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Abstract. Various algorithms for optimal control require the explicit determination of
switching surfaces. However, switching strategies may be very complicated, such that
the computation of switching surfaces is quite challenging. General methods are pro-
posed here to compute switching surfaces systematically, based on algebraic computa-
tional tools such as triangular decomposition. Our methods are highly complex com-
pared to some widely-used numerical options, but they can be made feasible for real-
time applications by moving the computational burden off-line. The tutorial-style pre-
sentation is intended to introduce potentially powerful symbolic computation methods
to system scientists in particular, and an illustrative example of time-optimal control is
given to show the effectiveness and generality of our approach.
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1. Introduction

Optimal control has been used in many areas of modern system science such as aeronau-
tics, astronautics, robotics and power electronics [8,13,16,26,41]. The control algorithms
typically require explicit determination of switching surfaces — surfaces where the sign of
the control input changes. However, switching strategies may be very complicated in many
practical applications, so the computation of switching surfaces becomes quite challenging.
Some special approaches to their computation have been developed [1,18,24]. Walther et
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al. [30] introduced tools from computational algebraic geometry for time-optimal control
problems, by transforming the computation of switching surfaces into a combinatorial prob-
lem. Their main idea is to first compute Gröbner bases of particular polynomial equations
deduced from the original system, and then use Sturm’s theorem to determine whether the
equations have non-negative solutions. Their approach is somewhat non-systematic and
may not be feasible for real-time control due to its high complexity, which motivated the
development of more general systematic methods for computing switching surfaces pre-
sented here. Another purpose of this article is to introduce powerful methods of symbolic
computation (coupled with numerical computation) for system scientists.

Our methods are based on triangular decomposition and related algebraic tools. Like
Gröbner bases, triangular decomposition is a main elimination approach for solving systems
of multivariate polynomial equations. For example, consider the equations









P1 = x2
1 + x2 + x3 − 1= 0 ,

P2 = x2
2 + x3 + x1 − 1= 0 ,

P3 = x2
3 + x1 + x2 − 1= 0 .

Under the variable ordering x1 < x2 < x3, triangular decomposition of the polynomial set
P = {P1, P2, P3} results in

T1 = [x
2
1 + 2 x1 − 1, x2 − x1, x3 − x1], T2 = [x1 − 1, x2, x3] ,

T3 = [x1, x2 − 1, x3], T4 = [x1, x2, x3 − 1] ,

such that the union of the zero sets of T1, · · · ,T4 is identical to the zero set of P . The
triangular sets T1, · · · ,T4 are of triangular form. Note that the zero set of a triangular set
can readily be obtained by successively computing the zeros of its polynomials. In our
algorithms, triangular decomposition is thus used as a preprocessing tool in the analysis
of solutions of polynomial equations. Formal notation and properties related to triangular
decomposition are provided in subsection 3.1 below.

Since triangular decomposition is such a key aspect of our approach, a brief litera-
ture overview may be helpful. In considering differential ideals, Ritt [25] introduced the
notion of characteristic set, one of the best known concepts for triangular sets. Several
decades later, Wu [37, 38] extended Ritt’s work by removing irreducibility requirements
of characteristic sets, proposing efficient algorithms for decomposing polynomial sets, and
successfully applying them to geometric theorem proof. Wu’s method was intensively stud-
ied and improved by a number of researchers (e.g. [4, 9–11, 21, 34, 35], but the zero set
of a characteristic set may be empty. To avoid this degeneracy, Kalkbrener [15] and Yang
et al. [39] independently introduced the notion of a regular set, and proposed methods
for decomposing any algebraic variety into finite components represented by regular sets.
Wang [31] proposed another method for triangular decomposition, which is considered to
be quite efficient. Other relevant work on the triangular decomposition of polynomial sets
is discussed in Refs. [3,17,23,33] (and references therein).

Our work presented here is based on the observation that the problem of computing the
switching surfaces of the time-optimal control can be translated into identifying whether
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there exist (complex and non-negative real) solutions of particular equations, say F with
parameters — cf. Section 2. By applying methods of triangular decomposition, F can
be rendered by a finite number of triangular sets with a simpler form. The projection
property of a special class of triangular sets may then be used to directly identify whether
F has complex solutions. However, it is by no means trivial to determine whether or not
there exists any non-negative real solution of F . We propose general algorithms to solve
this problem, based on a number of powerful tools from real algebraic geometry such as
Sturm’s theorem, real root isolation and cylindrical algebraic decomposition. The border
polynomial notation plays an important role, and its formal definition and relevant property
are given in subsection 3.2. All the algorithms presented here have been implemented in
Maple 17 based on the Epsilon package†. (The source code together with experimental
results is available from the authors on request.)

In Section 2, as an illustrative example we consider a simple system consisting of a chain
of integrators, and address two (complex and real) versions of the problem related to the
computation of optimal control. Section 3 summarises our notation, such as for triangular
sets and semi-algebraic systems. In Section 4, the complex version of the problem is solved
directly, based on the triangular decomposition of a particular polynomial set. Sections 5
and 6 focus on the resolution of the real version of the problem. In Section 5, we propose
an approach to determine the switching strategy of the system given in Section 2; and in
Section 6, we modify our algorithms for real-time applications by moving the computational
burden off-line. Section 7 presents our concluding remarks.

2. Problem Statement

As previously mentioned, our emphasis is on devising systematic general approaches to
compute optimal control for a system consisting of a chain of integrators. For convenience
of comparison, we consider the same example as in Ref. [30]— viz. the third-order linear
system with saturated control input

Ẋ3(t) = X2(t) , Ẋ2(t) = X1(t) , Ẋ1(t) = v(t) , (2.1)

where the dot denotes differentiation with respect to time t and |v(t)| ≤ 1. It is well
known that minimum-time optimal control for this system leads to “bang-bang” control
with at most three switchings. However, although we consider such a very simple example,
our methods are completely general and can be extended in a straightforward manner to
systems of any order.

The objective is to take the minimum time t f to drive the system (2.1) from any given
initial state (X1(0), X2(0), X3(0)) = (a, b, c) to the origin (X1(t f ), X2(t f ), X3(t f )) = (0,0,0).
For simplicity, let us first consider the inverse problem — viz. the minimum time to drive
the system from (X1(0), X2(0), X3(0)) = (0,0,0) to (X1(t f ), X2(t f ), X3(t f )) = (a, b, c). The
equivalence of these two problems is demonstrated at the end of this section.

