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Abstract. Variational methods are an important class of methods for general image

restoration. Boosting technique has been shown capable of improving many image

denoising algorithms. This paper discusses a boosting technique for general variation-

al image restoration methods. It broadens the applications of boosting techniques to a

wide range of image restoration problems, including not only denoising but also deblur-

ring and inpainting. In particular, we combine the recent SOS technique with dynamic

parameter to variational methods. The dynamic regularization parameter is motivated

by Meyer’s analysis on the ROF model. In each iteration of the boosting scheme, the

variational model is solved by augmented Lagrangian method. The convergence analy-

sis of the boosting process is shown in a special case of total variation image denoising

with a “disk” input data. We have implemented our boosting technique for several im-

age restoration problems such as denoising, inpainting and deblurring. The numerical

results demonstrate promising improvement over standard variational restoration mod-

els such as total variation based models and higher order variational model as total

generalized variation.

AMS subject classifications: 68U10, 90C25, 49M37
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1. Introduction

Image restoration is the operation of estimating the clean or original image from an

input corrupted image. These operations, such as denoising, inpainting and deblurring, are

the most fundamental tasks in image processing. Suppose we have an observed image f ,

which is degraded from the true image u. In many cases the degradation can be expressed

as follows:

f =A u+ n, (1.1)
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where A is a convolution operator and n is some random noise such as Gaussian noise

or impulsive noise. In order to estimate u, it is necessary to solve the above inverse and

ill-posed problem.

To figure out an approximation û of the original image u, a large number of variation-

al models and algorithms based energy regularization have been developed. One of the

most successful regularization is the total variation regularization [38], which can preserve

image edges quite well. Total variation has extensive applications and benefit effective op-

timization algorithms [2,10,11,26,39,48,49,51,52]. It also has been extended to higher

order and vectorial models [12,28,30,31,42,53,54] for gray scale and color image restora-

tion. These models and algorithms rely on powerful image sparse representations [6,19].

In spite of the performance and effectiveness of the above mentioned restoration algo-

rithms, the result could be improved by applying a boosting technique. Boosting usually

means a procedure calling an existing image processing algorithm iteratively, where the

output of the current step is used as a part of input of the next step. This technique, to

the best of our knowledge, has been only used in image denoising problem (A = I in Eq.

(1.1)). We now review several existing boosting techniques. The “twicing method” [47] is

very early and effective method which was proposed by Tukey. This method can be written

as;

ûk+1 = B( f ) + B( f − ûk), (1.2)

where B(·) represents the restoration algorithm and ûk is the kth iteration of denoised

image. This concept was used in [29] to improve filters. Another interesting earlier work

was given in [43], where the authors have proposed an iterative procedure based on the

ROF model [38]. The procedure generates a sequence uk which converges to the input

image f . The procedure is stated as: f = uλ + vλ,

[uλ, vλ] = arg min
u+v= f

J( f ,λ; BV, L2), (1.3)

where λ is a weighting parameter serving as a scaling level to separate the two terms. This

model was proposed for image decomposition based on hierarchical image representation

of f . In [35] Osher et al proposed an iterative regularization method in which the residual

was added back to the observed signal,

ûk+1 = B
�

f +

k
∑

i=1

( f − ûk)
�

. (1.4)

In [17] the authors have proposed Unsharp Residual Iteration (URI) method which is given

by,

ûk+1 = û1 + (ûk − B(ûk)). (1.5)

This method was applied for texture, grant manipulation and transfer. Another similar

approach was used in [16], which can be expressed as:

ûk+1 = ûk + B( f − ûk). (1.6)
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A patch-based local boosting technique named as SAIF [46] was proposed to improve the

denoising result. It has been shown that as k increases, the estimate ûk returns to the noisy

image f . The latest boosting method is the so called SOS boosting [37]. The improvement

is achieved by repeating three simple steps (1) Strengthening the signal, (2) Operating

the denoising algorithm, and (3) Subtracting the previous denoised image from the result.

This procedure is as follows:

ûk+1 = B( f + ûk)− ûk. (1.7)

This procedure is used for patch based image denoising methods NLM [7], K-SVD [20],

BM3D [18] and EPLL [55]. The recursive function is initialized by setting û0 = 0. It has

been shown quite effective for image denoising problem.

In this paper we combine the SOS boosting technique and variational image restoration

method. We mention that, the combination of boosting technique with variational method

can be used to solve general image restoration problems, including not only denoising

but also deblurring and inpainting. We propose to use SOS with changing parameter to

boost total variation based restoration models. The changing regularization parameter is

motivated by Meyer’s classical analysis [32] on the ROF model, which will be stated later.

The proposed overall boosting scheme is as follows:

ûk+1 = B( f + ûk,λk)− ûk, (1.8)

where λk is the regularization parameter at kth iteration. We initialize λ0 = λ which is the

original model parameter.

