injection, and we also can conclude that the unique solution given in [24] has

reached the steady state, for at the scale used in the following image, the curves beyond

t = 1 are hardly to distinguish.

For suction driven channel, we investigate two cases when Re = −9,α = 2 and Re =
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Figure 7: Spatial variation of F ′/Re and G/Re for Re = 5,α=−3 at several temporal time.
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Figure 9: The time evolution of F ′/Re and G/Re for the second solution under Re =−9,α = 2.

−20,α = 1. As for Re = −9,α = 2, two solutions are obtained by using finite element

method, while three solutions are obtained when Re = −20,α = 1. Excellent agreement

between our solutions and the solutions obtained through bvp4c is obvious at t = 0.01. As

is shown in Figs. 8-9 and Figs. 10-12 , the profiles of these solutions vary with time and

can not reach fixed forms respectively, which leads us to conclude that the steady state

solutions obtained by bvp4c may be unstable.

Next, cases for s = 0.02 are considered, meaning that the micro-elements near the

walls are rotating, thus the values of G/Re are not zero at the two walls. Similar behaviors

can be observed as s = 0 for injection and suction cases respectively.
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Figure 11: The time evolution of F ′/Re and G/Re for the second solution under Re =−20,α = 1.
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Figure 12: The time evolution of F ′/Re and G/Re for the third solution under Re =−20,α = 1.

Fig. 13 presents the time evolution of the unique solution obtained for Re = 5,α = 1,

the results beyond t = 1 become indiscernible, so the unique solution given in [24] is a

stable solution.

As for Re = −3,α = −6, a case of small suction, we can easily find the approximation

analytical solution obtained in [24] by our direct computational method. From Fig. 14,

a conclusion can be drawn that the steady-state solution given in [24] may be stable.

Figs. 15-17 illustrate the profiles of three solutions obtained in the case of Re = −30,α =

1.5 and their spatial variation with time, Just as suction cases before, these steady-state

solutions given by bvp4c may be unstable. In addition, the velocity vector field of the three
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Figure 13: The time evolution of F ′/Re and G/Re for Re = 5,α= 1.
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Figure 14: The time evolution of F ′/Re and G/Re for Re = −3,α= −6.
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Figure 15: The time evolution of F ′/Re and G/Re for the first solution under Re =−30,α = 1.5.

solutions at t = 0.01 in the whole channel are presented in Fig. 18.

6. Conclusions

In this research, an explicit-implicit finite difference scheme in time and a continuous

finite element method in space have been used to study multiple solutions for the laminar

flow in a porous channel with expanding or contracting walls. Two models are considered,

that is Newtonian fluid model and the micropolar fluid model. We first non-dimensionalize

the governing equations of the two models and introduce the expansion ratio α. Then we



A Numerical Study of Multiple Solutions for Laminar Flows 89

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y 

F’
/R

e

 

 
bvp4c

t= 5

t= 0.5

t= 0.01

t= 1

t= 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

40

60

80

y 

G
/R

e

 

 
bvp4c

−0.8 −0.6 −0.4
2

4

6

y 

 

 

t= 5

t= 2

t= 0.01

t= 0.5

t= 1

t= 1

Figure 16: The time evolution of F ′/Re and G/Re for the second solution under Re =−30,α = 1.5.
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Figure 17: The time evolution of F ′/Re and G/Re for the third solution under Re = −30,α= 1.5.

Figure 18: Plot of the velocity vector field of the first, second and third solution for Re = −30,α = 1.5
at t = 0.01, respectively.

describe their weak formulations and the iterative finite element schemes, respectively.

Some numerical solutions are obtained, and the main findings of this study can be summa-

rized as follows: For the Newtonian fluid model, there is a unique solution which may be

stable for the injection, while for large suctions, multiple solutions exist and the profile of

each solution varies with time, which indicates that these solutions may be unstable; For

micropolar fluid model, similar conclusions can be drawn as the Newtonian fluid model.
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