†Available at http://www-spiral.lip6.fr/swang/epsilon/



348 X. Li et al.

Suppose that

v(t) =







+ 1 , 0≤ t < t1 ,

− 1 , t1 ≤ t < t1 + t2 ,

+ 1 , t1 + t2 ≤ t < t f = t1 + t2 + t3 ,

(2.2)

where t1, t2, t3 ≥ 0 are the length of successive intervals where v(t) stays constant. Then
it is easy to prove that















X1(t f ) = t1 − t2 + t3 ,

X2(t f ) =
t2
1

2
+ t1 t2 +

t2
3

2
+ t3 t1 −

t2
2

2
− t2 t3 ,

X3(t f ) =
t3
1

6
+

t3
3

6
+

t2
1 t2

2
+

t2
1 t3

2
+

t2
2 t1

2
+

t2
3 t1

2
+ t1 t2 t3 −

t3
2

6
− t2

2 t3

2
− t2

3 t2

2
.

Note that X1(t f ) = a, X2(t f ) = b and X3(t f ) = c. (The above relations would be more
complicated for the direct problem where the initial state is not at the origin.) We consider
the following polynomial equations:















F1 = t1 − t2 + t3 − a = 0 ,

F2 =
t2
1

2
+ t1 t2 +

t2
3

2
+ t3 t1 −

t2
2

2
− t2 t3 − b = 0 ,

F3 =
t3
1

6
+

t3
3

6
+

t2
1 t2

2
+

t2
1 t3

2
+

t2
2 t1

2
+

t2
3 t1

2
+ t1 t2 t3 −

t3
2

6
− t2

2 t3

2
− t2

3 t2

2
− c = 0 ,

(2.3)

involving the variables t1, t2, t3 and parameters a, b, c.

Remark 2.1. Determining the optimal control v of system (2.1) can be transformed to
solving system (2.3). If there exists any real solution such that t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, then
the optimal control v should be set as in (2.2). There are a number of numerical methods
for solving polynomial equations — e.g. Newton–Raphson methods [7] and homotopy
continuation methods [29]. Numerical methods may suffer from computational instability
and the difficulty in identifying signs of the solutions (particularly near zero) — whereas
our approach based on (exact) symbolic computation overcomes these shortcomings, since
computing the optimal control v then involves determining the solution signs instead of
explicitly solving the above equations.

Both the complex and real version of the problem of solving system (2.3) are now
considered — viz.

Problem 1. For any given complex numbers a, b and c, do complex solutions of system
(2.3) exist?
and
Problem 2. For any given real numbers a, b and c, does system (2.3) have at least one real
solution satisfying t1 ≥ 0, t2 ≥ 0 and t3 ≥ 0?
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Remark 2.2. If the answer to Problem 1 is negative, the optimal control v should take
the values −1,+1,−1, successively. If the answer to Problem 2 is positive, then v should
be assumed to be +1,−1,+1, and the length of the successive intervals where v(t) stays
constant should be the non-negative components t1, t2 and t3 of the solution; otherwise,
v should take the values −1,+1,−1, successively. Further details are given in Ref. [30].

Suppose that system (2.1) has been driven from the origin to (a, b, c) by setting (2.2).
From basic control theory, by reversing the direction of time as well as the sign of control
the path is traversed backwards. More precisely, if

v(t) =







− 1, 0≤ t < t3 ,

+ 1, t3 ≤ t < t3 + t2 ,

− 1, t3 + t2 ≤ t < t3 + t2 + t1 ,

then system (2.1) moves back from (a, b, c) to (0,0,0). This shows that the direct problem
is equivalent to its inverse.

3. Preliminaries

Let us now introduce some notations and properties for the triangular set and semi-
algebraic system, for the problems given in the previous section.

3.1. Triangular decomposition methods

In the following, R and C denote the real and complex fields, respectively. We use
R[x1, · · · , xn] to denote the multivariate polynomial ring over R with variables ordered as
x1 < · · · < xn. Let F ∈ R[x1, · · · , xn]. We call lv(F) = max<{x i | deg(F, x i) 6= 0,1 ≤ i ≤ n}
the leading variable of F . The leading coefficient of F , viewed as a univariate polynomial
in its leading variable, is called the initial of F and denoted by ini(F).

Let P andQ be two sets of multivariate polynomials with coefficients in R. We denote
by Zero(P ) the set of all common zeros in Cn of the polynomials in P , and by Zero(P /Q)
the subset of Zero(P ) with elements that do not annihilate any polynomial in Q.

Definition 3.1 (Triangular Set). An ordered polynomial set [T1, · · · , Tr] ⊆ R[x1, · · · , xn]\R
is called a triangular set if the leading variable of Ti is ordered smaller than that of T j for
any i < j.

A triangular set [T1, · · · , Tr] thus has a simple special structure, and its zeros can easily be
obtained by successively solving T1 = 0, · · · , Tr = 0. However, for a generic triangular set
T , it is not guaranteed that the corresponding zero set Zero(T / ini(T )) is non-empty. For
example, if

T = �x2
1 − u, x2

2 + 2 x1 x2 + u, (x1 + x2)x3 + 1
�

where u < x1 < x2 < x3, then Zero(T / ini(T )) = ; since any common zero of the first two
polynomials annihilates the initial x + y of the last polynomial.
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The emptiness of the zero sets of triangular sets would be a problem when counting the
real solutions of polynomial equations. To avoid this, triangular sets of other kinds (with
better properties) are needed. Such triangular sets include for example regular sets [15,33,
39], simple sets [32] and irreducible triangular sets [36,37]. For instance, the definition of
regular set is as follows.

Definition 3.2 (Regular Set). A triangular set [T1, · · · , Tr ] is said to be regular or called
a regular set if no regular zero of Ti annihilates the initial of Ti+1 for all i = 1, · · · , r − 1,
where Ti = [T1, · · · , Ti] and a regular zero of Ti is a zero of Ti such that the variables other
than the leading variables of T1, · · · , Ti are not specific values.