The rest of the paper is organized as follows. In Section 2 we present ROF model and

its developments, as well as the augmented Lagrangian method to solve the models. The

Boosting algorithm and its motivation are discussed in Section 3. Section 4 discusses ap-

plication of proposed algorithm, where we compare our results to the results by variational

methods without boosting. A concluding remark and future direction are given in Section

5.

2. ROF model and its development

Given an observed image f : Ω → R corrupted by the additive white Gaussian noise

with zero mean, ROF model [38] is one of the basic variational models which is used for

image restoration, i.e., to recover u from f in (1.1) by solving the following minimization

problem:

uλ = arg min
u
‖u‖BV (Ω) +λ‖ f − u‖22, (2.1)

where Ω is bounded open subset of R2, ‖ · ‖BV (Ω) denotes total variation in the bounded

variation (BV) space, ‖ · ‖2 denotes the L2 norm and λ > 0 is a regularization parameter

which balances the data-fidelity term against regularity term. The original input image

is of size n× n, i.e., N = n2 pixels, and it is represented by a vector u in lexicographical

ordering. In this paper we study all the problems in discrete setting, where Ω denotes as
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an index set and f ∈ RN . The ROF model can be extended to a general minimization

problem:

uλ = arg min
u
‖Wu‖q +λ‖ f −A u‖ss, (2.2)

where W , A are two linear operators and ‖ · ‖q, ‖ · ‖s with 0 < q ≤ 1, 1 ≤ s are two

different type of norms existing in the regularization term and fidelity term respectively.

For example, by setting q = 1, s = 2 and W =∇ we obtain TV-L2 model (2.1) and we can

also get high order model named as LLT model [30] with W =∇2. By setting q = 1, s = 1

and W =∇, Eq. (2.2) is equal to TV-L1 model [50].

One can solve the above general minimization problem (2.2) for various image restora-

tion tasks such as image denoising, deblurring and inpainting by setting different choice

of linear operator W and fidelity terms. Next we give some examples in the following

subsection.

2.1. Image restoration

2.1.1. A = I for image denoising

We elaborate on some examples related to image denoising if the images are corrupted by

Gaussian noise or impulsive noises.

• Gaussian noise

In the case of input image corrupted by white Gaussian noise with zero mean, the

ROF minimization problem has the following form in discrete setting:

min
u

TV(u) +λ‖ f − u‖22, (2.3)

where the noisy image f is rewritten as column vector f ∈ RN using the lexicograph-

ical ordering, TV(u) is discrete version of total variation and defined as

TV(u) =

N
∑

i=1

Æ

([∇xu]i)
2+ ([∇yu]i)

2.

∇ is discrete gradient operator with periodic boundary conditions, [∇xu]i and [∇yu]i
are the x -derivative and y-derivative located at the i-th pixel (1≤ i ≤ N).

• Impulsive noise

If image is corrupted with non-Gaussian noise then the minimization problem has

the following form:

min
u

TV(u) +λ‖ f − u‖1. (2.4)

The minimization problem (2.4) is suitable for recovering image corrupted by im-

pulsive noise.
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• High order TV case

ROF model is well known to recover a signal or image with sharp edges. However,

the restoration results have obvious staircase artifacts. In order to overcome these

model dependent deficiencies, some variants of total variation by incorporating high

order derivative have been proposed [9, 11–13, 53], [42, 54], which can reduce s-

taircase artifacts effectively. In [30], Lysaker, Lundervold, and Tai proposed Hessian

based TV model which is known as LLT model:

min
u

H(u) +λ‖ f − u‖22, (2.5)

where

H(u) =

N
∑

i=1

Æ

([∇x xu]i)
2+ ([∇x yu]i)

2 + ([∇y xu]i)
2 + ([∇y yu]i)

2. (2.6)

Here H(u) is the regularized term of higher order differential operator with periodic

boundary conditions, and [∇x xu]i and [∇y yu]i are the second order x -derivative

and y-derivative at the i-th pixel (1 ≤ i ≤ N), and [∇x yu]i and [∇y x u]i are mixed

second order derivatives.

More recently, one of the most popular high order TV methods was proposed by

[3, 4], where the authors introduced total generalized variation (TGV) as the regu-

larization term. For image denoising the model has following form

min
u,v
λ1‖∇u− v‖1+λ2‖∇ · v‖1+ ‖ f − u‖22,

where λ1 and λ2 are regularization parameters, the variable v = (v1, v2) varies in

the space of all continuously differential 2-tensors and

‖∇ · v‖1 =
N
∑

i=1

Æ

([∇x v1]i)
2 + ([∇y v1]i)

2+ ([∇x v2]i)
2 + ([∇y v2]i)

2.

Because the TGV regularizer is convex it allows to compute a globally optimal solu-

tion and it also improves ROF model (2.1).

