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Abstract. In this paper we envisage building Probabilistic Boolean Networks (PBNs)

from a prescribed stationary distribution. This is an inverse problem of huge size that

can be subdivided into two parts — viz. (i) construction of a transition probability

matrix from a given stationary distribution (Problem ST), and (ii) construction of a

PBN from a given transition probability matrix (Problem TP). A generalized entropy

approach has been proposed for Problem ST and a maximum entropy rate approach for

Problem TP respectively. Here we propose to improve both methods, by considering a

new objective function based on the entropy rate with an additional term of Lα-norm

that can help in getting a sparse solution. A sparse solution is useful in identifying the

major component Boolean networks (BNs) from the constructed PBN. These major BNs

can simplify the identification of the network structure and the design of control policy,

and neglecting non-major BNs does not change the dynamics of the constructed PBN

to a large extent. Numerical experiments indicate that our new objective function is

effective in finding a better sparse solution.

AMS subject classifications: 65C20, 92B05

Key words: Probabilistic Boolean Networks, entropy, stationary distribution, sparsity, transition

probability matrix.

1. Introduction

Coordinated interactions and regulations among genes and gene products form so-

called gene regulatory networks, an important research topic in genomic research [3, 16]

where inference from gene expression data plays an important role. In recent years,

many formalisms have been proposed for modeling gene regulatory networks — including

Bayesian networks [20], Boolean Networks (BNs) [18], multivariate Markov chain [7] and

regression [31] models, and Probabilistic Boolean Networks (PBNs) [23,24]. The various

mathematical models are reviewed in Refs. [15,25].
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The Boolean Network (BN) model and its Probabilistic Boolean Network (PBN) exten-

sion have received considerable attention, as they capture some fundamental characteris-

tics of the gene regulations that occur in gene regulatory networks [28]. Consequently, one

can understand a particular gene regulatory network and study the influence of different

genes. In a BN model, first introduced by Kauffman [18, 19], each gene is represented as

a node and each node can take two possible values (1 and 0). The value of a target node

is determined by several input nodes (regulators) via a Boolean function. A BN model is

deterministic, and randomness only arises from its initial state. Given this inherent deter-

ministic directionality and also the finite number of possible states, the state transitions

allow a BN network to enter a set of states and then cycle among them in a fixed order

forever, so the set of states is an attractor. If the attractor contains only one state, it is

called a singleton attractor; and if it contains more than one state, it is called an attractor

cycle [1,18,19]. Since attractors represent stable states in a dynamic system, they can re-

flect the long term behavior of a BN. In particular, it has been demonstrated that attractors

are associated with cellular phenotypes [28].

A BN is not only inherently deterministic but also a closed system and therefore has

modeling limitations, but a PBN extension provides a stochastic aspect. A PBN consists of a

cluster of BNs with selection probabilities assigned, and each BN can be considered a “con-

text”. At any given time instant, gene regulations are governed by one of the component

BNs. At the next time instant, the system may switch to another BN with a certain switch-

ing probability, when the genes can interact under a different context. Thus a PBN model is

more flexible than BN model, and it can be described via a Markov chain [8,23,24]. Since

a PBN also has a finite number of states, its long term behavior can be characterized by

the stationary distribution, providing a possible way to infer the PBN from gene expression

data.

Time-independent gene expression data can be obtained from micro-array studies,

usually by sampling steady states of the network. Using this data, one can estimate a

stationary distribution of the network and hence consider building a PBN. This construc-

tion problem involves identifying all the component BNs and their corresponding selection

probabilities, such that the long term behavior of the constituting PBN is consistent with

the prescribed stationary distribution. There has been some preliminary work based on

entropy theory [11, 12, 32], using the entropy rate as the objective function. We recall

from information theory that the entropy can measure the amount of information missing

before reception. Indeed, one can minimize the amount of missing information during the

construction of PBNs from gene expression data, using entropy as the objective function.

Motivated by the results in [12,32], we tackle the inverse problem by splitting it into two

different inverse problems — viz. (i) construction of a transition probability matrix from

a given stationary distribution (Problem ST), and (ii) construction of a PBN from a given

transition probability matrix (Problem TP). For the Problem ST, we propose to construct

a transition probability matrix from the prescribed stationary distribution. The state tran-

sitions in a PBN can be regarded as a Markov chain, and our aim is to find a transition

probability matrix that has the prescribed stationary distribution. For Problem TP the main

aim is to construct a PBN from a given transition probability matrix by identifying all the
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component BNs and their corresponding selection probabilities. The key issue is the large

number of feasible solutions, from which we must select a good PBN candidate and the

corresponding transition probability matrix, consistent with the given stationary distribu-

tion. A reasonable criterion is needed to evaluate all the feasible solutions in order to find

an optimal one. We consider the sparsity of the transition probability matrix and the selec-

tion probability of component BNs, since a “sparser” solution allows us to identify several

major BNs from a huge set of component BNs. Thus in the control policy design for the

PBN, we can focus on these major BNs and neglect all others with selection probabilities

very close to zero — i.e. we can neglect those that do not change the dynamics of the PBN

to a large extent. A sparse solution can help us to better identify the network structure and

simplify the design of the control policy. In both problems, we consider adding a term of

Lα-norm to the objective function, to more likely get a sparse solution [2,29].