Effective algorithms have been developed by Wu [37,38], Lazard [17], Kalkbrener [15]
and others [2,12,14,19,23] to decompose any polynomial set P into finitely many trian-
gular sets T1, · · · ,Tk with different properties such that

Zero(P ) =
k
⋃

i=1

Zero(Ti/ ini(Ti)) , (3.1)

where ini(Ti) denotes the set of initials of all polynomials in Ti. Wang [31–33] has also
proposed efficient algorithms for computing the triangular decomposition as (3.1). His
methods are more general, and can be used to decompose a polynomial system [P ,Q]
(bothP andQ are polynomial sets) into finite triangular systems [Ti,Si], i = 1, · · · , k such
that

Zero(P /Q) =
k
⋃

i=1

Zero(Ti/Si) ,

where [Ti,Si] could be fine triangular systems [31], regular systems [33], or simple sys-

tems [32], respectively corresponding to triangular sets, regular sets, or simple sets. Wang’s
algorithms have been implemented in the Maple package Epsilon, which serves as one of
our main computational tools here. Let P = [x1 x2

2 + x2
3 , x1 x3 + x2] and Q = {x1} with

x1 < x2 < x3. For example, applying the RegSer function in Epsilon, the polynomial system
[P ,Q] may be decomposed into 2 regular systems:

�

[x2, x3], {x1, x3
1 + 1}
�

,
�

[x3
1 + 1, x1 x3 + x2], {}

�

. (3.2)

We use P≤s to denote the subset of P , where only polynomials with leading variable
smaller than and equal to xs are contained. Projs Z stands for the projection of a zero set
Z into the subspace Cs := {(x1, · · · , xs) | x1, · · · , xs ∈ C} — e.g. if Z = {(0,1,2), (5,6,7)},
then Proj2 Z = {(0,1), (5,6)}. The following proposition indicates that the projection of the
zero set of a polynomial system can readily be obtained by computing its regular systems.

Proposition 3.1 (Projection Property [36]). Suppose that [Ti,Si], i = 1, · · · , k are regular

systems of the polynomial system [P ,Q]. Then, for any s = 1, · · · , n,

Projs Zero(P /Q) =
k
⋃

i=1

Zero((Ti)≤s/(Si)≤s) .
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A triangular set in which all polynomials other than the first are linear with respect to
their corresponding leading variables is said to be quasi-linear. Furthermore, a triangular
system [T ,S ] is said to be quasi-linear if T is quasi-linear — e.g. the two regular systems in
(3.2) are all quasi-linear by definition. A quasi-linear triangular set T (or triangular system
[T ,S ]) has extremely simple structure, with its zeros easily obtained by analysing the first
polynomial in T . The following theorem paves the way for decomposing a polynomial
system into a finite number of quasi-linear triangular systems (cf. Ref. [20] for a proof).

Theorem 3.1. Let [T ,S ] be a regular system with T = [T1(u, x1), · · · , Tr (u, x1, · · · , xr)],

where x1, · · · , xr are respectively the leading variables of T1, · · · , Tr and u are its parameters.

For a random sequence of integers c2, · · · , cr , the probability is 1 that all simple systems (under

the same ordering x1 < · · ·< xr) of [T ∗,S ∗] are quasi-linear, where T ∗ andS ∗ are obtained

from T and S respectively by replacing x1 with x1 + c2 x2 + · · ·+ cr xr .

Triangular systems produced by triangular decomposition are often quasi-linear — cf. (3.2)
for example. However, this is not always the case. In practice, to obtain quasi-linear trian-
gular systems of a polynomial system [P ,Q], one may first decompose [P ,Q] into regular
systems [Ti ,Si], i = 1, · · · , s. Then for those regular systems, say [T j ,S j], j = 1, · · · , t, that
are not quasi-linear, from Theorem 3.1 one may randomly choose c2 j , · · · , cr j and decom-
pose [T ∗

j
,S ∗

j
] into simple systems until the resulting triangular systems are all quasi-linear.

3.2. Semi-algebraic system and border polynomial

Definition 3.3 (Semi-algebraic System). A semi-algebraic system is an equation set of the
form























F1(u1, · · · ,us, x1, · · · , xn) = 0 ,
...

Fn(u1, · · · ,us, x1, · · · , xn) = 0 ,

P1(u1, · · · ,us, x1, · · · , xn)≶ 0 ,
...

Pr(u1, · · · ,us, x1, · · · , xn)≶ 0 ,

where Fi and Pj are polynomials over R with u1, · · · ,us as their parameters and x1, · · · , xn

as their variables, and the symbol ≶ represents >, ≥, <, ≤ or 6=.

Semi-algebraic systems are often prevalent in practice. Indeed, real solutions of par-
ticular semi-algebraic systems can be seen to characterise various problems in science and
engineering. For example, Problem 2 in Section 2 can be reduced to determining whether
there exists any real solution of {F1 = 0, F2 = 0, F3 = 0, t1 ≥ 0, t2 ≥ 0, t3 ≥ 0}.

Definition 3.4. Let A=
∑m

i=0 ai x i and B =
∑l

j=0 b j x j be two univariate polynomial in x ,
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where ai, b j ∈ C and am, bl 6= 0. The determinant

�

�

�

�

�

�

�

�

�

�

�

�

�

�

am am−1 · · · a0
. . .

. . .
. . .

. . .

am am−1 · · · a0

bl bl−1 · · · b0
. . .

. . .
. . .

. . .

bl bl−1 · · · b0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

«

l

«

m

is called the Sylvester resultant (or simply the resultant) of Aand B, and denoted by Res(A, B).
The resultant Res(A, dA/dx) is called the discriminant of A and denoted by Discr(A).

The following two propositions follow from this the definition.

Proposition 3.2 (cf. Ref. [22]). A= 0 and B = 0 have common roots in C if and only if

Res(A, B) = 0 .

Proposition 3.3 (cf. Ref [22]). A= 0 has multiple roots in C if and only if Discr(A) = 0 .

For the real solution classification of a semi-algebraic system, a crucial concept is the
border polynomial originally introduced by Yang et al. [40]. Here we use a simpler notation
for border polynomials, suitable for special semi-algebra systems with one single variable
(Yang’s notation is more general).

Definition 3.5 (Border Polynomial). Consider the semi-algebraic system with only one
variable x :

S =

�

F(u, x) = 0 ,
P1(u, x)> 0, · · · , Ps(u, x)> 0 ,

where u are parameters and F(u, x) =
∑m

i=0 ai(u) x i. Then we call the product

am(u) ·Discr(F) ·
s
∏

i=1

Res(F, Pi)

the border polynomial of S.