2.1.2. Image denoising and deblurring

The degradation model for the blurred and noised images can be written as: f =A u+ n,

where f is an observed (degraded) image,A is the blur operator, u is the clean image and

n denotes additive noise (often Gaussian). If we replace the u in the unconstrained ROF

model (2.3) with convolutionA u, then we arrive at TV deblurred model:

min
u

TV(u) +λ‖A u− f ‖22. (2.7)

The minimization problem (2.7) has quadratic fidelity term (called TV-L2 model) is par-

ticularly suitable for recovering image corrupted by Gaussian noise and the blur at the
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same time. If image is blurred and corrupted with impulsive noise then the minimization

problem has the following form as

min
u

TV(u) +λ‖A u− f ‖1, (2.8)

which is called TV-L1 model. As a result of such non-quadratic fidelity term in (2.8), it has

great advantages in impulsive noise removal [33,34] than the quadratic case.

2.1.3. Image inpainting

Image inpainting is the process of reconstructing lost or deteriorated parts of images. The

given image f is known only on the region Ω \ C and the task is to “interpolate” it to the

whole region Ω by guessing the pixel values in region C . Inpainting by solving the total

variation regularized model is an effective inpainting method which can be capable of

recovering sharp edges, see the work for TV regularization applied to inapinting by Chan

and Shen in [40]. Inpainting can be interpreted as image denoising with a spatially-varying

regularization parameter [25]. TV problem can be written as follows

min
u

TV(u) +λ
∑

i∈Ω\C

‖ fi − ui‖
2
2, (2.9)

where the parameter λ > 0 to control the strength of the impact by total variation term.

Readily one can see if setting λ = 0, the known information f is unused and u is only

influenced by the TV(u) term. Outside of index set C , the model perform TV-regularized

denoising. Such kind of method can only deal with the case that the missing region is not

a large continuous region. Otherwise, one needs the Euler’s Elastica inpainting [41, 44]

and Exemplar-based inpainting by [1].

2.2. Augmented Lagrangian method for solving TV based image restoration

The numerical computation of TV based image restoration models suffers from diffi-

culties due to its nonlinearity and non differentiability, the numerical algorithm in [38] is

very slow as a result of the constraint about the time step in order to satisfy the stability

condition [14, 15]. Although there are many methods for the efficient solution of ROF

model, we review one popular and important method, “augmented Lagrangian method

(ALM)”.

The augmented Lagrangian method is one of the classical methods which can solve

constraint optimization problems [27,36]. It can be observed that (2.2) is a more general

optimization model. In this subsection we will focus on the specific cost function as ROF

model, and briefly recall the ALM for solving it. For a general model (2.2), one can see

details in Subsection 3.2.

The constrained problem for (2.3) as follows:

min
u,p
‖p‖1 +λ‖ f − u‖22,

s.t. p =∇u. (2.10)
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Algorithm 2.1 Splitting augmented Lagrangian method for the ROF model.

1. Initialization: Multiplier µ0 and prime variables u0 and p0;

2. Compute um and pm and update µm iteratively. For m = 1,2, · · ·

• (Step 1) Compute

um = arg min
u
L (u, pm−1;µm−1),

• (Step 2) Compute

pm = arg min
p
L (um, p;µm−1),

• (Step 3) Update

µm = µm−1+ r(pm−∇um).

3. Endfor until some stopping criterion meets and output um as the restored result.

The augmented Lagrangian for constraint problem (2.10) can be obtained as follows:

L (u, p;µ) = ‖p‖1 +λ‖ f − u‖22 + 〈µ, p−∇u〉+
r

2
‖p−∇u‖22, (2.11)

where µ is Lagrangian multiplier and r is positive constant. We apply splitting version of

ALM to solve the above saddle-point problem corresponding to the augmented Lagrangian

functional (2.11), please see Algorithm 2.1.

The classical augmented Lagrangian method can solve the solution of original problem

(2.11) by minimizing the subproblems um and pm in coupled together. But subproblems are

usually not readily to be solved. Therefore, one can compute the variable um and pm using

an alternative minimization procedure as a Gauss-Seidel style and therefore a splitting

ALM can be designed without inner loops for coupled subproblems, see Refs. [26, 48, 49]

for details.

3. Boosting procedure

In this section we elaborate on our main idea, motivations, the proposed algorithm and

corresponding convergence discussion.

3.1. Main idea and its motivation

The word “boosting” is derived from Machine Learning and it means to produce a

strong learner through a combination of weak learners (see [21] for more details). How-

ever, in this paper boosting refers to improve the performance of restoration process itera-

tively, where we take variational method as a “Black Box” (means tool).

The variational problems have space of improvement in image processing. The pur-

pose of boosting in this paper is to improve TV related variational methods further, and
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Algorithm 3.1 Boosting procedure.

1. Initialization:

• û0 = 0, f0 = f and parameter λ0 = λ,

• Set ρ > 0 and τ > 1.

