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Abstract. For symmetric eigenvalue problems, we constructed a three-term recurrence

polynomial filter by means of Chebyshev polynomials. The new filtering technique does

not need to solve linear systems and only needs matrix-vector products. It is a memory

conserving filtering technique for its three-term recurrence relation. As an application,

we use this filtering strategy to the Davidson method and propose the filtered-Davidson

method. Through choosing suitable shifts, this method can gain cubic convergence rate

locally. Theory and numerical experiments show the efficiency of the new filtering tech-

nique.
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1. Introduction

The Davidson method [1] is an efficient iterative procedure for computing a few eigen-

values and the corresponding eigenvectors of the standard eigenvalue problem

Ax = λx , with ‖x‖= 1, (1.1)

where A ∈ Rn×n is a large sparse symmetric matrix and ‖ · ‖ denotes the Euclidean norm.

The Davidson method performs a so-called Rayleigh-Ritz procedure [12] on an increasing

subspace which is extended by adding a preconditioned residual to the current subspace.

For the unpreconditioned Davidson method, it is equivalent to the Lanczos method [12,

14, 15]. It has been known as a very successful method, especially, when dealing with

certain diagonally dominant matrices for using diagonal preconditioner in its original paper.

Subsequently, Morgan and Scott [7,8] generalized the Davidson method to a more general
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form. In the generalized Davidson method, they used a general preconditioner rather than

a diagonal preconditioner.

In [17], Sleijpen and van der Vorst proposed a Jacobi-Davidson iteration method. In

each step of the Jacobi-Davidson iteration method, a so-called correction equation needs

to be solved. The Jacobi-Davidson iteration method is also a Davidson-type method, be-

cause the solution of the correction equation can be considered as a preconditioned resid-

ual vector. The coefficient matrix is a projection on the orthogonal complement of the cur-

rent approximation which ensures the well-conditioned property of the correction equation

when the approximate vector is near to the desired eigenvector. Furthermore, the Jacobi-

Davidson iteration method can obtain cubic convergence rate locally. For more details of

the Jacobi-Davidson iteration method and its convergence property, we refer to [16,17,19].

To obtain the preconditioned residual from the above discussions, we need to solve some

linear systems which result in high computational costs, so as to the CPU time, especially

for large problems. In [21], the authors proposed a new Chebyshev-Davidson method, in

which the correction equation of the Davidson method is replaced by a Chebyshev polyno-

mial filtering step which can amplify components of the desired eigenvector. This filtering

technique can reduce the computational cost for just processing the matrix-vector prod-

ucts, although an indeterminate iteration step for the Chebyshev filter should be given in

advance.

In this paper, we propose a new three-term recurrence polynomial filter by means of

Chebyshev polynomials. This filter is located in the Krylov subspace spanned by a shifted

matrix and the current approximate vector. Also, we give an estimate of the degree of

the filtered polynomial. It can reduce the computational cost and conserve memory for its

three-term recurrence relation. Furthermore, we give a stopping criterion resulted from the

inverse iteration method [12,14] for the inner iteration step. For some suitable parameters,

the new polynomial filter can reduce the iteration numbers for high convergence rate of

the proposed filtered-Davidson method.

The remainder of this paper is organized as follows. In Section 2, some preliminaries

for the filtering technique, Chebyshev polynomials and the Davidson method are given.

In Section 3, the three-term recurrence polynomial is derived and we propose a stopping

criterion which is easily verified. Furthermore, we propose the so-called filtered-Davidson

method. Some details of the filtering technique are discussed in Section 4. We use some

numerical experiments to demonstrate our results in Section 5 and, in the last section, we

give some conclusions and remarks.

2. Preliminaries

In this paper, we use I to denote the identity matrix of suitable dimension. For a matrix

A ∈ Rn×n, we use AT to denote its transpose; this notation can be easily carried over to

vectors. A Krylov subspace of order m associated with a matrix A and a vector x 6= 0 is

defined by

Km(A, x) = span
�

x ,Ax , · · · ,Am−1 x
	

.
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Then for each vector y ∈ Km(A, x), there is a polynomial pm−1(t) of degree less than or

equal to m−1 such that y can be represented by y = pm−1(A)x . In addition, we use Pm to

denote the set of all polynomials of degree not greater than m.

Let {λi}
n
i=1

be the eigenvalues of the symmetric matrix A∈ Rn×n in an ascending order

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn (2.1)

and {x i}
n
i=1

be the corresponding orthonormal eigenvectors. In addition, we use λ(A) to

denote the spectrum of the matrix A.