Theorem 3.2. The zeros of the border polynomial of S divide the parameter space into sepa-

rated regions. For each region, the number of distinct real solutions of S is invariant.

Proof. The number of distinct real solutions of F = 0 changes if and only if the leading
coefficient am(u) or the discriminant Discr(F) goes from non-zero to zero and vice versa.
Suppose that the number of real solutions of F = 0 is fixed. If any Res(F, Pi) goes across
zero, then real zeros of F may pass through boundaries of the intervals determined by
Pi > 0, so the number of real solutions of S may vary. For any given region, the signs of
am(u), Discr(F) and Res(F, Pi) remain the same, hence the number of distinct real solutions
of S is invariant.
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Figure 1: The parameter spa
e for Example 3.1.

Example 3.1. Consider the semi-algebraic system {x2+u1 x+u2 = 0, x > 0}. We have that
Discr(x2 + u1 x + u2) = u2

1 − 4 u2 and Res(x2 + u1 x + u2, x) = u2, so the border polynomial
of this system is u2(u

2
1 − 4 u2). Its zeros divide the parameters space {(u1,u2) |u1,u2 ∈ R}

into 4 separate regions as shown in Fig. 1. From Theorem 3.2, the number of distinct real
solutions of the considered semi-algebraic system is invariant, which is obvious for this
simple example.

4. Solving Problem 1 using Triangular Decomposition

LetF = [F1, F2, F3] be the set of polynomials in system (2.3). Decomposing [F ,;] into
regular systems under the variable ordering a < b < c < t1 < t2 < t3 by the RegSer func-
tion in the Epsilon package, we obtain 6 regular systems [T1,S1], · · · , [T6,S6] satisfying

Zero(F ) =
6
⋃

i=1

Zero(Ti/Si) . (4.1)

To save space, we give only the first branch [T1,S1] = [[T1, T2, T3], {S1,S2}] with

T1 = I1 t4
1 + (48 a3 − 144 ab+ 144 c)t3

1 + (−18 a4 − 72 b2 + 72 a2)t2
1

+ a6 − 6 a4 b− 48 a3c + 36 a2 b2 + 144 abc − 72 b3 − 72 c2 ,

T2 = I2 t2 + J2, T3 = −t3 + t2 − t1 − a, I1 = −36 a2 + 72 b ,

I2 = −6 t2
1 + 3 a2 − 6 b, J2 = (−3 a2 + 6 b)t1 + 2 a3 − 6 ab+ 6 c ,

S1 = a2 − 2 b, S2 = a6 − 6 a4 b− 48 a3c + 36 a2 b2 + 144 abc − 72 b3 − 72 c2 .

(4.2)

For any given value of the parameters a, b, c such that S1 6= 0, S2 6= 0 or simply S1S2 6= 0,
the initial I1 of the polynomial T1 is non-zero. Furthermore, since Res(T1, I2) = 1296 S2

2,
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the initial I2 of T2 is also non-zero if S1S2 6= 0 and T1 = 0. Thus provided that S1S2 6= 0,
T1 always has complex zeros, which can readily be obtained by solving T1 = 0, T2 = 0
and T3 = 0 for t1, t2 and t3, respectively. Hence Zero(T1/S1) 6= ;, and similarly one can
prove that Zero(Ti/Si) 6= ; for i = 2, · · · , 6. We formalise these results in the following
proposition:

Proposition 4.1 (Non-emptiness — cf. Ref [36]). For any regular system [T ,S ], we have

Zero(T /S ) 6= ;.
To solve Problem 1, we need to project each Zero(Ti/Si) into the complex parameter

space C3 = {(a, b, c) | a, b, c ∈ C} and check whether or not the projections cover the entire
parameter space. Let us use [Ti,Si] to denote the regular system corresponding to the
projection of Zero(Ti/Si). From the projection property (Proposition 3.1), these [Ti,Si]

are easily obtained — viz.

[T1,S1] = [[ ], {S1,S2}] ,
[T2,S2] = [[S1, U1], {}] ,
[T3,S3] = [[S1], {U2, U3}] ,
[T4,S4] = [[S2], {S1}] ,
[T5,S5] = [[S2], {S1}] ,
[T6,S6] = [[S1, U4], {}] ,

(4.3)

with U1 = a3 − 6 c , U2 = a3 − 3 ab+ 3 c ,

U3 = a6 − 6 a4 b− 48 a3c + 144 abc − 72 c2 , U4 = a6 − 12 a3c + 36 c2 .

We now prove that zeros of the above systems cover the entire parameter space C3. It
is obvious that

Zero(T1/S1)∪ Zero(T4/S4) = C
3 \ Zero([S1]) ,

so that
Zero(T1/S1)∪ Zero(T4/S4)∪ Zero(T3/S3) = C

3 \Λ ,

where Λ = Zero([S1, U2]) ∪ Zero([S1, U3]). Furthermore, it can be proved from the Poly-

nomialIdeals package in Maple that

〈S1, U1〉 ∩ 〈S1, U4〉 ⊆
Æ

〈S1, U2〉 , 〈S1, U1〉 ∩ 〈S1, U4〉 ⊆
Æ

〈S1, U3〉 ,
where 〈P 〉 is the polynomial ideal generated by the polynomial setP and

pI is the radical
of the ideal I . From basic theory of polynomial algebra,

Zero([S1, U2]) ⊆ Zero([S1, U1])∪ Zero([S1, U4]) = Zero(T1/S1)∪ Zero(T6/S6) ,

Zero([S1, U3]) ⊆ Zero([S1, U1])∪ Zero([S1, U4]) = Zero(T1/S1)∪ Zero(T6/S6) .

Consequently,
6
⋃

i=1

Zero(Ti/Si) = C
3
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such that the system (2.3) has complex solutions for all parameter assignments.
One may observe that, among all branches in (4.1), only the projection of Zero(T1/S1)

is of the same dimension as the parameter space C3. We call [T1,S1] the main branch of
the regular systems of F .