2. For k = 1,2, · · · ;

• (Step 1) Strengthening image and tuning parameter computation: Update

fk = f0 +ρûk &λk = τ
kλ, (3.1)

• (Step 2) Image restoration: Solve

uk = arg min
u
‖Wu‖q +λk‖ fk −A u‖ss, (3.2)

• (Step 3) Deduction: Update

ûk+1 = uk −ρûk. (3.3)

3. Endfor until some stopping criterion meets and output ûk+1 as the boosting result.

increase the quality of restored results. Our idea in this paper is more inspired by the SOS

technique [37]. In this work, we extend the idea of [37] to restore corrupted images by

variational method. We will give a theoretical discussion on the differences between our

new boosting method and SOS boosting by analyzing a special function in the following

subsections. Here our apparently novel idea is to replace the variation problem (2.2) by

a sequence (1.8), so as to obtain an improved restored image, for a wide class of inverse

imaging problems. The output sequence {ûk+1} by our method has two terms; first one

is B( f + ûk,λk), where B(·) is a nonlinear operator which plays a role of restoration with

updating λ. The second term performs subtraction of denoised image and the purpose

of subtraction is to show restored image more close to the reference or original image.

In our method the variable f and parameter λ change each time in the following way,

fnew ← forig inal + uλold , λnew ← τλold. In other words, we take the solution from the

previous step and apply the restoration algorithm B(·). With λk = λ0τ
k, we obtain our

final result by outputting {ûk+1} after k steps. We proposed the boosting procedure in

Algorithm 3.1 for the mentioned general TV based variation model as follows.

3.2. Solve subproblems of (3.2)

In this subsection we solve the subproblems of our boosting Algorithm 3.1 by ALM.
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The energy functional for general minimization problem (2.2) can be written as follows

min
u
{E(u) = G(Wu) +H(A u, f )}, (3.4)

where G(Wu) = ‖Wu‖q and H(A u, f ) = λ‖ f −A u‖ss. The constraint minimization prob-

lem for (3.4) reads as follows

min
u,p,z

G(p) +H(z, f )m

s.t. p =Wu, z =A u. (3.5)

The augmented Lagrangian for constraint problem (3.5):

L (u, p, z;µ1,µ2)

=G(p) +H(z, f ) + 〈µ1, p−Wu〉+ 〈µ2, z −A u〉+
r1

2
‖p−Wu‖22 +

r2

2
‖z −A u‖22, (3.6)

where µ1 and µ2 are the Lagrangian multipliers and r1 and r2 are the positive parameters.

We apply an splitting ALM algorithm or alternating direction method of multipliers to solve

the above saddle-point problem corresponding to the augmented Lagrangian(3.6), and see

Algorithm 3.2

In the following we show how to efficiently solve these sub-problems and then present

an alternative minimization algorithm to solve.

• Solution of u-subproblem

The problem (3.7) is a quadratic optimization problem, whose optimality condition

reads

W ∗µ1
m+A

∗µ2
m+ r1W ∗(p−Wu) + r2A ∗(z −A u) = 0,

and the related gradient operator is discretized using periodic boundary conditions.

Following [45,48,49,51,52], we use Fourier transform with an FFT implementation.

Denoting F (·) as the Fourier transform, we write the solution as follows:

u =F−1

�

F (W ∗)F (µ1
m+ r1p) +F (A ∗)F (µ2

m+ r2z)

r1F (W ∗)F (W ) + r2F (A ∗)F (A )

�

, (3.10)

where µ1
m = (µ

1x
m ,µ

1y
m ) and p = (px , p y ) and the division ÷ denotes pointwise opera-

tor. The Fourier transform of the operatorsA andW are regarded as the transforms

of their corresponding convolution kernels.

• Solution of p-sub problem

When q = 1, (3.8) has the following closed form denoting by the soft thresholding

as

p = Thresh1/r1(w),

where Threshη(w) :=max{0, |w| −η}sign(w), and

w =Wu−
µ1

m

r1
.
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Algorithm 3.2 Splitting augmented Lagrangian method for the general minimization mod-

el (2.2).

1. Initialization: Multipliers µ1
0, µ2

0 and prime variables u0, p0, z0;

2. Compute um, pm and zm and update µ1
m and µ2

m iteratively. For m= 1,2, · · ·

• (Step 1) Compute

um = arg min
u
L (u, pm−1, zm−1;µ1

m−1,µ2
m−1), (3.7)

• (Step 2) Compute

pm = arg min
p
L (um, p, zm−1;µ1

m−1,µ2
m−1), (3.8)

• (Step 3) Compute

zm = arg min
z
L (um, pm, z;µ1

m−1,µ2
m−1), (3.9)

• (Step 4) Update

µ1
m = µ

1
m−1 + r1(pm−Wum),

µ2
m = µ

2
m−1 + r2(zm−A um).

