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Abstract. This paper is concerned with a piecewise smooth rational quasi-interpolation

with algebraic accuracy of degree (n + 1) to approximate the scattered data in R
3.

We firstly use the modified Taylor expansion to expand the mean value coordinates

interpolation with algebraic accuracy of degree one to one with algebraic accuracy of

degree (n + 1). Then, based on the triangulation of the scattered nodes in R
2, on

each triangle a rational quasi-interpolation function is constructed. The constructed

rational quasi-interpolation is a linear combination of three different expanded mean

value coordinates interpolations and it has algebraic accuracy of degree (n + 1). By

comparing accuracy, stability, and efficiency with the C1-Tri-interpolation method of

Goodman[16] and the MQ Shepard method, it is observed that our method has some

computational advantages.
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1. Introduction

The problem of scattered data approximation appears in many fields of science and

engineering. For example, geology, geography, reverse engineering, numerical simulation,

computer graphics and geometric modeling, etc.. The most commonly used approximation

method is the radial basis function interpolation [1-3], which is a kind of global interpo-

lation method and need to solve linear system of equations to determine the coefficients

of interpolation basis functions. The system is usually ill-conditioned when scattered data

on a large scale, so they can’t be solved effectively and stably. One of the ways to solve

this problem is to find a better basis function, for example, the basis function in [4]. One

way to get around this problem is the quasi-interpolation method. The quasi-interpolation
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method gives an explicit expression of the approximation function using the given data.

Thus it avoids solving large-scale systems of linear algebraic equations in the radial basis

function interpolation.

For a set of function values { f (v j)}1≤ j≤N taken on a set of nodes Ξ = {v j}1≤ j≤N ⊂R
d ,

the form of quasi-interpolation function Φ( f ;v) corresponding to f (v) is

Φ( f ;v) =

N∑

j=1

f (v j)ϕ j(v),

where {ϕ j}1≤ j≤N is a set of quasi-interpolation basis functions. The set of nodes {v j}1≤ j≤N

usually has two kinds: the uniform grid node set and the scattered node set. The standard

quasi-interpolant based on the uniform grid node set in Z
d is

∑

j∈Zd

f ( jh)ϕ j,h(v), (1.1)

in which Schoenberg model [5]

∑
f ( jh)Φ(

v

h
− j)∼ f (v), v ∈Rd (1.2)

has attracted the most attention. Quasi-interpolant (1.2) can be studied via the theory of

principal shift-invariant spaces, which has been developed in several articles by de Boor et

al. [6,7]. Strang and Fix [8] also give a necessary and sufficient condition for the con-

vergence of such a standard form of quasi-interpolant. The quasi-interpolants based on

the uniform grid node set, have been applying in the numerical integration, the numerical

solution of integral equation and the differential equation [9,10]. The quasi-interpolant

(1.1) is based on the values of f (v) in the uniform grid node set, which limits its range

of application. For example, the above mentioned large-scale scattered data approxima-

tion, the numerical solution of integral equation and differential equation which are based

on the non-uniform grid subdivision, and other solving problems. These problems can be

solved, relying on the quasi-interpolants based on the scattered node set. The construc-

tion of the quasi-interpolants based on the high dimensional scattered node set, is firstly

studied by Dyn and Ron [11]. They proposed the general idea about extending the quasi-

interpolant based on the uniform grid node set to the scattered node set. Buhmann et al.

[12] extended the scheme based on the uniform node set in [13] to the quasi-uniform

distribution of the infinite scattered node set. By constructing the suitable "bell shape"

basis function and using the convolution equation, Yoon [14] gives an integral form of

the quasi-interpolant which is based on the scattered node set. The constructed quasi-

interpolants based on the scattered node set in these papers not only need the function

information at the scattered node but also need the function information at uniform node

or all the information of the approximated function. This still limits the application of

these methods. Wu and Liu [15] use the generalized Strang-Fix condition which is related

to non-stationary quasi-interpolation, to extend their constructed quasi-interpolant based
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Figure 1: The polygonΨ j enclosing node v j .

on the uniform grid node set to the complete scattered node set. It noted that they do not

give a practical and operational form.

In the paper we construct a piecewise smooth rational quasi-interpolant to approximate

scattered data in R
3, which only needs the information about the approximated function

values or the approximated function values and derivative values at the scattered nodes.

The mean value coordinates interpolation is an interpolation which is based on planar

polygons and has algebraic accuracy of degree one. We firstly use the modified Taylor

expansion to expand the mean value coordinates interpolation to an interpolation with

algebraic accuracy of any degree. Then based on the triangulation of the scattered nodes

in R
2, on each triangle we construct a rational quasi-interpolation function, which approx-

imates the scattered data in R
3. The constructed rational quasi-interpolation function is a

linear combination of three different expanded mean value coordinates interpolations with

algebraic accuracy of degree (n+ 1) and it also has algebraic accuracy of degree (n+ 1).