In Section 2, a brief review on BNs and PBNs is given. Section 3 gives a mathematical

formulation of the inverse problems, where we present Newton’s method in conjunction

with the CG method for solving the inverse problems. Section 4 gives some numerical

examples to demonstrate our proposed methods. Finally, our concluding remarks are made

in Section 5.

2. A Brief Review on Boolean Networks and Probabilistic Boolean Networks

A Boolean Network (BN) G(V, F) consists of a set of nodes

V = {v1, v2, · · · , vn}

and a list of Boolean functions

F = { f1, f2, · · · , fn} where ( fi : {0,1}n→ {0,1}).

Here vi(t) defines the state (0 or 1) of the node vi at time t, and the Boolean functions

represent the rules of regulatory interactions among the nodes — i.e.

vi(t + 1) = fi(v(t)), i = 1,2, · · · , n

where

v(t) = (v1(t), v2(t), · · · , vn(t))
T

is the Gene Activity Profile (GAP). The GAP can take any possible form (state) from the set

S = {(v1, v2, · · · , vn)
T : vi ∈ {0,1}} , (2.1)

and in total there are 2n possible states.

For example, a BN with three nodes and truth table given in Table 1 has eight states

{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,1), (1,1,0), (1,0,1), (0,1,1)}. Let us label them

by 1,2,3,4,5,6,7 and 8 respectively. We note that if the current state of the network is 1,

the network will go to State 2 in the next step (with probability one); if the current state
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State v1(t) v2(t) v3(t) f (1) f (2) f (3)

1 0 0 0 0 0 1

2 0 0 1 0 1 0

3 0 1 0 1 0 0

4 1 0 0 0 0 0

5 1 1 1 1 1 0

6 1 1 0 1 1 1

7 1 0 1 1 0 1

8 0 1 1 1 0 1

is 2, the network will go to State 3 in the next step (with probability one); if the current

state is 3, the network will go to State 4 in the next step (with probability one); and if the

current state is 4, the network will go to State 1 in next step (with probability one). Thus

there is a cycle of length four: 1→ 2→ 3→ 4→ 1. One can also check that there is a cycle

of length two: 5 → 6 → 5 and a cycle of length one: 7 → 7. The transition probability

matrix of this 3-gene BN is then given by

B =
















0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0
















. (2.2)

The truth table provides the one-step transition probability (0 or 1 in the case of the BN)

between any two states. Let column vectors a and b be any two states in the set S. By let-

ting a and b take all possible states in S, one can get the transition probability matrix of the

3-gene BN. Since the network is a deterministic one, each column in B (the Boolean net-

work matrix) has only one non-zero element and the column sum is one. We remark that

there is an one-to-one relation between a BN and its corresponding transition probability

matrix.

Since a BN model is deterministic, a natural extension is to a stochastic PBN model.

Then instead of only one Boolean function in the case of a BN, in a PBN there are several

Boolean functions (predictor functions) f
(i)

j
( j = 1,2, · · · , l(i)) to be chosen in determining

the state of each node vi, where l(i) ≤ 22n

is the total number of possible BNs of node vi

available. Since a PBN is a cluster of BNs, there are

N =

n∏

i=1

l(i) (2.3)
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different possible BNs in the PBN. If f j denotes the set of Boolean functions for the jth

component BN where

f j = ( f
(1)

j1
, f
(2)

j2
, · · · , f

(n)

jn
), 1≤ ji ≤ l(i), i = 1,2, · · · , n ,

then we can get N transition probability matrices A1, · · · ,AN of component BNs from the

N sets of Boolean functions f1, · · · , fN .

In an independent PBN (i.e. where the selection of the Boolean function for each node

is assumed to be independent), the selection probability for the jth component BN is

q j =

n∏

i=1

c
(i)

ji
, j = 1,2, · · · , N (2.4)

where c
(i)

ji
is the probability of choosing f

(i)

ji
as the Boolean function for node vi. The

probability c
(i)

ji
can be estimated from gene expression data by using a statistical method

— viz. the coefficient of determination method [14]. The state transitions in a PBN follow

a Markov chain process [8]. If a and b denote any two states in the set S, the transition

probability is given by

Prob {v(t + 1) = a | v(t) = b}

=

N∑

j=1

Prob {v(t + 1) = a | v(t) = b, the jth BN is selected } · q j. (2.5)

In fact, it can be shown that the transition probability matrix A of PBN can be written as

the sum of the transition probability matrices Ai of component BNs ( [9]):

A=

N∑

i=1

qiAi. (2.6)

3. The Inverse Problems

We now discuss the mathematical formulations of the two problems ST and TP. We first

construct a sparse transition probability matrix from the prescribed stationary distribution

(Problem ST), and then identify the major component BNs and corresponding selection

probabilities (Problem TP).