3. Endfor of m until some stopping rule meets and output um as the restored result.

• Solution of z-subproblem

For s = 2, z-subproblem (3.9) becomes

min
z
λ‖ f − z‖22 + 〈µ

2
m, z〉+

r2

2
‖z −A u‖22. (3.11)

The Euler Lagrangian equation for (3.11) is

(2λ+ r2)z = 2λ f −µ2
m+ r2A u,

which has closed form solution i.e.,

z =
2λ f −µ2

m+ r2A u

2λ+ r2
.

For s = 1, z-subproblem (3.9) becomes

min
z
λ‖ f − z‖1 + 〈µ

2
m, z〉+

r2

2
‖z −A u‖22,
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which has closed form solution i.e.,

zi = fi +max

�

0,1−
λ

r2|wi − fi |

�

(wi − fi) ∀i,

where

w =A u−
µz

m

r2
.

3.3. Convergence analysis for noise free data in continuous setting

In this subsection we show some discussion on the convergence of our boosting method.

It seems difficult for us to study the convergence for our boosting method. However, we

can give some analysis based on a special but important function for f following the work

in ([32], pp. 36), where Meyer analyzed the property of the solution of ROF minimization

for a noise free data. Note that our following analysis is present in the continuous setting

for our proposed boosting method defined over the region Ω := R2.

Lemma 3.1. ([32])Suppose f is a function such that f = β IR(x), where β is a positive

constant and IR(x) is an indicator function defined as

IR(x) =

(

1, when |x | ≤ R,

0, otherwise,

the solution of ROF model (2.1) can be expressed as

uλ =







�

β − 1

λR

�

IR(x), when λβR≥ 1,

0, otherwise.
(3.12)

Following the setting for the above lemma, we can give the convergence result for a

special noise-free measurement f as follows.

Theorem 3.1. Assume that f is an observed noise free data defined as: f = β IR(x) and

suppose the minimization problem of ROF model is exactly solved in each iteration. If the

parameters in our boosting method are set as τ > 1 and ρ > 0, then the sequence {ûk+1}
generated by new boosting algorithm satisfies

lim
k→∞

ûk+1 = f . (3.13)

Proof. We first proof the following sequence by mathematical induction, which is gen-

erated from our boosting method by using the Meyer’s classical example.

ûk+1 =
�

β −
1

τkλR

�

IR(x), if τkλR
�

β(ρ+ 1)−
ρ

τk−1λR

�

≥ 1. (3.14)
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According to our boosting algorithm, for k = 0, û0 = 0, f0 = f +ρû0 = f and λ0 = τ
0λ,

u0 = uλ =
�

β −
1

λR

�

IR(x),

û1 = u0 −ρû0 = u0.

For k = 1, f1 = f0 + ρû1, and λ1 = τλ0, which shows that for new observed value f1, β

becomes
�

β(1+ρ)− ρ

λR

�

and regularization parameter of model is τλ and satisfy that:

τλR
�

β(1+ρ)−
ρ

λR

�

≥ 1.

The ROF minimization problem can be written as:

u1 = arg min
u

¦

‖u‖BV (Ω) +λ1‖ f1 − u‖22
©

.

The solution according to Meyer’s approach is given by,

u1 =

�

β(1+ρ)−
1

λR

�

ρ+
1

τ

�

�

IR(x),

û2 = u1 −ρû1 =
�

β −
1

τλR

�

IR(x).

Assume that (3.14) is true for some k = n− 1≥ 1, i.e.,

ûn =

�

β −
1

τn−1λR

�

IR(x),

we prove (3.14) is true for k = n. For k = n,

fn = f +ρûn =
�

β(1+ρ)−
ρ

τn−1λR

�

IR(x), (3.15)

this scheme satisfy the following general condition:

βλR≥ τλR
�

β(1+ρ)−
ρ

λR

�

≥ τ2λR
�

β(1+ρ)−
ρ

τλR

�

≥ · · · ≥ τnλR
�

β(1+ρ)−
ρ

τn−1λR

�

≥ 1.

The solution for (3.15) is

un =

�

β(1+ρ)−
1

τn−1λR

�

ρ+
1

τ

�

�

IR(x),

and our boosting can be compute as,

ûn+1 = un−ρûn =
�

β −
1

τnλR

�

IR(x),
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its corresponding minimization problem would be as:

un = arg min
u

¦

‖u‖BV (Ω) +λn‖ fn − u‖22
©

,

where λn = τ
nλ.

By taking limit as k→∞ on (3.14), we have

lim
k→∞

ûk+1 = β IR(x) = f ,

which completes the proof. �

Remark 3.1. Under the same assumptions, the sequence {ûk} obtained directly from the

SOS boosting technique [37] is not convergent for variational problem, that can be proved

by dividing SOS technique into three steps for k = 0,1 as follows.