Polynomial filtering technique is used to amplify the component in the desired parts of

the spectrum relative to those in the undesired parts by processing the initial or the current

vector using a suitable polynomial. For example, the solution of the well-known inverse

iteration is t = (A−σI)−1 x , with x and σ being the current Ritz approximation and a good

approaching shift, respectively, which can be interpreted that the current approximation x

is filtered by a rational polynomial ϕ(t) = 1/(t −σ). This polynomial significantly mag-

nifies the component of some desired eigenvector corresponding to the approaching shift

σ. Filtering technique is a valuable tool to speed up the convergence of some methods for

computing eigenvalues and their corresponding eigenvectors, such as the Davidson and the

Lanczos methods, etc.

Chebyshev polynomials are widely used both in theory, when studying the convergence

of the Krylov subspace methods [12, 14, 15], and in practice, as a filter to accelerate and

improve the convergence. The reason that the Chebyshev polynomial is a well performance

filter can be interpreted as follows. Suppose that the current approximation x expanded

by the eigen-basis x =
∑n

i=1αi x i is filtered by a polynomial pm(t) of degree m. Then the

next filtered approximation can be represented as

x̃ = pm(A)x

=

n
∑

i=1

αi pm(λi)x i

= α1pm(λ1)x1 +

n
∑

i=2

αi pm(λi)x i,

and the goal is to find a polynomial pm(t) such that the maximum absolute value of pm(t)

over λi, i = 2, · · · , n is smaller than that over λ1 as far as possible. An alternative strategy

is to seek a polynomial pm(t) such that pm(λ1) = 1 and its maximum absolute value in the

interval [a, b] containing eigenvalues {λi}
n
i=2

is the smallest possible for the unknown of

all eigenvalues. Equivalently, the problem can be represented as

min
pm∈Pm

pm(λ1)=1

max
t∈[a,b]

|pm(t)|.

Thus the optimal polynomial is the scaled Chebyshev polynomial. Refer to [14] for more

details. In [2, 13, 18], the authors took the Chebyshev polynomial as a filter to accelerate
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the Lanczos and the Arnoldi algorithms. In addition, in [21] Zhou and Saad proposed the

Chebyshev-Davidson algorithm by using Chebyshev polynomials as a filter to accelerate

the Davidson-type method. The main idea of this method is to amplify the wanted parts of

the desired eigenvector by proceeding the current approximation for several iteration steps

through Chebyshev polynomials and use the augmentation vector to expand the projection

subspace.

In the following, we first give a simple introduction of the real Chebyshev polynomial

of the first kind [14] which are defined by

Ck(t) =

�

cos
�

k cos−1(t)
�

, −1≤ t ≤ 1,

cosh
�

k cosh−1(t)
�

, |t| > 1.

Note that C0(t) = 1, C1(t) = t, and it has an important three-term recurrence relation

Ck+1(t) = 2tCk(t)− Ck−1(t). (2.2)

For gradient-type method, such as the steepest descent (SD) method [10,11], the conju-

gate gradient (CG) method, or more generally, the locally optimal preconditioned conjugate

gradient (LOPCG) method [5] and the Davidson method [1], the preconditioning strategy

is implemented as K−1r, where K is a preconditioner and r = (A− θ I)x is the residual

vector with respect to the current approximation x . In the original Davidson method, the

author used the preconditioner K = θ I −D, where θ is the Rayleigh quotient of x , D is the

diagonal part of the matrix A, that is, the preconditioned residual vector

t = (θ I − D)−1r

is used to expand the projection subspace V , and the Ritz pair of A with respect to the

subspace V is used as the next approximation to the desired eigenpair. The process used to

extract the approximation to the desired eigenpair is known as the Rayleigh-Ritz procedure.

The Davidson method has been known as a very successful method, especially when dealing

with certain symmetric problems in computational chemistry. But it should be admitted that

this method depends quite heavily on the strong diagonal dominance of the matrix A.

The Davidson method can be described algorithmically as follows.

Method 2.1. (The Davidson Method)

1. Choose an initial approximate vetor v with ‖v‖= 1 and denote V =

[v].