In the paper we analyse its algebraic accuracy, approximation error and smoothness. The

advantage of the piecewise rational quasi-interpolation is that it is completely based on

the scattered node set. It is a practical, easy-operation, high-precision and stable local

quasi-interpolant. Details of the paper are shown in the subsequent sections.

2. The rational quasi-interpolation function with algebraic accuracy of

degree (n+ 1) on triangle

Given a scattered data set Ξ = {(x j, y j , f (x j, y j))}
N
j=1
⊂R

3, it can be seen as sampling

on a bivariate function f (x , y). The projection point set {v j = (x j, y j)}
N
j=1 of Ξ onto the

two-dimensional plane R
2, is called site set or node set. Here, we use Ω to denote the

convex hull of the node set and T is the Delaunay Triangulation of Ω. Then, any node v j in

the node set {v j}
N
j=1

must be a common vertex of some triangles, which locates either on

the boundary of T or inside the interior of T. Now, we might as well suppose that v j is an

interior node of T and the node set {v ji
= (x ji

, y ji
)}ki=1 are all other vertices of all triangles

with node v j as its vertex. The node set is arranged counter-clock and it constructs a

polygon enclosing v j , written as Ψ j, see Fig. 1.



172 R. Z. Feng and L. F. Song

2.1. Mean value coordinates

Mean value coordinates were firstly proposed by Floater in [18], for the purpose of

generalizing the area coordinates of plane triangle. Mean value coordinates have been

used in the computer graphics, the finite element and other fields [19-21]. The idea is that

node v j in the plane polygon Ψ j can be represented as a linear combination as follows

v j =

k∑

i=1

(λi · v ji
),

∑k

i=1
λi = 1, (2.1a)

λi =
ωi∑k

l=1ωl

, ωi =
tan(αi−1/2) + tan(αi/2)

‖ v ji
− v j ‖

. (2.1b)

The coefficient {λi}
k
i=1

in (2.1a) is called mean value coordinates. Angles αi−1 and αi

in (2.1b) can be seen in Fig. 1, and ‖ · ‖ is Euclidean distance. We can define a value∑k

i=1(λi · f (v ji
)) with coefficients in(2.1), it can be seen as a approximation of the value

f (v j). Now, we fix the vertices {v j1
, · · · ,v jk

} of polygon Ψ j unchanged, and let v j move on

the Ψ j. We might as well write v= (x , y), then (2.1) is still set up, namely

v=

k∑

i=1

(λi(x , y) · v ji
). (2.2)

The mean value coordinates λi, i = 1, · · · , k are associated with (x , y), which are rational

functions. The mean value coordinates λi(x , y) have the following properties [19]:

(i) Affine precision:
∑k

i=1λiϕ(v ji
) = ϕ, for any affine function, ϕ : R2→R

d ;

(ii) Lagrange property: λi(v j) = δi, j;

(iii) Smoothness: λi is C∞, everywhere, except at the vertices v j, where it is only C0;

(iv) Partition of unity:
∑k

i=1λi ≡ 1;

(v) Linear independence: if
∑k

i=1 ciλi(v) = 0, for all v ∈R2, then all ci must be zero;

(vi) Edge property: λi is linear along the edges e j of Ψ j;

(vii) Positivity: λi is positive inside the kernel of star-shaped polygons, in particular, inside

convex polygons.

We define a function on Ψ j with the set of variable coefficients r j(x , y) =
∑k

i=1

�
λi(x , y) ·

f (v ji
)
�
. According to the Lagrange property of λi, we know that r j(x , y) has interpolation

property at v ji
, i = 1, · · · , k, which is called mean value coordinates interpolation in [19].

It is a rational approximation of function f (x , y) on Ψ j, and it has been used for Phong

Shading, Image Warping and Transfinite Interpolation. R. Alexander etc. have presented
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the interpolation error estimation for mean value coordinates over the convex polygon in

[20].

The mean value coordinates (2.1) by M. S. Floater is not stable enough in geometric

computation. Because when v j is distributed near v ji
, it will lead to the denominator

‖v j − v ji
‖ → 0. Feng and Zhao [21] give an equivalent but robust mean value coordinates.

Mark si and ci are the signed area of ∆v jv ji−1
v ji

and ∆v jv ji−1
v ji+1

respectively, li is ‖v j − v ji
‖.

Then the homogeneous mean value coordinates given by Feng and Zhao are

ωi =
1

2
(li+1si − lici + li−1si+1)

∏

j 6=i, i+1

s j .

2.2. Mean value coordinates interpolation with algebraic accuracy of degree

(n+ 1) on polygon

According to the properties of λi(x , y), we know that r j(x , y) only has affine precision.