5. Algorithm for Optimal Control

We now propose a systematic approach to drive an m-order linear system Φ from any
given initial state ū to the origin in minimum time. In Remark 2.1, it is pointed out that by
solving particular polynomial equations one can decide how long to keep a certain constant
(+1 or −1) for the optimal control v. However, discrete time implementations are typically
used in engineering. Suppose a sample of the state of a systemΦ is taken at small time steps,
say every 0.001 seconds. From the algorithm Swit
h presented in subsection 5.1, we know
that Swit
h(Φ, ū) should be the first recommended value for the time-optimal control for
driving Φ to the origin, so let v(t) = Swit
h(Φ, ū) for 0 ≤ t < 0.001. Under the control of
this v(t), the system will move to a new state when t = 0.001. By sampling, we get the state
and denote it as ū1. Similarly, on setting v(t) = Swit
h(Φ, ū1) for 0.001 ≤ t < 0.002, the
system will arrive at ū2. In this way, the system Φ would be driven to the target through
the path ū → ū1 → ū2 → · · · → 0, and the whole optimal control v(t) could finally be
obtained.

5.1. Switching algorithm

For any vector of numbers ū = (ū1, · · · , ūm), we use ∗|
ū

to denote the result of ∗ specified
at u = ū, where ∗ could be a polynomial or a polynomial set. In Algorithm 1 we formalise
the steps in computing the recommended present value for the time-optimal control to
move a system from its current state to the origin. (The algorithm has the system and its
current state as the input.) Our method is similar to counting distinct real solutions of a
semi-algebraic system [20], which serves as the main computational tools in analysing the
multiplicity of competitive equilibria of semi-algebraic economies.

In Algorithm 1, Simplify({T ′1 = 0, · · · , T ′
m
= 0, t1 ≥ 0, · · · , tm ≥ 0}) translates the semi-

algebraic system {T ′1 = 0, · · · , T ′m = 0, t1 ≥ 0, · · · , tm ≥ 0} into an equivalent simpler system
{T ′1(t1) = 0,A1(t1) ≥ 0, · · · ,Am(t1)≥ 0} with a single variable t1 — cf. Ref. [20] for further
details. The operation Split({T ′1 = 0,A1 ≥ 0, · · · ,Am ≥ 0}) returns a set of finitely many
semi-algebraic systems with only strict inequalities such that the solution set remains the
same. Indeed, if the greatest common divisor of T ′1 and A1 is 1, then A1 ≥ 0 can be replaced
by A1 > 0; otherwise, the system should be split into two — viz.











gcd(T ′1,A1) = 0 ,
A2 ≥ 0 ,

...
Am ≥ 0 ,















T ′1/gcd(T ′1,A1) = 0 ,
A1 > 0 ,
A2 ≥ 0 ,

...
Am ≥ 0 .
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Algorithm 1: v(0) := Swit
h(Φ, ū)

Input: Φ— an m-order linear system; ū — the initial state of Φ.
Output: v(0)— the recommended present value (either +1 or −1) for the

time-optimal control of driving Φ from ū to the origin 0.

F := the polynomial set corresponding to Φ with u as its parameters and
t1, · · · , tm as its variables (see Section 2 for details);

Let u < t1 < · · ·< tm and decompose F into regular systems [Ti,Si], i = 1, · · · , l;

[Ti,Si] := the regular system corresponding to Projm Zero(Ti/Si).
∆ := the set of indices i’s such that ū ∈ Zero(Ti/Si) for i ∈ {1, · · · , l};
Γ := ;;
for j ∈∆ do

Suppose that T j|ū = [T ′1(t1), · · · , T ′
m
(t1, · · · , tm)] is quasi-linear, for

otherwise we apply the quasi-linearization technique in Section 3.1;
S := Simplify({T ′1 = 0, · · · , T ′

m
= 0, t1 ≥ 0, · · · , tm ≥ 0});

Γ := Γ ∪ Split(S);
end

for U ∈ Γ do

Suppose that U = {F(t1) = 0, P1(t1)> 0, · · · , Ps(t1) > 0};
S := Iso(F,
∏s

k=1 Pk);
C := the open intervals of the complement of S such that Pk > 0 for all

k = 1, · · · , s;
if Count(F, C) > 0 then

v(0) := (−1)m;
return;

end

end

v(0) := −(−1)m;
return;

Proceeding in the same way for the other ‘≥’ inequalities of the above semi-algebraic sys-
tems, we obtain finitely many systems of the form











F(t1) = 0 ,
P1(t1) > 0 ,

...
Ps(t1) > 0 ,

where gcd(F, Pk) = 1 for all k = 1, · · · , s. It is obvious that the solutions of all the semi-
algebraic systems eventually obtained are the same as those from {T ′1(t1) = 0,A1(t1) ≥
0, · · · ,Am(t1) ≥ 0}. For any univariate polynomials F and G such that gcd(F, G) = 1,
the operation Iso(F, G) isolates the real zeros of G — e,g. using the modified Uspensky
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algorithm [6]. Thus Iso(F, G) returns a sequence of closed intervals [ f1, g1], · · · , [ fm, gm]

such that

• fi , gi are all rational numbers ,

• f1 ≤ g1 < f2 ≤ g2 < · · ·< fm ≤ gm ,

• [ fi , gi]∩ [ f j , g j] = ; for i 6= j ,

• each [ fi , gi] contains one and only one real zero of G ,

• every [ fi , gi] covers no real zero of F .‡

Finally, for any univariate polynomial F and a set C consisting of finite open intervals, the
operation Count(F, C) returns the number of distinct real solutions of F located in C and
Sturm’s theorem may be invoked.

Proof of Algorithm 1. As pointed out in Section 2, the values for the optimal control v of
the system Φ depend upon whether F has any real solution such that t1 ≥ 0, · · · , tm ≥ 0.
It is notable that F is obtained from the inverse problem (i.e. driving Φ from 0 to u),
hence both the order and the sign of the recommended value sequence of v may need to
be reversed. Thus if c = +1,−1,+1 in the inverse problem for a third-order system, then
the recommended values of v in the direct problem are −1,+1,−1; on the other hand,
if c = +1,−1,+1,−1 in the inverse problem for a fourth-order system, we also have c =

+1,−1,+1,−1 in the direct problem. In Algorithm 1, we set the present value v(0) = (−1)m

if F has non-negative solutions, and otherwise we set v(0) = −(−1)m.
We now illustrate how Algorithm 1 essentially identifies whether or not F has non-

negative solutions. Obviously,

Zero(F ) =
l
⋃

i=1

Zero(Ti/Si) ,

so that
Zero(F|

ū
) =
⋃

j∈∆
Zero(T j|ū/S j |ū) ,

and hence only T j|ū , j ∈∆ need to be considered when counting solutions ofF . Consider
the first for loop. Suppose that

Simplify({T ′1 = 0, · · · , T ′m = 0, t1 ≥ 0, · · · , tm ≥ 0})
={T ′1(t1) = 0,A1(t1) ≥ 0, · · · ,Am(t1)≥ 0} .