2. For k = 0,1,2, · · ·, do:

(a) form the projetion matrix H = V T AV, and ompute the smallest

eigenpair (θ , s) of the projetion system Hs = θ s;

(b) ompute the Ritz vetor x = V s, and the orresponding residual

vetor r = (A− θ I)x;

() test for onvergene; stop if satisfied;
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(d) onstrut a preonditioner K, and ompute the new diretion

t = K−1r;

(e) orthonormalize t to V and expand V = [V, t].

3. EndFor

In [17], Sleijpen and van der Vorst proposed a Jacobi-Davidson iteration method, in

each step of this method, a so-called correction equation

(I − x x T )(A− θ I)(I − x x T )t = −r, for t ⊥ x , (2.3)

where x is the current approximation with ‖x‖ = 1, θ = x T Ax and r = (A− θ I)x are the

corresponding Rayleigh quotient and the residual vector, respectively, is solved to expand

the projection subspace. Denote J(θ , x) = (I − x x T)(A− θ I)(I − x x T ) and J†(θ , x) the

pseudo-inverse of operator J(θ , x). Then t = −J†(θ , x)r can also be seen as a precon-

ditioned residual vector. It should be noticed that the operator J(θ , x) remains positive

definite and well-conditioned in span{x}⊥ thanks to the projection to the orthogonal com-

plement of x when the current approximation x is near to the desired eigenvector. Also,

the Jacobi-Davidson iteration method possesses cubic convergence rate locally.

It should be acknowledged that a linear system should be solved at each step for this

preconditioning strategy in the Davidson-type methods which result in high computational

costs. In this paper, we aim to seek some polynomial pm(t) satisfying certain condition

to accelerate the current approximate vector x . The filtered vector Pm(A− σI)x is used

to expand the current projection subspace. If there is a polynomial filter, only matrix-

vector products need to be executed during the whole process of this method. Note that in

our method, we use the polynomial to filter the current approximate vector x rather than

the residual vector r, which is the main difference between the filter technique and the

preconditioning technique. In fact, vector Pm(A−σI)r will approximate some vector inside

the subspace spanned by unwanted eigenvectors. See [21] for details.

3. Polynomial Filtering Techniques

In this section, combining the superior convergence rate of the inverse iteration method

with the minimal property of the Chebyshev polynomials, we construct a polynomial filter.

Moreover, we derive a three-term recurrence relation of the polynomial filter similar to

Chebyshev polynomials. Based on the three-term recurrence relation, the filtered vector is

easily carried out in practical use.

As we know, for a given approximate vector x to the desired eigenvector and a shift σ,

a shifted linear system (A−σI)t = x needs to be solved in each step of the inverse iteration

(INVI) method [3,6,12,14]. For a large sparse system, it is difficult to solve it exactly, and

an alternative choice is to implement it approximately by an iterative method. That is, the

solution t satisfies

(A−σI)t = x + d , (3.1)
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where d = (A− σI)t − x is the residual vector of the solution t. From the convergence

analysis of the inverse iteration method [3,6], we can see that when the residual d of the

linear system (3.1) satisfies ‖d‖ ≤ η0‖r‖ for a given nonnegative constant η0, the inverse

iteration method can gain linear convergence rate locally. In particular, cubic convergence

rate can be obtained for the Rayleigh quotient iteration (RQI) method [9, 20] which is a

special case of the inverse iteration method.

If the linear system (3.1) is implemented by the m-step standard Krylov subspace method,

as we know, the solution t is located in the following Krylov subspace:

Km(A−σI , x) = span
�

x , (A−σI)x , (A−σI)2 x , · · · , (A−σI)m−1 x
	

, (3.2)

and there is a polynomial pm−1(t) of degree not greater than m−1 such that t = pm−1(A−
σI)x . Then, the corresponding residual vector of the linear system is d = (A−σI)pm−1(A−
σI)x − x , and, if



(A−σI)pm−1(A−σI)x − x


≤ η0‖r‖ (3.3)

satisfies, the next approximation t to the desired eigenvector will gain high convergence

rate locally. Based on the above considerations, we aim to find a polynomial pm−1(t) satis-

fying condition (3.3) and use this polynomial as a filter to accelerate the current approxi-

mation.