Then how to improve the approximation accuracy of r j(x , y) to f (x , y) in the case that

doesn’t add new nodes? In the paper we will use the derivative value of the approximated

function f (x , y) at each node to expand r j(x , y) in order to make it obtain higher algebraic

accuracy. Thereby, we achieve the improvement of approximation accuracy of r j(x , y) to

f (x , y).

Suppose that f : R2 → R is Cn+1 in a neighbourhood of Ω and v = (x , y) ∈ Ω. For

each a(a1, a2) ∈ Ω, suppose that Tn
a f (v) is the degree n Taylor expansion of f at a, and

Rn
a f (v) is the remainder of Tn

a f (v). We use the expression of Tn
a f (v) in [22]

Tn
a f (v) = f (a) + [(v− a) · ▽] f (u) |u=a + · · ·+

1

n!
[(v− a) · ▽]n f (u) |u=a,

where ▽ = ( ∂
∂ x

, ∂
∂ y
) is the gradient operator.

To simplify the formula, we use ([(v−a) ·▽]n f )(a) to replace the term [(v−a) ·▽]n ·
f (u) |u=a. Thus the degree n Taylor polynomial expansion at a changes into

Tn
a f (v) =

n∑

j=0

1

j!

�
[(v− a

�
· ▽] j f )(a).

The remainder changes into

Rn
a f (v) =

1

(n+ 1)!

�
[
�
v− a

�
· ▽]n+1 f

�
(z),

where

z = a+ θ
�
v− a) = (a1 + θ(x − a1), a2 + θ(y − a2)

�
, 0≤ θ ≤ 1

is a point on the line segment joining point a and point v.

Lemma 2.1. Let f be n+1 times continuously differentiable in a neighborhood of a+θ(v−a).

Then
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[(v− a) · ▽]([(v− a) · ▽]n f )(z)

=n
�
[(v− a) · ▽]n f

�
(z) +

�
θ + θx(x − a1)

��
[(v− a

�
· ▽]n+1 f )(z)

+
�
θy(y − a2)− θx(x − a1)

� n+1∑

i=0

i

n+ 1

�
n+ 1

i

�
(x − a1)

n+1−i(y − a2)
i
∂ n+1 f

∂ xn+1−i∂ y i
(z),

where θx ,θy are the partial functions of θ with respect to x , y respectively.

Proof. Note

(v− a) · ▽ = (x − a1)
∂

∂ x
+ (y − a2)

∂

∂ y
,

([(v− a) · ▽]n f )(z) =

n∑

i=0

�
n

i

�
(x − a1)

n−i(y − a2)
i
∂ n f

∂ xn−i y i
(z).

Therefore, we have

[(v− a) · ▽]([(v− a) · ▽]n f )(z)

=

�
(x − a1)

∂

∂ x
+ (y − a2)

∂

∂ y

�


n∑

i=0

�
n

i

�
(x − a1)

n−i(y − a2)
i
∂ n f

∂ xn−i y i
(z)




=

n∑

i=0

�
n

i

��
(n− i)(x − a1)

n−i(y − a2)
i
∂ n f

∂ xn−i y i
(z) + θ(x − a1)

n+1−i(y − a2)
i

·
∂ n+1 f

∂ xn+1−i∂ y i
(z) + θx(x − a1)

n+2−i(y − a2)
i
∂ n+1 f

∂ xn+1−i∂ y i
(z)

�
+

n∑

i=0

�
n

i

�

·

�
i(x − a1)

n−i(y − a2)
i
∂ n f

∂ xn−i∂ y i
(z) + θ(x − a1)

n−i(y − a2)
i+1

∂ n+1 f

∂ xn−i y i+1
(z)

+θy(x − a1)
n−i(y − a2)

i+2
∂ n+1 f

∂ xn−i∂ y i+1
(z)

�

=n

n∑

i=0

�
n

i

�
(x − a1)

n−i(y − a2)
i
∂ n f

∂ xn−i y i
(z)+ θ

n∑

i=0

�
n+ 1− i

n+ 1

�
n+ 1

i

�

·(x − a1)
n+1−i(y − a2)

i
∂ n+1 f

∂ xn+1−i∂ y i
(z) +

i + 1

n+ 1

�
n+ 1

i+ 1

�
(x − a1)

(n+1)−(i+1)

�

· (y − a2)
i
∂ n+1 f

∂ xn+1−i∂ y i
(z) + θx(x − a1)

n∑

i=0

n+ 1− i

n+ 1

�
n+ 1

i

�
(x − a1)

n+1−i

+ θy(y − a2)

n∑

i=0

i + 1

n+ 1

�
n+ 1

i + 1

�
(x − a1)

(n+1)−(i+1)(y − a2)
i+1

∂ n+1 f

∂ x (n+1)−(i+1)∂ y i+1
(z)

=n
�
[(v− a) · ▽]n f

�
(z) +

�
θ + θx(x − a1)

��
[(v− a

�
· ▽]n+1 f )(z)+

�
θy(y − a2)

− θx(x − a1)
� n+1∑

i=0

i

n+ 1

�
n+ 1

i

�
(x − a1)

n+1−i(y − a2)
i
∂ n+1 f

∂ xn+1−i∂ y i
(z).
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The proof is completed. �

According to Lemma 2.1 with θ = 0, we have

[(v− a) · ▽]Tn+1
a f (v) =

n∑

j=0

1

j!