As k = 0, û0 = 0 and f0 = f +ρû0 the minimization problem can be denoted as

u0 = arg min
u

¦

‖u‖BV (Ω) +λ‖ f0 − u‖22
©

.

The solution is readily obtained by Meyer’s approach as

u0 =
�

β −
1

λR

�

IR(x), û1 = u0 −ρû0 = u0.

For k = 1, we have

f1 = f0 +ρû1 =
�

β(1+ρ)−
ρ

λR

�

IR(x),

which satisfies the positivity property

λR
�

β(1+ρ)−
ρ

λR

�

≥ 1.

The following minimization problem can be written as

u1 = arg min
u

¦

‖u‖BV (Ω) +λ‖ f1 − u‖22
©

,

and the corresponding solution by Meyer’s approach is given as

u1 =

�

β(1+ρ)−
ρ

λR
−

1

λR

�

IR(x) = (1+ρ)

�

β −
1

λR

�

IR(x).

Finally we have

û2 = u1 −ρû1 = (1+ρ)

�

β −
1

λR

�

IR(x) −ρ
�

β −
1

λR

�

IR(x) =

�

β −
1

λR

�

IR(x) = û1.

It implies that we get the same value as the previous iteration, and therefore we conclude

that limk→∞ ûk+1 6= f .
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Remark 3.2. The above theorem is established for noise free data, and by such approach

we can compute the solution and its convergence to a special type of observed signal f . It

will be more interesting to consider the case with noisy measurement f . However it seems

that such above approach can not work, and we leave the challengeable task as a future

work.

The very recent and related work [37] adopted a procedure named SOS used for local

and patch based image denoising method. The main differences between our proposed

method and SOS method are stated in three aspects. First In our proposed method the

regularization parameter is adaptive which varies in each iteration. Specifically, the value

of λk at kth step is updated as λk = τ
kλ, and see details in the above boosting procedure.

Second, when τ = 1 our method is similar to SOS technique and with this condition the

signal could be slightly improved but not always, especially for image deblurring. Last,

we implemented our model to variational based image restoration, while SOS technique is

only considered for patch based image denoising methods.

4. Numerical experiments

In this section, we will provide several applications by the proposed method, namely for

image denoising, deblurring, and inpainting. Eight images in Fig. 1 as the ground truth are

tested. All the experiments were conducted with MATLAB R2013b on a HP Z228 desktop

with Intel(R) Core(TM) i7-4790 CPU @3.60GHz and 8GB memory. The performance is

evaluated by the signal to noise ratio (SNR) and this quality metric for boosting is defined

(a) Lena. Size: 512×
512

(b) Barbara. Size:512

×512

(c) House. Size: 256

×256

(d) Parrot. Size: 256

×256

(e) Hill. Size: 512×
512

(f) Cameraman. Size:

256× 256

(g) Couple. Size: 512

×512

(h) Man. Size: 512×
512

Figure 1: Test Images used in this paper.
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as:

SNRk
∆
= 10 log10

‖u− ū‖2

‖u− ûk+1‖2
,

where u is the original signal, ū is the mean intensity value of u and ûk+1 is boosted signal.

4.1. Comparing with other two boosting methods

To show the advantage of our proposed method with other existing methods, Fig. 2

shows the differences between our proposed method and other two boosting techniques

including SOS and Osher’s iterative regularization method (1.4). Readily one can infer

that the three boosting methods restored signals with higher quality than TV. Visually our

proposed method and Osher’s outperforms SOS. Although the SNRs and MSEs are very

close for ours and Osher’s method, the image quality is higher visually than that by Osher’s

method. Therefore, in the following tests we only compare our method with TV.

4.2. Image denoising

The regularization parameter λ plays a central role in our experiments. The selection of

λ affects the balance between noise removal and signal structure preservation. One simple

way for parameter tuning is the discrepancy principle [22], where λ is selected to match

the noise variance σ2. For TV denoising one solved a constrained form of ROF problem

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) is original signal, (b) is noisy signal by AWGN with SNR value 17dB, (c), (e) are denoised
signals by ROF-TV model, and by SOS boosting procedure respectively with λ = 0.05, (d) is cleaned
signal by Osher’s iterative regularization method [35] with λ= 0.02 and (f) is recovered by our boosting
procedure with λ0 = 0.9, ρ = 0.015, τ= 1.212 for k = 6.
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(a) Original image (b) Noisy, SNR: 13.32 (c) Denoised TV, SNR: 16.20

(d) TV-Boost, SNR: 18.89 (e) Denoised TGV, SNR:17.83 (f) TGV-Boost, SNR: 19.05

Figure 3: image denoising. (a): original image, (b): image corrupted by random Gaussian noise σ = 15,
(c): denoised image by TV algorithm, (d): TV boosting image by our method with λ0 = 5.2140, ρ = 0.66
and τ= 1.22 for k = 7, (e): denoised image by TGV algorithm, (f): TGV boosting image by our method
with λ0 = 0.09, ρ = 1.9 and τ = 0.8 for k = 3.