Assume that we get an approximate vector x with norm unity to the desired eigenvector

x1, and σ is a given shift which is a lower bound of λ1. From the following relation


(A−σI)pm−1(A−σI)x − x


≤


I − (A−σI)pm−1(A−σI)


‖x‖

= max
σi∈λ(A−σI)

�

�1−σi pm−1(σi)
�

�

≤ max
t∈[a,b]

�

�1− tpm−1(t)
�

�, (3.4)

where [a, b] is an interval containing the spectrum λ(A−σI) of the shift matrix A−σI with

0< a < b, and σi = λi−σ, we can see that a good polynomial pm−1(t) would be one such

that

max
t∈[a,b]

�

�1− tpm−1(t)
�

�

is minimal over all polynomials of degree≤ m−1. It is obviously that the best such polyno-

mial is such that 1− tpm−1(t) is an appropriately scaled and shifted Chebyshev polynomial

of degree m of the first kind, that is,

1− tpm−1(t) =
Cm

�

1+ 2 a−t
b−a

�

Cm

�

1+ 2 a
b−a

� . (3.5)

Denote µ = (b+ a)/2, ν = (b− a)/2, the above equation (3.5) can be simplified as

1− tpm−1(t) =
Cm

�µ−t
ν

�

Cm

�

µ
ν

� . (3.6)
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Thus, the polynomial pm−1(t) can be given explicitly as

pm−1(t) =
1

t

�

1−
Cm

�µ−t
ν

�

Cm

�µ
ν

�

�

. (3.7)

It should be noticed that it is unwise for us to use the explicit expression of polynomial

pm−1(t) to construct the polynomial filter, because at last we need to compute an inverse

of the shift matrix A−σI . In fact, there is no need to use the explicitly expression of the

polynomial pm−1(t), and an alternative strategy is to derive a three-term recurrence relation

similar to the Chebyshev polynomials. In the next, we derive the three-term recurrence

relation of the polynomial pm−1(t).

Based on the Chebyshev relation (2.2) and equation (3.6), by straightforward compu-

tations, we have

p0(t) =
1

µ
, p1(t) =

4µ− 2t

2µ2 − ν2
. (3.8)

In addition, using the three-term recurrence relation of the Chebyshev polynomials, we

have

1− tpm(t)

=
Cm+1(

µ−t
ν )

Cm+1(
µ
ν )

=
2
µ−t
ν Cm(

µ−t
ν )− Cm−1(

µ−t
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

=
2
µ−t
ν

�

1− tpm−1(t)
�

Cm(
µ
ν )−
�

1− tpm−2(t)
�

Cm−1(
µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

=
2
µ
ν

�

1− tpm−1(t)
�

Cm(
µ
ν )− 2 t

ν

�

1− tpm−1(t)
�

Cm(
µ
ν )−
�

1− tpm−2(t)
�

Cm−1(
µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

=
2
µ
νCm(

µ
ν )− 2

µ
ν tpm−1(t)Cm(

µ
ν )− 2 t

ν

�

1− tpm−1(t)
�

Cm(
µ
ν )−
�

1− tpm−2(t)
�

Cm−1(
µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

=1−
2
µ
ν tpm−1(t)Cm(

µ
ν ) + 2 t

ν

�

1− tpm−1(t)
�

Cm(
µ
ν )− tpm−2(t)Cm−1(

µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

,

or equivalently,

pm(t) =
2
µ
ν pm−1(t)Cm(

µ
ν ) +

2
ν

�

1− tpm−1(t)
�

Cm(
µ
ν )− pm−2(t)Cm−1(

µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

=

2
νCm(

µ
ν ) + 2

µ−t
ν pm−1(t)Cm(

µ
ν )− pm−2(t)Cm−1(

µ
ν )

2
µ
νCm(

µ
ν )− Cm−1(

µ
ν )

.



28 C.-Q. Miao

Denote ρm =
Cm−1(µ/ν)

Cm(µ/ν)
, then pm(t) can be simplified as

pm(t) =
1

2
µ
ν −ρm

�

2
µ− t

ν
pm−1(t)−ρmpm−2(t) +

2

ν

�

, m = 1,2, · · · , (3.9)

where p−1(t) = 0. So, from the recurrence relation (3.9), we can see that the filtered vector

pm−1(A−σI)x can be obtained by the preceding two items.

For a given matrix B and a vector v, the computation of zm = pm(B)v can be imple-

mented algorithmically as follows.

Algorithm 3.1. (The Three-Term Recurrence Filter)

1. Given matrix B, an initial vetor v, onstants a and b; ompute

µ = (b+ a)/2, ν= (b− a)/2 and z0 = (1/µ)v; set z−1 = 0.