�
[(v− a) · ▽] j+1 f

�
(a). (2.3)

Again it follow from Lemma 2.1, we also can get

�
(v− a) · ▽

�
f (v)−

�
(v− a) · ▽

�
Tn+1

a f (v)

=
�
(v− a) · ▽

�
Rn+1

a f (v)

=
�
(v− a) · ▽

� 1

(n+ 2)!

�
[(v− a) · ▽]n+2 f

�
(z)

=(n+ 2)Rn+1
a f (v)+ (n+ 3)

�
θ + θx(x − a1)

�
Rn+2

a f (v)

+
1

(n+ 2)!
(θy(y − a2)− θx(x − a1))

n+3∑

i=0

i

n+ 3

�
n+ 3

i

�

· (x − a1)
n+3−i(y − a2)

i
∂ n+3 f

∂ xn+3−i∂ y i
(z). (2.4)

Definition 2.1. For a ∈R2, let Ln
a be the linear mapping given by

Ln
a f (v) =

n∑

j=0

n+ 1− j

n+ 1

1

j!

�
[(v− a) · ▽] j f

�
(a).

Lemma 2.2.

Tn+1
a f (v)− Ln

a f (v) =
1

n+ 1
[(v− a) · ▽]Tn+1

a f (v). (2.5)

Proof. Note that

Tn+1
a f (v)− Ln

a f (v)

=

n+1∑

j=0

1

j!

�
[(v− a) · ▽] j f

�
(a)−

n+1∑

j=0

n+ 1− j

n+ 1

1

j!

�
[(v− a) · ▽] j f

�
(a)

=
1

n+ 1

n+1∑

j=1

1

( j− 1)!

�
[(v− a) · ▽] j f

�
(a)

=
1

n+ 1

n∑

j=0

1

j!

�
[(v− a) · ▽] j+1 f

�
(a)

=
1

n+ 1
[(v− a) · ▽]Tn+1

a f (v). (b y (2.3))

The proof is completed. �
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Definition 2.2. The interpolation In
j is defined as follows

In
j (v) =

k∑

i=1

Ln
v ji

f (v)λi(v), v ∈Ψ j. (2.6)

Theorem 2.1. If f is a polynomial with degree ≤ n+ 1, then we have In
j (v)≡ f (v) on Ω.

Proof. According to the property (iv) of λi(x , y) and Eq. (2.3), we have

k∑

i=1

(v− v ji
)λi(v) = 0.

Then we get

k∑

i=1

�
[(v− v ji

) · ▽] f (v)
�
λi(v) = 0. (2.7)

Consequently, we have

f (v)− In
j (v) =

k∑

i=1

�
f (v)− Ln

v ji

f (v)
�
λi(v)

=

k∑

i=1

�
f (v)− Tn+1

v ji

f (v)+ Tn+1
v ji

f (v)− Ln
v ji

f (v)

�
λi(v)

=

k∑

i=1

�
Rn+1

v ji

f (v)+
�
Tn+1

v ji

f (v)− Ln
v ji

f (v)
�
−

1

n+ 1
[(v− v ji

) · ▽] f (v)
�
λi(v)

=

k∑

i=1

�
Rn+1

v ji

f (v)+
1

n+ 1
[(v− v ji

) · ▽]Tn+1
v ji

f (v)−
1

n+ 1
[(v

− v ji
) · ▽] f (v)

�
λi(v) (b y Lemma 2.2)

=−
1

n+ 1

k∑

i=1

Rn+1
v ji

f (v)λi(v)−
n+ 3

n+ 1

k∑

i=1

�
θ + θx(x − a1, ji

)
�
Rn+2

v ji

f (v)λi(v)

−
1

(n+ 1)(n+ 2)!

k∑

i=1

 
�
θy(y − a2, ji

)− θx(x − a1, ji
)
� n+3∑

l=0

l

n+ 3

·
�

n+ 3

l

�
(x − a1, ji

)n+3−l(y − a2, ji
)l

∂ n+3 f

∂ xn+3−l∂ y l
(z)

�
λi(v). (b y (2.4))

In the case that f (v) is a polynomial with degree ≤ n+ 1, we know that

Rn+1
v ji

f (v) = Rn+2
v ji

f (v)≡ 0,
∂ n+3 f

∂ xn+3−l∂ y l
(v) = 0.