(2.1). Indeed, in [8] Chambolle proposed an effective algorithm to find the optimal λ so

that ‖ f − u‖22 ≃ σ
2, where one can compute a unique λ satisfying ‖ f − u‖22 = σ

2. In [23],

the author initialized the parameter λint to obtain the unique value of λ by the following

empirical formula

λint =
0.7079

σ
+

0.6849

σ2
,

where σ is the standard deviation. For TV denoising we perform the experiment with

λ computed by the empirical formula, while for our boosting method we use the same

λ as the initial guess, and select other boosting parameters ρ and τ empirically. In the

experiments set k = 3 for the outer loop. The algorithm in the inner iteration of our

algorithm is used the same as for TV denoising model.

In this experiment, we evaluate the improved denoising results of TV and TGV [4] by

applying our boosting procedure. The TGV is a higher order model which can improves

the TV model. We first tests our method on a synthetic image in Fig. 3(a). In Fig. 3(c)

one can observe that TV model reduces noise but at the same time it smooths away small

structures while Fig. 3(d) shows the improvement of TV model by applying our boosting

procedure. The TGV has better results but also slightly smooths some parts of image, the
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Table 1: Comparison between the image denoising results (SNR in dB) of TV and TGV algorithms and
their boosting outcomes.

σ Image λ0 ρ τ TV TV-Boost TGV TGV-Boost

10

Man 23.23 0.1 1.3 17.82 19.46 17.99 19.51

Cameraman 24.41 0.4 1.24 18.96 20.40 19.22 20.52

House 19.80 0.4 1.21 18.29 20.41 18.56 19.51

Parrot 22.84 0.53 1.24 19.30 20.81 19.70 20.90

Barbara 31.58 0.31 1.25 15.38 16.67 15.63 16.77

Lena 19.22 0.43 1.23 18.27 19.63 18.78 19.88

15

Man 14.45 0.2 1.26 15.76 17.24 15.96 17. 30

Cameraman 15.11 0.42 1.23 16.71 18.09 17.06 18.20

House 12.47 0.42 1.2 16.56 17.49 16.90 17.50

Parrot 14.11 0.58 1.24 17.04 18.48 17.51 18.57

Barbara 20.19 0.35 1.19 13.17 14.15 13.40 14.20

Lena 13.02 0.39 1.19 16.68 17.74 16.92 18.05

20

Man 9.91 0.3 1.25 14.19 15.74 14.63 15.77

Cameraman 10.50 0.43 1.23 15.09 16.46 15.40 16.57

House 9.32 0.43 1.17 15.44 16.28 15.81 16.32

Parrot 9.85 0.57 1.25 15.40 16.94 15.87 17.03

Barbara 12.98 0.37 1.21 11.84 12.65 12.06 12.61

Lena 9.49 0.4 1.17 15.47 16.53 15.64 16.81

25

Man 7.24 0.2 1.28 12.92 14.57 13.82 14.64

Cameraman 7.8612 0.48 1.22 13.72 15.22 14.49 15.23

House 7.53 0.48 1.15 14.62 15.42 13.92 15.51

Parrot 7.50 0.61 1.21 13.95 15.61 14.93 15.68

Barbara 9.79 0.41 1.20 10.89 11.69 11.13 11.62

Lena 7.38 0.41 1.18 14.52 15.56 14.90 15.77

30

Man 5.59 0.1 1.3 11.87 13.63 12.25 13.63

Cameraman 6.1758 0.51 1.25 12.73 14.27 12.85 14.33

House 6.04 0.51 1.15 13.61 14.57 13.07 14.64

Parrot 5.79 0.59 1.28 12.78 14.64 13.19 14.70

Barbara 7.27 0.45 1.21 10.20 10.98 10.35 10.95

Lena 6.21 0.41 1.16 13.69 14.81 14.29 14.93

Table 2: Comparison between the image deblurring results (SNR in dB) of TV algorithm and its boosting
outcomes.

r λ τ
Lena Parrot Couple Cameraman House

Deblur Boost Deblur Boost Deblur Boost Deblur Boost Deblur Boost

4 769.81 1.6 20.46 23.75 18.45 22.50 16.58 21.13 17.64 22.27 20.04 25.41

6 1154.7 1.7 18.26 21.71 16.31 20.31 14.64 19.22 15.59 20.18 18.86 22.91

8 1539.62 1.8 16.92 20.29 16.69 18.64 13.42 17.69 14.34 18.56 17.89 20.93

10 1924.52 1.9 15.96 19.17 13.03 17.30 12.36 16.29 13.20 17.10 16.70 19.71

12 2309.4 2 15.06 18.10 12.36 16.22 11.47 14.90 12.56 15.94 15.50 18.07
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4: Gray scale image denoising results. (a)-(d): noisy images corrupted by random Gaussian noise
σ = 20, (e)-(h): denoised images by TV model, (i)-(l): TV boosting images, (m)-(p): TGV denoised
images, (q)-(t): TGV boosting images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Gray scale image denoising results. (a)-(d): noisy images corrupted by random Gaussian noise
σ = 10, (e)-(h): denoised images by TGV model, (i)-(l): Boosting images by our method.