2. For m= 1,2, · · ·, do:

(a) ompute Cm(µ/ν) aording to relation (2.2), and ompute ρm =
Cm−1(µ/ν)

Cm(µ/ν)
;

(b) ompute zm as

zm =
1

2
µ
ν −ρm

�

2

ν
(µzm−1 − Bzm−1 + v)−ρmzm−2

�

.

3. EndFor

From the above discussions, we can see that the filtered vector can be constructed by

carrying out Algorithm 3.1 which can be terminated once condition (3.3) satisfies. Appar-

ently, from inequality (3.4), we see that

max
t∈[a,b]

�

�1− tpm−1(t)
�

� ≤ η0‖r‖ (3.10)

is a sufficient condition for (3.3). We should notice that condition (3.10) gives us another

point of view to explain the filtered polynomial. In fact, relation


I − (A−σI)pm−1(A−σI)


 = max
σi∈λ(A−σI)

�

�1−σi pm−1(σi)
�

�

≤ max
t∈[a,b]

�

�1− tpm−1(t)
�

�

≤η0‖r‖

means that pm−1(A−σI) can be considered as an approximation to the inverse of the shift

matrix A−σI . Therefore, the filtered vector pm−1(A−σI)x can be seen as an approximation

to the inverse iteration vector (A−σI)−1 x . It gives us an interpretation of why the filtered-

Davidson method can gain high convergence rate through choosing a suitable shift. In [4],

Jian used this technique to construct some new preconditioners for the preconditioned

steepest descent method. In the following, we present one theorem which gives an estimate

of degree m of the polynomial filter based on condition (3.10).
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Theorem 3.1. If the polynomial pm−1(t) (m ≥ 1) generated by Algorithm 3.1 satisfies condi-

tion (3.10), and assumption η0‖r‖< 1 holds, then, degree m has the following estimate

m >

ln

�

1
η0‖r‖

+

r

�

1
η0‖r‖

�2
− 1

�

lnτ
,

where τ = µ/ν +
p

(µ/ν)2 − 1, µ = (b+ a)/2, ν = (b− a)/2, and a, b are the lower and

upper bounds of the spectrum of the shift matrix A−σI , respectively.

Proof. As

min
p∈Pm−1

max
t∈[a,b]

�

�1− tpm−1(t)
�

� =
1

|Cm(
µ
ν )|

,

by means of the explicit expression of the Chebyshev polynomial

Cm(t) =
1

2

�

(t +
p

t2 − 1)m + (t +
p

t2 − 1)−m
�

, (3.11)

we have

min
p∈Pm−1

max
t∈[a,b]

�

�1− tpm−1(t)
�

� =
2
�

�τm+τ−m
�

�

.

Under condition (3.10), we get

2

τm+τ−m
≤ η0‖r‖,

or equivalently,

τm+τ−m ≥
2

η0‖r‖
.

Furthermore, it holds that

(τm)2 −
2

η0‖r‖
τm+ 1≥ 0,

by straightforward computations, we can get

m >

ln

�

1
η0‖r‖

+

r

�

1
η0‖r‖

�2
− 1

�

lnτ
.

Theorem 3.1 provides another stopping criterion for terminating Algorithm 3.1 when

constructing the filtered vector pm−1(A−σI)x .

In the following, we propose a new Davidson-type method accelerated by the polyno-

mial filter which is generated by Algorithm 3.1, and we call this method as the filtered-

Davidson method.
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Method 3.1. (The Filtered-Davidson Method)

1. Choose an initial approximate vetor v with ‖v‖= 1 and denote V =

[v].

2. For k = 0,1,2, · · ·, do:

(a) form the projetion matrix H = V T AV, and ompute the smallest

eigenpair (θ , s) of the projetion system Hs = θ s;

(b) ompute the Ritz vetor x = V s, and the orresponding residual

vetor r = (A− θ I)x;

() test for onvergene, stop if satisfied;

(d) hoose a suitable shift σ, a stopping riterion η0 and ompute

a, b;

(e) all Algorithm 3.1 to onstrut a polynomial filter pm−1(t) sat-

isfying ‖x − (A−σI)pm−1(A−σI)x‖ ≤ η0‖r‖;

(f) let t = pm−1(A−σI)x, orthonormalize t to V and expand V = [V, t].

3. EndFor

4. Detailed Discussions

In this section, we give a detailed discussion of the filtering strategy. From the above

considerations, we can see that it is vitally important to choose a suitable shift σ and de-

termine a, b which are lower and upper bounds of the spectrum of the shift matrix A−σI

in Method 3.1.