Then we have f (v)− In
j
(v)≡ 0. The proof is completed. �
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Remark 2.1. The result of Theorem 2.1 illustrates In
j
(x , y) has algebraic accuracy of degree

(n+ 1) on Ω.

Remark 2.2. According to the property (iii) of λi(x , y) we know interpolation function

In
j (x , y) is C∞ in R

2 everywhere, except at the vertices v ji
of Ψ j, where it is only C0.

Theorem 2.2. Suppose f is Cn+3 in a neighbourhood of Ω ,θ is C1 in Ψ j and h j is the

minimum size of radius of the circle which contains the polygon Ψ j. Let

M3,l =max
v∈Ω

�����
∂ n+3 f

∂ xn+3−l∂ y l
(v)

����� , l = 0, · · · , n+ 3,

M2,l =max
v∈Ω

�����
∂ n+2 f

∂ xn+2−l∂ y l
(v)

����� , l = 0, · · · , n+ 2,

M =max
l
{M2,l , M3,l} and Θ =max{max

v∈Ψj

|θ(v)|, max
v∈Ψj

|θx(v)|, max
v∈Ψj

|θy(v)|}.

Then

�� f (v)− In
j (v)
��≤

M(1+Θ(1+ 4h j)4h j)

(n+ 1)(n+ 2)!
(4h j)

n+2
k∑

i=1

|λi(v)|, v ∈Ψ j. (2.8)

Proof. Note that

��Rn+1
v ji

f (v)
��=

1

(n+ 2)!

�����

n+2∑

l=0

�
n+ 2

l

�
(x − a1, ji

)n+2−l(y − a2, ji
)l

∂ n+2 f

∂ xn+2−l∂ y l
(z)

�����

≤
M

(n+ 2)!
(4h j)

n+2,

��Rn+2
v ji

f (v)
��≤

M

(n+ 3)!
(4h j)

n+3.

Consequently, we have

�����−
1

n+ 1

k∑

i=1

Rn+1
v ji

f (v)λi(v)

�����

≤
1

n+ 1

k∑

i=1

M

(n+ 2)!
(4h j)

n+2|λi(v)|=
M(4h j)

n+2

(n+ 1)(n+ 2)!

k∑

i=1

|λi(v)|, (2.9a)

�����−
n+ 3

n+ 1

k∑

i=1

�
θ + θx (x − a1, ji

)
�
Rn+2

v ji

f (v)λi(v)

�����

≤
MΘ

(n+ 1)(n+ 2)!
(1+ 2h j)(4h j)

n+3
k∑

i=1

|λi(v)|, (2.9b)
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�����−
1

(n+ 1)(n+ 2)!

k∑

i=1

�
(θy(y − a2, ji

)− θx(x − a1, ji
)
�

n+3∑

l=0

l

n+ 3

�
n+ 3

l

�
(x − a1, ji

)n+3−l · (y − a2, ji
)l

∂ n+3 f

∂ xn+3−l∂ y l
(z)
�
λi(v)

�����

≤
MΘ

(n+ 1)(n+ 2)!
(2h j)(4h j)

n+3
k∑

i=1

|λi(v)|. (2.9c)

According to the above three inequalities and the proof of Theorem 2.1, we have

| f (v)− In
j (v)| ≤

M(4h j)
n+2

(n+ 1)(n+ 2)!

k∑

i=1

|λi(v)|+
MΘ

(n+ 1)(n+ 2)!
(1+ 2h j)(4h j)

n+3

·
k∑

i=1

|λi(v)|+
MΘ

(n+ 1)(n+ 2)!
(2h j)(4h j)

n+3
k∑

i=1

|λi(v)|

=
M(1+Θ(1+ 4h j)4h j)

(n+ 1)(n+ 2)!
(4h j)

n+2
k∑

i=1

|λi(v)|. (2.10)

The proof is completed. �

Remark 2.3. The expression
∑k

i=1 |λi(v)| in the right side of inequality (2.10) that deter-

mine the convergence rate can be regarded as the Lebesgue constant of interpolation In
j (v).

When the polygon Ψ j is a convex polygon, there is
∑k

i=1 |λi(v)|=
∑k

i=1λi(v) = 1.

Remark 2.4. In
j (v) (n ≥ 1) is a generalization of r j(v), called as expanded mean value

coordinates interpolation. Compared with the approximation accuracy of r j(v) on Ψ j(see

[20]), the approximation accuracy of In
j (v) has improved.