Then the problem is reduced to determining whether, for each j ∈∆, there exists any real
zero of the semi-algebraic system











T ′1 = 0 ,
A1 ≥ 0 ,

...
Am ≥ 0 .

‡This can be realized because gcd(F, G) = 1.
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From the property of the sub-procedure Split, the problem is equivalent to whether any
system in Γ has real solutions. Moreover, we have gcd(F,

∏s

k=1 Pk) = 1 for any {F(t1) =

0, P1(t1) > 0, · · · , Ps(t1) > 0} ∈ Γ . In the second for loop, suppose that the result of
S := Iso(F,
∏s

k=1 Pk) is of the form [ f1, g1], · · · , [ fm, gm]. Then the complement of S is

(−∞, f1) , (g1, f2) , · · · , (gm,+∞) .

It is obvious that the signs of P1, · · · , Ps must be fixed in each of the above open intervals, and
can be identified by verifying at a sample point. Consequently, C could readily be obtained
and Count(F, C) counts distinct real solutions of F located in C . If Count(F, C) > 0 for some
U ∈ Γ , then U has real solutions, which proves that F has at least one real solution such
that t1 ≥ 0, · · · , tm ≥ 0.

5.2. Illustrative case

Consider the third-order system (2.1) in Section 2 and the initial state ū = (a, b, c) =

(1,1,1). Since S1|(1,1,1) = −1 6= 0 and S2|(1,1,1) = −17 6= 0, we have (1,1,1) ∈ Zero(T1/S1).

Moreover, it can be verified that (1,1,1) 6∈ Zero(Ti/Si) for any i = 2, · · · , 6, so from (4.1)
we have that Zero(F|(1,1,1)) = Zero(T1|(1,1,1)). Thus ∆ = {1}, and it remains to deter-
mine whether T1|(1,1,1) with non-negative components has at least one real zero. We have
T1|(1,1,1) = [T

′
1, T ′2, T ′3] with

T ′1 = 36 t4
1 + 48 t3

1 − 18 t2
1 − 17 ,

T ′2 = I t2 + J , I = −6 t2
1 − 3, J = 3 t1 + 2 ,

T ′3 = −t3 + t2 − t1 + 1 .

Other than the first, the polynomials in T1|(1,1,1) are linear with respect to their leading
variables, such that T1|(1,1,1) is quasi-linear.

Let us demonstrate how the sub-procedure Simplify({T ′1 = 0, T ′2 = 0, T ′3 = 0, t1 ≥
0, t2 ≥ 0, t3 ≥ 0}) works. On solving T ′3 = 0 for t3, T ′2 = 0 for t2 and then substitut-
ing the solutions t3 = t2 − t1 +1, t2 = −J/I successively into t3 ≥ 0 and t2 ≥ 0, we obtain
−J/I − t1 +1≥ 0 and −J/I ≥ 0, respectively. The problem is thus reduced to determining
whether there are real solutions of the following system with only one variable t1:









T ′1 = 0 ,
t1 ≥ 0 ,
A/A′ ≥ 0 ,
B/B′ ≥ 0 ,

where A = −J , A′ = I , B = −J − t1 I + I and B′ = I . Polynomials rather than rational
functions are preferred in the computation. Since I( t̄1) 6= 0 for any zero t̄1 of T ′1 from the
definition of a regular system, one could replace the last two inequalities by A∗ = AA′ =
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−IJ ≥ 0 and B∗ = BB′ = (−J − t1 I + I)I ≥ 0, respectively. We arrive at









T ′1 = 0 ,
t1 ≥ 0 ,
A∗ ≥ 0 ,
B∗ ≥ 0 .

Since gcd(T ′1, t1) = 1, gcd(T ′1,A∗) = 1 and gcd(T ′1, B∗) = 1, we have Γ = {U} where

U =









T ′1 = 0 ,
t1 > 0 ,
A∗ > 0 ,
B∗ > 0 .

In order to determine whether system U has real solutions, let us write S := Iso(T ′1, t1A∗B∗)
to obtain the sorted sequence of intervals

[−1,−1/2], [0,0], [3/4,1] .

Consequently, the real zeros of T ′1 must lie in

(−∞,−1) , (−1/2,0) , (0,3/4) , (1,+∞) .

Furthermore, in each of these open intervals the signs of t1, A∗ and B∗ are invariant, and can
be identified by testing at a sample point in each interval. For example, to determine the
sign of A∗ on (−∞,−1), we have that A∗(−2) = −108< 0, so A∗ is negative at every point
in (−∞,−1). Proceeding in this way for other intervals, we conclude that the inequality
constraints t1 > 0, A∗ > 0 and B∗ > 0 are satisfied only on C = (0,3/4). Finally, by
computing the Sturm sequence we obtain that Count(T ′1, C) = 1> 0.

In conclusion, for (a, b, c) = (1,1,1) the system (2.3) has exactly one non-negative
solution, so we should set v(0) = −1 as the recommended present value for the time-
optimal control to drive system (2.1) from (1,1,1) to the origin (0,0,0).

6. Moving the Computational Burden Off-line

The switching algorithm presented in Section 5 involves the computation of real root
isolation and a Sturm sequence, which may be intractable for large systems and near invalid
for real-time control. In this section, we modify the switching algorithm to make it available
for real-time applications. The key idea is to divide the computation into two phases — the
off-line and the on-line. The computational burden is moved off-line as it is only necessary
to verify that particular inequalities are satisfied in the on-line stage, and the computation
is extremely fast.
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6.1. The off-line phase

The example given in Section 2 serves to demonstrate how to compute control strategies
in the off-line phase, and we then formalise the steps in an algorithm.