For an approximate unit vector x with its Rayleigh quotient being θ = x T Ax , assump-

tions (2.1) and

|λ1 − θ | < λ2 − θ (4.1)

are imposed on the following discussions. Note that assumption (4.1) can result in θ <

(λ1 +λ2)/2.

Lemma 4.1 ( [14]). Let (θ ,u) be an approximate eigenpair of the symmetric matrix A with

residual vector r = (A− θ I)u, where u is a unit vector. Then the following estimates

|θ −λ1| ≤ ‖r‖ and |θ −λ1| ≤
‖r‖2

λ2 − θ

hold under assumptions (2.1) and (4.1).

Next, we will give several estimates of the lower bound of λ1 based on Lemma 4.1,

which relies on O (‖r‖) or O (‖r‖2). Through these estimates, we can provide practical

ways to choose the shift σ.
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On one hand, from the first inequality |θ − λ1| ≤ ‖r‖ in Lemma 4.1, we know that

the smallest eigenvalue λ1 ∈ [θ − ‖r‖,θ + ‖r‖], and then the lower bound of λ1 can be

obtained by

λ1 ≥ θ − ‖r‖.

On the other hand, the second inequality |θ − λ1| ≤
‖r‖2

λ2−θ
results in λ1 ≥ θ −

‖r‖2

λ2−θ
. Using

the fact λ2−θ > (λ2 −λ1)/2 resulted from assumption (4.1), we can obtain another lower

bound of λ1 by

λ1 > θ −
2‖r‖2

λ2 −λ1

.

Based on the above considerations, the shift σ can be chosen as

σ = θ − c1‖r‖ or σ = θ − c2‖r‖
2,

where c1 > 1 and c2 > 2/(λ2 −λ1), and the lower bound of the shift matrix A−σI can be

obtained by

λ1 −σ ≥ (c1 − 1)‖r‖ or λ1 −σ >
�

c2 −
2

λ2 −λ1

�

‖r‖2.

Thus, a can be chosen as a = (c1−1)‖r‖ or a = (c2−
2

λ2−λ1
)‖r‖2, correspondingly. Theorem

3.1 tells us that the lower bound of degree m decreases as parameter a increases. That is,

the iteration number of Algorithm 3.1 becomes smaller and smaller as c1 or c2 becomes

larger and larger. But we must notice that for large enough c1 or c2, it may make the

filter less effective, because for the inverse iteration equation (A−σI)t = x solved exactly

or inexactly, it will obtain quadratic and cubic convergence rate if the shift is chosen as

σ = θ − c1‖r‖ and σ = θ − c2‖r‖
2, respectively. Furthermore, large c1 or c2 may waken the

convergence rate of the inverse iteration equation, which reveals that if we want to make

the filtered vector more effective, Algorithm 3.1 may be implemented with properly large

iteration steps.

We should admit that it is impractical to choose c2 through c2 > 2/(λ2 −λ1), because

λ1 and λ2 are unknown. Saad in [14] provides a practical way. For an approximation λ̃2

to the second smallest eigenvalue λ2, we have

|λ2 − θ | =|θ − λ̃2 + λ̃2 −λ2|

≥|θ − λ̃2| − |λ̃2 −λ2|

≥|θ − λ̃2| − ‖r2‖,

which means

λ1 ≥ θ −
‖r‖2

|θ − λ̃2| − ‖r2‖
,
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where ‖r2‖ is the residual norm of the approximation to the second smallest eigenpair.

Thus, we can choose c2 >
1

|θ−λ̃2|−‖r2‖
which is computable in practice, but we need a good

approximation λ̃2 to the second eigenvalue λ2, in other words, the residual norm ‖r2‖
should be small enough to satisfy ‖r2‖< |θ − λ̃2|.

For the upper bound of the spectrum of the shift matrix B = A− σI , we can use its

infinite norm b = ‖B‖∞ or other norms valid.

At the end of this section, we present the convergence result of the filtered-Davidson

method.

Theorem 4.1. Assume that we obtain an approximate unit vector x to the desired eigenvector

x1 by Method 3.1, and it admits the orthogonal direct-sum decomposition

x = x1 cosφ +w sinφ, with w⊥ x1, (4.2)

where ‖w‖ = 1, φ is the angle between vectors x and x1. The shift in the filtered-Davidson

method is chosen as σ = θ − c‖r‖2, with c being a positive constant. Let x̃ be the next

approximate vector after one step iteration and φ̃ be the corresponding angle between vectors

x̃ and x1. For a given positive constant η0, assume that θ is near to λ1 such that

δ = η0(λn −λ1)

√

√θ −λ1

λ2 − θ
< 1,

then the following estimate holds

tan φ̃ ≤ (λn −λ1)

�

1+ c(λn −λ1)
��

1+η0(λn −λ1)
�

(λ2 −σ)(1−δ) cosφ
sin3φ.