2.3. Quasi-interpolation function with algebraic accuracy of degree (n+1) on

triangles in T

Now, we suppose v1,v2,v3 are three adjacent interior nodes of Delaunay triangulation

T and three vertices of some triangle △123 in T. Ψ1,Ψ2,Ψ3 are three polygons enclosing

points v1,v2,v3 respectively, In
1(x , y), In

2(x , y), In
3(x , y) are the expanded mean value coor-

dinate interpolation functions on polygons Ψ1,Ψ2,Ψ3 respectively, see Fig. 2. We define a

function on △123

Qn
123(x , y) = α1(x , y)In

1(x , y) +α2(x , y)In
2(x , y) +α3(x , y)In

3(x , y), (2.11)

where α1(x , y),α2(x , y),α3(x , y) are basis functions of the bivariate linear Lagrange in-

terpolation on △123

α1(x , y) =
(y − y2)(x3− x2)− (x − x2)(y3− y2)

(y1 − y2)(x3− x2)− (x1− x2)(y3 − y2)
,
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Figure 2: Three vertices v1,v2,v3 of a triangle included in triangulation T.

α2(x , y) =
(y − y1)(x3− x1)− (x − x1)(y3 − y1)

(y2 − y1)(x3− x1)− (x2− x1)(y3 − y1)
,

α3(x , y) =
(y − y1)(x2− x1)− (x − x1)(y2 − y1)

(y3 − y1)(x2− x1)− (x3− x1)(y2 − y1)
.

Theorem 2.3. If f is a polynomial degree ≤ n+ 1, then we have Qn
123(v)≡ f (v) on Ω.

Proof. According to the result of Theorem 2.1, we have In
1(v)≡ In

2(v)≡ In
3(v)≡ f (v), v ∈

Ω, when f (v) is a polynomial with degree ≤ n+1. Because△123 is the intersection of three

adjacent polygons Ψ1,Ψ2,Ψ3, so we get

Qn
123(x , y) = (α1(x , y) +α2(x , y) +α3(x , y)) · f (x , y) = f (x , y), (x , y) ∈ Ω.

The proof is completed. �

For Qn
123(x , y), we have the following error estimate.

Theorem 2.4. Suppose that in a neighbourhood of Ω, f is Cn+3, then we have

Qn
123(v)− f (v) = O (hn+2), v ∈ △123, where h=max

j
hj. (2.12)

According to Theorem 2.2, the conclusion is obvious, so the process of proof is omitted.

Remark 2.5. If vi, i = 1,2,3 are the interior nodes of T, then, in general,

Qn
123(vi) = α1(vi)I

n
1(vi) +α2(vi)I

n
2(vi) +α3(vi)I

n
3(vi) = In

i (vi) 6= f (vi).

This illustrates Qn
123 does not interpolate the function value f (vi), i = 1,2,3, at nodes

v1,v2,v3, in general. Thus,Q123 is a rational quasi-interpolation function.

Remark 2.6. Qn
123 is C∞ everywhere onΩ, except at the vertices of the polygonsΨ1,Ψ2,Ψ3,

where it is only C0.
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3. The construction of piecewise rational approximation function with

algebraic accuracy of degree (n+ 1) on the bounded domain Ω

The function Qn
f
(v), which approximates to the scattered data Ξ ⊂ Ω in R

3 to be

constructed, will have different expressions with different locations of point v(x , y) ∈ Ω.

We divide the location of point v on Ω into two types according to the triangulation T.

Thereby Qn
f
(v) has two different expressions, and the concrete expressions are as follows:

(1) If point v(x , y) lies on a triangle, which is an interior triangle of T, or to say, vertices

of the triangle are interior nodes of T, see Fig. 2. Then we assign the value of Qn
123(x , y)

at v to the approximate function Qn
f
(x , y), namely, Qn

f
(x , y) = Qn

123(x , y);

(2) If point v(x , y) lies on a triangle b△123 close to the boundary of T, see Fig. 3, there

is at least one vertex of b△123 lying on the boundary of T. For example, the vertex v3 in

Fig. 3 is a boundary node, and there doesn’t exist a polygon enclosing it. But from Fig. 3,

we see that point v lies in the polygon {v4,v1,v2,v5,v3,v4}, so we might as well write

the polygon as Ψ3. Then we construct an expanded mean value coordinates interpolation

function according to the method in Section 2, denoted by eIn
3(x , y). Then at v, we use the

following function value

eQn
123(x , y) = α1(x , y) · In

1(x , y) +α2(x , y) · In
2(x , y) +α3(x , y) ·eIn

3(x , y) (3.1)

to the approximate function Qn
f
(x , y). If point v lies on b△253 close to the boundary of T,

see Fig. 3, then the approximation value at v is

eQn
253(x , y) = α2(x , y) · In

2(x , y) +α5(x , y) ·eIn
5(x , y) +α3(x , y) ·eIn

3(x , y), (3.2)

where the construction of expanded mean value coordinates interpolation functioneIn
5(x , y)

is similar toeIn
3(x , y) in (3.1). If the three vertices of b△123 are all boundary nodes of T, then

all the expanded mean value coordinates functions in the approximation value at v are

constructed aseIn
3(x , y) in (3.1).

Based on the above construction idea, the algorithm to generate approximating the

sampling function f (x , y) for a given set of the scattered data Ξ in R
3 is summarized as

follows.