TGV-boost has best results and close match to the original image, see Figs. 3(e) and 3(f).

Further tests are done on the natural images, where we compare the denoising results

by TV, TGV and results by our boosting method. We put restored results by TV and TGV

model in Fig. 4, where one can observe that TV denoising results in the second row of Fig. 4

seem oversmoothed, while the results by our boosting method in the third row preserve

more image structures. One can also observed that the denoised results by TGV in fourth

row of Fig. 4 has better results than TV, while TGV-boost has best results, see last row in

Fig. 4. Similarly, in Fig. 5 one can see the obvious improvement by our boosting procedure

over TGV results. We perform the tests on different images with different noise level and

put all the SNR values in Table 1.

4.3. Image deblurring

To generate different blurry images we use the Gaussian kernel with five different sizes

r ∈ {4,6,8,10,12} and Gaussian noise is added with fixed standard deviation σ = 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Gray scale image deblurring results. (a)-(d): blur images corrupted by Gaussian kernel of size
r = 10 and standard deviation σ = 5, (e)-(h): deblurred images by TV model, (i)-(l): Boosting images
by our method.

In [24], author used Brent’s method [5] to find the optimal value of λ with the minimum

mean square error, and therefore initialize the iteration with the following empirical esti-

mate of λ as λ= r
�

117.0

σ
+ 4226.3

σ2

�

. In this experiment we fixed ρ = 0.0001. We set k = 5

as the outer iteration number and inner iterations are chosen the same as defaulted in the

original package tvreg (available on image processing online(IPOL) [24]). In Table 2, we

show the SNRs of our proposed method compared with TV algorithm, where we can see

obvious increase. Comprehensive results are put in Fig. 6, which shows the results by our

method are significantly improved visually.

4.4. Image inpainting

We perform the test on two types of inpainting task, i.e. missing region (see Fig. 7)

and text inserting (see Fig. 8). Weak noise is added with standard deviation σ = 0.001

for inpainting. In the first example in Fig. 7, for TV inpainting set λ = 20. The proposed

method is initialized with the same λ, and set τ = 1.38,ρ = 0.1. Set the number of outer
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(a) (b) (c) (d)

(e) TV SNR: 15.63dB (f) TV SNR: 13.43dB (g) TV SNR: 11.71dB (h) TV SNR: 13.98dB

(i) Boosting SNR:

17.90dB

(j) Boosting SNR:

16.09dB

(k) Boosting SNR:

13.95dB

(l) Boosting SNR:

16.84dB

Figure 7: Gray scale image inpainting results. (a)-(d): images with missing region of level 6 and also
corrupted by random Gaussian noise σ = 0.001, (e)-(h): inpainted images by TV model, (i)-(l): Boosting
images by our method.

loop as k = 6. Similarly in the second example in Fig. 8 set λ = 30 for TV algorithm, and

ρ = 0.5,τ = 1.5, k = 5. In both two examples one can readily see the improvement by the

proposed method.

Finally in Fig. 9 we show the histories of SNR with respect to λk during the iterations

for image restoration, which demonstrates that our proposed method is rather robust with

respect to the iteration number.

5. Conclusions

In this paper we propose a new boosting framework for the popular variation models

for image restorations, which can restore the degraded images with more structures com-

pared with the classical TV models. On the other hand, the proposed method is simple

for use and it can be extended to a wide range of restoration tasks. In the future we will

consider to develop much more fast and efficient boosting scheme for variational problem
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(a) (b) (c) (d)

(e) TV SNR: 16.47dB (f) TV SNR: 14.26dB (g) TV SNR: 13.72dB (h) TV SNR: 15.64dB

(i) Boosting SNR:

17.55dB

(j) Boosting SNR:

16.75dB

(k) Boosting SNR:

15.35dB

(l) Boosting SNR:

18.26dB

Figure 8: Gray scale image inpainting results. (a)-(d): images with text and also corrupted by random
Gaussian noise σ = 0.001, (e)-(h): inpainted images by TV model, (i)-(l): Boosting images by our
method.

by exploiting fundamental properties of regularization parameter and group sparsity prior

of the degraded images.
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(a) (b)

(c)

Figure 9: (a)-(c): Evaluation of λk and SNR for House image (a): image denoising on noisy σ = 20, (b):
image deblurring on Gaussian kernel size r = 10 and standard deviation σ = 5, (c): image inpainting on
60% missing region plus noise with σ = 0.001.
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