Proof. The filtered vector t = pm−1(A−σI)x generated by Method 3.1 can be written

as

(A−σI)t = x + d .

If we adopt t to be the next approximate vector x̃ to the desired eigenvector, we can obtain

the worst-case convergence result for the filtered-Davidson method. Also, similar to the

decomposition of x in (4.2), the next approximation admits the orthogonal direct-sum

decomposition

x̃ = x1 cos φ̃ + w̃ sin φ̃, with w̃ ⊥ x1,

then, we have

(λ1 −σ)x1 cos φ̃ + (A−σI)w̃ sin φ̃ = x1 cosφ +w sinφ + d .

Multiplying both sides of the above equation from left by x T
1 andΠ = I− x1 x T

1 , respectively,

we obtain

(λ1 −σ) cos φ̃ = cosφ + x T
1

d



A Filtered-Davidson Method for Large Symmetric Eigenvalue Problems 33

and

Π(A−σI)w̃ sin φ̃ = w sinφ +Πd .

In addition, by making use of the decomposition of x in (4.2), we can straightforwardly

obtain

λ1 − θ = (λ1 −wT Aw) sin2φ, ‖r‖ ≤ (λn −λ1) sinφ

and

tan2φ =
θ −λ1

wT Aw− θ
.

Hence, it holds that

tan φ̃ =
|λ1 −σ|

‖Π(A−σI)w̃‖
‖w sinφ +Πd‖

| cosφ + x T
1

d |

≤
|λ1 − θ |+ c‖r‖2

λ2 −σ



w+ Πd
sinφ





�

�1+
xT

1 d

cosφ

�

�

tanφ

≤(λn −λ1)
1+ c(λn −λ1)

(λ2 −σ) cosφ



w+ Πd
sinφ





�

�1+
xT

1 d

cosφ

�

�

sin3φ. (4.3)

Moreover, based on condition ‖d‖ ≤ η0‖r‖ and estimate tan2φ ≤ θ−λ1

λ2−θ
, we have

‖Πd‖
sinφ

≤ η0(λn −λ1) and

�

�

�

x T
1 d

cosφ

�

�

� ≤
‖d‖
| cosφ|

≤ η0(λn −λ1)

√

√θ −λ1

λ2 − θ
.

Substituting the two estimates into the inequality (4.3) leads to

tan φ̃ ≤ (λn −λ1)

�

1+ c(λn −λ1)
��

1+η0(λn −λ1)
�

(λ2 −σ)(1−δ) cosφ
sin3φ.

5. Numerical Experiments

In this section, we use examples to examine the numerical behavior of the filtered-

Davidson (FD) method and compare it with the Davidson method (D) [1], the Jacobi-

Davidson (JD) iteration method [17] and the Chebyshev-Davidson (CD) method [21]. All

runs are started from random vectors. All iteration processes are terminated once their

residual norms at the current iteration step satisfying the stopping criterion
‖r(k)‖
‖r(0)‖ ≤ 10−6,
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with r(k) = (A−θ (k)I)x (k) being the residual corresponding to the k-th approximation x (k)

of the eigenvector x1 and θ (k) being the corresponding Rayleigh quotient.

We performed all experiments using MATLAB (with version R2013a) on a personal

computer with 3.60 GHz central processing unit (Intel (R) Core (TM) i7-4790), 8.00 GB

memory and Windows 10 operating system (2015).

For the Jacobi-Davidson iteration method, at each step we solve the correction equation

(2.3) iteratively by making use of the minimal residual (MINRES) method preconditioned

by the matrix

P =
�

I − x (k)(x (k))T
�

K
�

I − x (k)(x (k))T
�

,

where K = A− j I , and j is an estimate generated by the 10-step Lanczos process. For more

details of the preconditioning technique, refer to [17]. We adopt





�

I − x (k)(x (k))T
�

(A− θ (k)I)
�

I − x (k)(x (k))T
�

t + r(k)




‖r(k)‖
≤ 0.01

as the stopping criterion for the preconditioned MINRES method.