From the above algorithm, we obtain an approximation function of f (x , y) on Ω

Qn
f (x , y) =

(
Qn

123(x , y), (x , y) ∈△123 ⊂ T,

eQn
123(x , y), (x , y) ∈ b△123 ⊂ T.

(3.3)

Remark 3.1. The approximation order of Qn
f
(x , y) to f (x , y), see Theorem 2.4.

Remark 3.2. According to Theorem 2.3, Qn
f
(x , y) is a rational quasi-interpolation function

with algebraic accuracy of degree (n+ 1) on Ω.
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Figure 3: Point v(x , y) lies on some triangle b△123 close to the boundary of T.

Algorithm 3.1 The algorithm to generate approximating the sampling function f (x , y).

1. Project the set of the scattered data Ξ = {(x j, y j , f j)}
N
j=1 onto plane to obtain a set of

scattered nodes {(x j, y j)}
N
j=1;

2. Use Delaunay triangulation method to generate a triangulation T of {(x j, y j)}
N
j=1;

3. We choose different expressions of the approximation function Qn
f
(x , y) to calculate

the approximation value of f (x , y), according to the location of v(x , y) on Ω: If

point v(x , y) lies on a triangle △123, whose three vertices are interior nodes of T.

Then we use the rational function Qn
123(x , y) in (2.6) to calculate the approximation

value of f (x , y); If point v(x , y) lies on a triangle b△123 close to the boundary of

T, namely, at least one of whose three vertices belongs to the boundary of T. Then

we use eQn
123(x , y) or eQn

253(x , y) in (3.1-3.2) to calculate the approximation value of

f (x , y).

4. Numerical experiments

In this section, we use a bivariate quadratic polynomial function f1(x , y) and Franke

function f2(x , y), 0≤ x , y ≤ 1:

f1(x , y) =3x2+ 4y2 + 5x y + 6x + 7y + 8, 0≤ x , y ≤ 1,

f2(x , y) =
3

4
exp

�
−
(9x − 2)2+ (9y − 2)2

4

�
+

3

4
exp

�
−
(9x + 1)2

49
−
(9y + 1)

10

�

−
1

5
exp
�
−(9x − 4)2− (9y − 7)2

�
+

1

2
exp

�
−
(9x − 7)2 + (9y − 3)2

4

�
,

as the approximated functions to get the scattered sampling data set. Fig. 4 present the

Franke function f2(x , y). Fig. 5 displays a set of 300 scattered data points sampled from
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Figure 4: The figure of Franke function.
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Figure 5: A set of 300 scattered data
points from Franke function.
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Figure 6: The projection node set of 300
scattered data points in Fig. 5.
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Figure 7: The triangulation of 300 scat-
tered nodes in Fig. 6.

Franke function. Fig. 6 is the projected node set of 300 scattered data points in Fig. 5.

Fig. 7 is the triangulation T of 300 scattered nodes in Fig. 6. Fig. 8 the reconstruction func-

tion Q1
f
(x , y) using 300 scattered data and the partial derivatives of order one of Franke

function. In the section all different sets of scattered nodes are generated by function

rand() of MATLAB. Using the algorithm provided in Sections 2-3 and the sampling da-

ta {(x j, y j , f j)}
N
j=1

and derivatives of order one, we generate quasi-interpolation functions

Qn
f
(x , y)(n = 0,1) to approximate f1(x , y), f2(x , y); According to different scattered data

sets, we calculate mean absolute errors (MAE) and max errors(L∞ error) of Qn
f
(x , y) to the

two approximated functions on 50*50 test points, and investigate its quadratic reproducing

and approximation capability. Meanwhile, we compare the MAE and L∞ errors of Q1
f
(x , y)

with piecewise C1 smooth triangular interpolation suggested by Goodman [16](abbr. C1-

Tri-interpolation) and MQ modified quadratic Shepard method [17] on the same scattered

point sets. Finally, we compare CPU execution times of these three methods on the same

type of computer (Inter Q8400 2.66GHz, Memory: 4GB).

From the results of Table 1, we see that Q1
f
(x , y) using exact derivatives of one order

can regenerate the bivariate quadratic polynomial.

In Table 2, we compare the errors of Q1
f
(x , y) (expanded scheme using the first-order

estimate derivatives, which use Goodman method [23]) and Q f (x , y) (n = 0) (unex-
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Figure 8: The figure of Q1
f
(x , y) using 300 scattered data and exact derivative.

Table 1: The approximation error of Q1
f
(x , y) to f1(x , y).

Number of

scattered nodes
Max error Mean absolute error

300 2.8422e-14 2.1092e-015

500 4.6190e-14 2.1646e-015

800 1.7760e-14 2.0586e-015

1500 1.0840e-14 2.0657e-015

Table 2: The comparison of approximation errors of Q1
f
(x , y) and Q f (x , y)(n= 0) to f2(x , y) when using

the approximate derivative in Q1
f
(x , y).