Let us reconsider the main branch [T1,S1] = [[T1, T2, T3], {S1,S2}] for regular systems,
where S1,S2 are polynomials in a, b, c — cf. (4.2). For any ā, b̄, c̄ ∈ R such that S1|(ā, b̄,c̄) 6= 0

and S2|(ā, b̄,c̄) 6= 0, from (4.3) we have that (ā, b̄, c̄) 6∈ Zero(Ti/Si) for any i = 2, · · · , 6. Con-
sequently, the zeros ofF|(ā, b̄,c̄) should be same as those for T1|(ā, b̄,c̄). Since the main branch
is already quasi-linear, one can easily solve T3 = 0 for t3 and T2 = 0 for t2. Substituting
the solutions t3 = t2 − t1 − a, t2 = −J2/I2 successively into t3 ≥ 0 and t2 ≥ 0, we obtain
−J2/I2− t1−a ≥ 0 and −J2/I2 ≥ 0, respectively. Thus provided that S1S2 6= 0, the problem
is reduced to determining the condition on a, b, c such that there exist real zeros of the
semi-algebraic system









T1 = 0 ,
t1 ≥ 0 ,
C ≥ 0 ,
D ≥ 0 ,

(6.1)

where C = −I2J2, D = (−J2 − t1 I2 + I2)I2. Moreover, let us suppose that

Res(T1, t1) ·Res(T1, C) ·Res(T1, D) 6= 0 .

From Proposition 3.2, we know that T1 has no common zero with t1, C and D, so system
(6.1) can be transformed further to









T1 = 0 ,
t1 > 0 ,
C > 0 ,
D > 0 .

(6.2)

We now construct the border polynomial of (6.2), and its square free part B = B1B2B3B4,
where

B1 = S1 = a2 − 2 b ,

B2 = S2 = a6 − 6 a4 b− 48 a3c + 36 a2 b2 + 144 abc − 72 b3 − 72 c2 ,

B3 = a6 + 6 a4 b− 48 a3c + 36 a2 b2 − 144 abc + 72 b3 − 72 c2 ,

B4 = a6 − 6 a4 b− 144 a3c + 84 a2 b2 + 432 abc − 200 b3 − 216 c2 ,

such that the zeros of B divide the parameter space R3 into separated regions. Fig. 2 shows
the graphs of B1 = 0, B2 = 0, B3 = 0 and B4 = 0 (shown in blue, green, white and
red, respectively.) From Theorem 3.2, the number of real solutions of (6.2) is invariant
in a fixed region. Thus one may choose a sample point from each region, which can be
done systematically, using for example the cylindrical algebraic decomposition method [5].
The problem then is to determine whether there is any real solution of the result of (6.2)



Computing Switching Surfaces in Optimal Control 361

Figure 2: Partitions of the parameter spa
e of (6.2).

specified at these sample points. For example, at P = (10,10,−10) shown in Fig. 2, the
system (6.2) becomes









−2880 t4
1 + 32160 t3

1 − 115200 t2
1 + 1016800= 0 ,

t1 > 0 ,
(−120 t1 + 670) (3 t2

1 − 120)> 0 ,
(−3 t3

1 + 30 t2
1 − 530)(3 t2

1 − 120)> 0 .

On applying the method proposed in Section 5, we know that the above system has at least
one real solution, so v(0) should be −1 if (ā, b̄, c̄) in the same region as P. Proceeding fur-
ther in the same way, the recommended present value v(0) for the optimal control therefore
can be obtained for other regions.

To succinctly describe the way to set v(0), we give simple and formal representations
of these regions, beginning with utilising the sign of Bi, i = 1, · · · , 4. For example, as

B1|P = 80> 0, B2|P = 1016800> 0, B3|P = 2648800> 0, B4|P = 2026400> 0,

we expect that the region where P is located might be described by Bi > 0, i = 1, · · · , 4.
Unfortunately, this is not the case. Consider the point Q = (−10,−10,10). We also have
Bi |Q > 0 for all i = 1, · · · , 4, so the Boolean formula

∧4
i=1 Bi > 0 corresponds to at least two

different regions. However, we may introduce an additional polynomial A1 = a3−3 ab+3 c

that satisfies A1|P = 670 ≥ 0 and A1|Q = −1270 ≤ 0, so the two regions where points P
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and Q lie can be described by

4
∧

i=1

Bi > 0∧ A1 > 0 and
4
∧

i=1

Bi > 0∧ A1 < 0 ,

respectively. This illustrates that other polynomials could help in the characterisation of
different regions. Generally, it would be fairly hard to find these polynomials by hand,
but Yang et al. [40] have pointed out that they are contained in the so-called generalised

discriminant list and can be selected by repeated trials. For our example, 4 additional
polynomials may be needed — including A1 above,

A2 = 3 a3 − 7 ab+ 3 c ,

A3 = 117 a8 − 400 a6 b+ 120 a5c − 496 a4 b2 − 2736 a3bc + 4176 a2b3

− 72 a2c2 + 7296 ab2c − 5808 b4− 3312 bc2 ,

and A4, a complex polynomial of degree 15 with 27 terms. (We do not give A4 here, due to
limitation in space.)

Given the above preparation, we now describe how to set v(0) for any given (ā, b̄, c̄)

such that

N = S1 · S2 ·Res(T1, t1) ·Res(T1, C) ·Res(T1, D) ·
4
∏

i=1

Bi 6= 0 .

The optimal control v(0) should be set as −1 if and only if system (2.3) has at least one
non-negative solution, or if and only if one of the following Boolean formulae holds:

• B1 < 0
∧

B2 < 0
∧

B3 < 0
∧

B4 < 0
∧

A2 < 0
∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

A1 < 0
∧

A2 < 0
∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

A1 < 0
∧

0< A2

∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

0< B3

∧

0< B4

∧

A1 < 0
∧

0< A2

∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B4 < 0
∧

A1 < 0
∧

0< A2

∧

0< A3

∧

0< A4 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

0< B4

∧

A1 < 0
∧

A3 < 0
∧

0< A4 ,

• 0< B1

∧

B2 < 0
∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

A2 < 0
∧

A3 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

0< B4

∧

0< A1

∧

A2 < 0
∧

0< A3

∧

0< A4 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

0< A1

∧

A2 < 0
∧

A3 < 0
∧

0< A4 ,

• 0< B1

∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

A2 < 0
∧

0< A3

∧

0< A4 ,

• 0< B1

∧

B2 < 0
∧

B4 < 0
∧

0< A1

∧

0< A2

∧

0< A3

∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

0< A2

∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

0< A2

∧

0< A3

∧

0< A4 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

0< B4

∧

0< A1

∧

0< A2

∧

A3 < 0
∧

0< A4 ,

• 0< B1

∧

0< B2

∧

0< B3

∧

B4 < 0
∧

0< A1

∧

0< A2

∧

A3 < 0
∧

0< A4 ,



Computing Switching Surfaces in Optimal Control 363

• 0< B1

∧

0< B2

∧

0< B3

∧

0< B4

∧

0< A1

∧

0< A2

∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

0< B3

∧

0< A1

∧

0< A2

∧

0< A3

∧

A4 < 0 ,

• 0< B1

∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

0< A2

∧

A3 < 0
∧

0< A4 ,

• 0< B1

∧

0< B3

∧

B4 < 0
∧

0< A1

∧

0< A2

∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B3

∧

B4 < 0
∧

0< A1

∧

0< A2

∧

0< A3

∧

0< A4 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

0< A3

∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

B3 < 0
∧

0< B4

∧

0< A1

∧

A3 < 0
∧

A4 < 0 ,

• 0< B1

∧

0< B2

∧

0< B3

∧

0< B4

∧

0< A2

∧

0< A3

∧

0< A4 ,

• B2 < 0
∧

B3 < 0
∧

B4 < 0
∧

0< A1

∧

0< A2

∧

A3 < 0
∧

A4 < 0 .

The above steps are formalised in Algorithm 2. The termination and correctness of the
algorithm are obvious.

Remark 6.1. From our experiments, the runtime can be the bottleneck for Algorithm 2
rather than memory requirements. It should be mentioned that Yang et al. [40] proposed a
more direct method that may also be used to compute the necessary and sufficient condi-
tions above. Their method avoids the quasi-linearisation process and may be more efficient
when the polynomials involved are of high degree.

Both Yang’s approach and ours are quite time-consuming for large problems, as the com-
plexities of existing algorithms for cylindrical algebraic decomposition prove to be double-
exponential. For the third-order system given in Section 2, Algorithm 2 takes 139 seconds
to terminate in Maple 17 running on AMD A8-6500 CPU 3.50 GHz with 20G RAM under
Windows 7 OS. Moreover, we found that systems with higher order could not be resolved
within 5 hours. However, efficiency is less important as the computation of this stage is
performed off-line, and powerful parallel computers may be used to accelerate the process.

Furthermore, Safey El Din [27, 28] and others have proposed a new approach to find
sample points of semi-algebraic sets, based on the computation of critical points. The com-
plexity of their method is O (d7D4n), where d and D are the parameter number and the
degree of the involved system, respectively. Thus it is reasonable to hope for a significant
performance boost if the cylindrical algebraic decomposition procedure in our methods is
replaced with the critical point computation. This is an interesting issue for further inves-
tigation.

Finally, we note that points in the parameter space R3 are covered in the sense of
Lebesgue measure, except for those points that annihilate N . For these exceptional points,
we may add the equation N = 0 to (6.1), with a and b might viewed as parameters while
c, t1, t2 and t3 are the variables. Repeating this process, we finally cover all points in the
parameter space and so obtain the complete necessary and sufficient conditions on the pa-
rameters a, b and c such that system (2.3) has non-negative solutions. (Since somewhat
tedious, we have not listed the complete necessary and sufficient conditions.)
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Algorithm 2: Ω, N := BooleanF(Φ)

Input: Φ— an m-order linear system.
Output: Ω— the necessary and sufficient conditions that the present value v(0)

should be (−1)m for the time-optimal control of driving Φ from u to the
origin 0, provided that N 6= 0.

F := the polynomial set corresponding to Φ with u as its parameters and
t1, · · · , tm as its variables (see Section 2 for details);

Let u < t1 < · · ·< tm and decompose F into regular systems [Ti,Si], i = 1, · · · , l;
∆ := the set of indices i’s such that [Ti ,Si] is the main branch;
Γ := ;;B := ;; N = 1;
for j ∈∆ do

Suppose that T j = [T1(t1), · · · , Tm(t1, · · · , tm)] is quasi-linear, for
otherwise we apply the quasi-linearization technique in Section 3.1;

S := Simplify({T1 = 0, · · · , Tm = 0, t1 ≥ 0, · · · , tm ≥ 0});
Γ := Γ ∪ {S};
P := the set of all the factors of the border polynomial of S;
B :=B ∪P ;
N := N ·∏S∈Si

S;

end

Θ := the set of sample points at all the regions of parameter space divided by zeros
of polynomials inB .

Θ
∗ := the subset of Θ, where at least one S ∈ Γ has non-negative solutions.

Suppose that the signs of all polynomials inB can exactly characterise the regions
corresponding to points in Θ∗, for otherwise we add toB certain elements in
the generalised discriminant list of S ∈ Γ .

Suppose thatB = {B1, · · · , Bk};
Ω := ;;
for ū ∈ Θ∗ do

ω := B1 ≶ 0
∧ · · ·∧Bk ≶ 0, where ≶ could be either > or < depending on

Bi(ū) > 0 or Bi(ū) < 0;
Ω := Ω∪ {ω};

end

N := N ·∏B∈B B;
return;

6.2. The on-line phase

In the on-line stage, we sample the state ū of the considered m-order system Φ and
verify whether or not the complete necessary and sufficient conditions obtained by the
algorithm BooleanF are satisfied when u = ū — thus

• if the answer is positive, then the present value v(0) is assumed to be (−1)m;
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• otherwise, set v(0) = −(−1)m.

(The system will then be driven to the origin in minimum time.) The computation mainly
identifies the signs of certain polynomials, so it can be completed for real-time control.

7. Conclusion

Optimal control is widely used in modern system science. In the context of switch-
ing surfaces in optimal control, many problems can be reduced to solving certain semi-
algebraic systems. In this article, new methods for time-optimal control were presented
and illustrated by a simple example. Complex and real versions for optimal control were
considered. Based on triangular decomposition and relevant symbolic computation, our
methods are more general and more systematic than those given in Ref. [30]— and since
the computation is exact, they are quite different from existing numerical approaches. Their
high complexity can be addressed by moving the computational burden off-line, such that
the modified version is feasible for real-time control. The future development of faster
computer algebra systems and more efficient algorithms for basic operations (including
triangular decomposition and cylindrical algebraic decomposition) will also significantly
improve the performance of our methods.
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