In the filtered-Davidson method, we choose the shift σ = θ − ‖r‖2. The lower and

upper bounds of the shift matrix A− σI are chosen as a = min{‖r‖,‖r‖2} and b = ‖A−
σI‖∞, respectively. When the filtered-Davidson method is implemented to compare with

the Jacobi-Davidson iteration method, we adopt



(A−σI)pm−1(A−σI)x − x


≤ 0.1 (5.1)

as the stopping criterion for the inner iteration of Method 3.1 (step 2(e)), but when com-

paring with the Chebyshev-Davidson method, for the sake of fairness, we both take ten

steps for the inner polynomial iteration in these two methods instead of using the stopping

criterion (5.1).

Example 5.1 ( [13]). Consider the following two-dimensional partial differential equation

−
∂

∂ x

�

a(x , y)
∂

∂ x

�

−
∂

∂ y

�

b(x , y)
∂

∂ y

�

= λu, (5.2)

with homogeneous Dirichlet boundary conditions on the domain of the unit square. Dis-

cretizing problem (5.2) by five-point finite difference approximation on an m×m grid with

the mesh size being both equal to h= 1/(m+1), we obtain the standard eigenvalue problem

(1.1). Note that now n= m2.

In Table 1 and Table 2 we list the numbers of iteration steps (IT) and the CPU times

(CPU) of the Davidson method, the Jacobi-Davidson iteration method, and the filtered-

Davidson method of Example 5.1. From these tables we can see that the filtered-Davidson

method outperforms the Jacobi-Davidson iteration method in terms of both number of

iteration steps and computing time. As the order of the tested matrices increases, the
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Table 1: Numerial Results for Example 5.1, a(x , y) = b(x , y) = e−(x
2+y2)

.

D JD FD
m

IT CPU IT CPU IT CPU

24 65 0.001 10 0.063 6 0.060

25 160 0.050 11 0.344 7 0.147

26 400 0.364 12 2.657 8 0.292

27 1129 4.517 13 13.163 9 0.708

Table 2: Numerial Results for Example 5.1, a(x , y) = b(x , y) = e(x+y)

x+y
.

D JD FD
m

IT CPU IT CPU IT CPU

24 68 0.010 8 0.063 6 0.043

25 144 0.046 10 0.344 7 0.147

26 396 0.364 10 2.515 8 0.291

27 986 3.916 17 13.263 10 1.527

Table 3: Numerial Results for Example 5.1, a(x , y) = b(x , y) = −ex y
.

m = 26 m= 27

k
CD FD CD FD

1 1.133E+04 1.131E+04 4.558E+04 4.466E+04

2 1.262E+04 7.600E+03 4.740E+04 3.344E+04

3 3.755E+03 2.765E+03 1.491E+04 1.225E+04

4 9.406E+02 5.590E+02 7.378E+03 4.619E+03

5 2.193E+02 1.402E+01 1.876E+03 5.771E+02

6 9.296E+00 1.714E-01 2.465E+03 1.144E+01

7 2.560E-01 2.628E-03 5.728E+03 1.145E-01

8 1.422E-02 2.389E+02 3.155E-03

9 2.224E-03 1.662E+01

10 1.560E+00

11 4.998E-01

12 4.686E-02

13 4.333E-03

filtered-Davidson method also outperforms the Davidson method in terms of both num-

ber of iteration steps and computing time. These observations verify our findings that the

filtered-Davidson method is time saving and converges fast with suitable shift.

In Table 3, we list the residual norms of the Chebyshev-Davidson method and the

filtered-Davidson method for different iteration steps k. From this table, we can see that

the filtered-Davidson method outperforms the Chebyshev-Davidson method in terms of the

number of iteration steps when the degrees of the two kinds of polynomials in the two
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methods are the same. Moreover, from this table we can see that the filtered-Davidson

method can gain cubic convergence rate locally when the shift is chosen as σ = θ − ‖r‖2

which is consistent with the theoretical result.

6. Concluding Remarks

In this paper, a polynomial filter which is based on a three-term recurrence relation

is derived and the filtered-Davidson method is proposed. The filtered-Davidson method

does not need to solve linear systems and only need matrix-vector products so that the

computational cost of this new method is relatively small. Moreover, several estimates of

the lower bound of the smallest eigenvalue of the matrix A and some practical shifts in

the inverse iteration equation are given. By choosing suitable shifts, the filtered-Davidson

method can gain cubic convergence rate locally.
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