Number of

scattered nodes

Q1
f
(x , y) Q f (x , y)(n= 0)

Max error Mean absolute error Max error Mean absolute error

300 0.0753 0.0048 0.0982 0.0113

500 0.0320 0.0025 0.0633 0.0071

800 0.0184 0.0013 0.0328 0.0039

1000 0.0165 0.0011 0.0306 0.0034

1500 0.0129 8.0566e-004 0.0259 0.0023

panded scheme) to the approximated function f2(x , y). From the results we see that

the errors of Q1
f
(x , y) are less than Q f (x , y) (n = 0), especially the L∞ error. This

shows that the approximation accuracy of Q1
f
(x , y) using approximate derivative is bet-

ter than Q f (x , y) (n = 0). It reaches our purpose to improve the approximation accuracy

of Q f (x , y) (n= 0) without increasing any information and nodes.

Table 3 shows the approximation errors of Q1
f
(x , y) to f2(x , y) when using the exact

derivative and the approximate derivative generated by Goodman method. The results

indicate that due to the error of the estimate derivative itself leads to the addition of the

error of Q1
f
(x , y).

Table 4 shows, under a few sets of scattered data, the approximation errors of three

different methods: Q1
f
(x , y), C1-Tri-interpolation and MQ Shepard to f2(x , y). Through

comparison we find when using the estimate derivative, the approximation accuracy of
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Table 3: The approximation errors of Q1
f
(x , y) to f2(x , y) when using the exact derivative and approxi-

mate derivative in Q1
f
(x , y).

Number of

scattered nodes

Exact derivatives Estimation derivatives

Max error Mean absolute error Max error Mean absolute error

300 0.0752 0.0024 0.0753 0.0048

500 0.0296 8.6497e-004 0.0320 0.0025

1000 0.0109 2.4011e-004 0.0165 0.0011

2000 0.0028 7.1501e-005 0.0110 6.1149e-004

4000 4.166e-04 1.6933e-005 0.0094 2.8367e-004

Table 4: The approximation errors of Q1
f
(x , y), C1-Tri-interpolation and MQShepard to f2(x , y).

Number of

scattered nodes

Q1
f
(x , y) C1 -Tri-interpolation MQShepard

L∞ error MAE L∞ error MAE L∞ error MAE

300 0.0753 0.0048 0.0819 0.0038 0.0620 0.0087

500 0.0320 0.0025 0.0288 0.0020 0.0622 0.0066

1000 0.0165 0.0011 0.0213 0.0011 0.0442 0.0044

2000 0.0110 6.12e-4 0.0155 5.65e-4 0.0287 0.0029

4000 0.0094 2.84e-4 0.0135 2.56e-4 0.0263 0.0021

Table 5: The CPU execution time (unit: second) of Q1
f
(x , y), C1-Tri-interpolation and MQShepard.

Number of

scattered nodes
Q1

f
(x , y) C1 -Tri-interpolation MQShepard

300 3.375325s 3.60 3.14

500 5.293426s 5.51 4.89

1000 9.814830s 11.14 9.60

2000 19.594339s 22.26 19.10

4000 36.449786s 44.56 38.64

6000 56.362534s 68.13 59.82

Q1
f
(x , y) is close to C1-Tri-interpolation, and they are better than MQ Shepard method.

Table 5 shows the execution time of the three method in Table 4. Table 5 shows the

execution time of our method is the least, and it is less than C1-Tri-interpolation method

and MQ Shepard method. In addition, MQ Shepard method needs user to specify the

influence radius of the weight function and the node basis function, and still needs solve

a small-scale algebraic system to obtain coefficients of the node basis function. When the

scattered data points are dense, some of these small-scale algebraic systems are often ill-

conditioned. So in this case the computation is instability and loses accuracy. So from the

three aspects of computation error, execution time and computation stability, we see our

method is better than C1-Tri-interpolation method and MQ Shepard method.
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5. Conclusions

In the paper we propose an expanded mean value coordinates interpolation method

with any degree of algebraic accuracy. Then based on the expanded mean value coordi-

nates interpolation and triangulation of node set we construct a piecewise rational quasi-

interpolant with any degree of algebraic accuracy to approximate the scattered data in R
3.

This method has a larger improvement in accuracy compared with the unexpanded one.

By comparison of approximation accuracy, execution time and computation stability we

see the method proposed in the paper is better than the two local approximation methods-

C1-Tri-interpolation method and MQ Shepard method. However, from Table 3 we can see

that in case that the exact derivative information is unavailable, the key to get a higher

approximation accuracy lies in the approximation accuracy of approximation derivatives.

So how to use the given data to obtain an approximate derivative with a higher order ap-

proximation accuracy, and how to expand our method to a higher dimension are our future

research topic.
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