3.1. New mathematical formulation for Problem ST

Given a stationary distribution π with 2n states, we construct a corresponding 2n× 2n

transition probability matrix P such that

Pπ = π and (1,1, · · · , 1)P = (1,1, · · · , 1). (3.1)
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There can be infinitely many possible solutions for the captured problem, so some measure

has be introduced to find an optimal solution. In [11], the generalized entropy rate was

proposed as a measure — i.e.

2n
∑

j=1

w j

 

−
2n
∑

i=1

Pi j log Pi j

!

(3.2)

where

0≤ w j ≤ 1 and

2n
∑

i=1

wi = 1.

The parameter w j represents the weighting (importance) of State j and

−
2n
∑

i=1

Pi j log Pi j

is the entropy of the conditional probability distribution when the chain is in State j. Thus

here the proposal is that the entropy measure the amount of missing information in the

gene expression data.

To construct a sparse transition probability matrix from the stationary distribution π,

we consider modifying the objective function by adding a term of Lα-norm. In [2], there

is an algorithm for reconstructing a sparse solution x = (x1, · · · , xn) from a small number

of constraints by solving a linear system. On adding the L1-norm of x defined by

n∑

i=1

|x i|

to the objective function, a sparse solution is more likely. We would like to introduce the

L1-norm in (3.2), but in our problem there is the constraint

2n
∑

i=1

Pi j = 1 j = 1, · · · , 2n

such that the L1-norm actually has no effect. In view of this, we modify the idea by

considering the following term for some α ∈ (0,1):

2n
∑

j=1

 

β

2n
∑

i=1

Pαi j

!

, (3.3)

where β is a non-negative weighting to be assigned. The new optimization problem then

becomes

max
Pi j







2n
∑

j=1

π j

 

−
2n
∑

i=1

Pi j log Pi j

!

−
2n
∑

j=1

 

β

2n
∑

i=1

Pαi j

!






(3.4)
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subject to









2n
∑

i=1

Pi j = 1, j = 1,2, · · · , 2n

Pπ = π

Pi j ≥ 0, i, j = 1,2, · · · , 2n.

(3.5)

The parameter π j represents the weighting of state j, the first term in the objective function

is the entropy rate of the Markov chain, and the second term

β

N∑

i=1

Pαi j

is employed to obtained a sparse solution. Here α and β are two parameters, and by

varying them we can adjust the sparsity of the solution. In our experiments, we set the

range of α to be [0.01,0.99] and the range of β as [0.1,2.0].

To evaluate the performance of the new method and to obtain the best α and β pair,

we employ both the entropy rate

2n
∑

j=1

π j

 

−
2n
∑

i=1

Pi j log Pi j

!

and the weighted variance of P

2n
∑

j=1

π jVar
�

(P1 j , · · · , P2n j)
�

as two measures of the solutions. Here Var(p) is the variance of the probability distribution

vector p. Experiments indicate that the two measures give consistent results.

3.2. New mathematical formulation for Problem TP

In Problem TP , given a transition probability matrix P we seek to identify the major

component BNs and the corresponding selection probabilities, and then construct a PBN

using these BNs. The transition probability matrix of the constituting PBN can then be

approximated by the given transition probability matrix P. Suppose matrix P has at most

m non-zero entries in each column. Although there can be infinite many PBNs with the

transition probability matrix P, they share the same set of possible component BNs. It is

easy to find there are at most m2n

possible component BNs to form a PBN with the given

transition probability matrix P. For example, a transition probability matrix is ( [4])

P1 =








0.1 0.3 0.5 0.6

0.0 0.7 0.0 0.0

0.0 0.0 0.5 0.0

0.9 0.0 0.0 0.4 ,








. (3.6)
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where the maximum number of non-zero entries in each column is 2, Then there are at
most 16 possible component BNs for a PBN with the above transition probability matrix —
i.e.

A1 =








1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0








A2 =








1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 1








A3 =








1 1 0 1

0 0 0 0

0 0 1 0

0 0 0 0








A4 =








1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1








A5 =








1 0 1 1

0 1 0 0

0 0 0 0

0 0 0 0








A6 =








1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1








A7 =








1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0








A8 =








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








A9 =








0 1 1 1

0 0 0 0

0 0 0 0

1 0 0 0








A10 =








0 1 1 0

0 0 0 0

0 0 0 0

1 0 0 1








A11 =








0 1 0 1

0 0 0 0

0 0 1 0

1 0 0 0








A12 =








0 1 0 0

0 0 0 0

0 0 1 0

1 0 0 1








A13 =








0 0 1 1

0 1 0 0

0 0 0 0

1 0 0 0








A14 =








0 0 1 0

0 1 0 0

0 0 0 0

1 0 0 1








A15 =








0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0








A16 =








0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1








.

To construct a PBN from P1 in (3.6), we may consider equation (2.6) such that

P1 =

16∑

i=1

qiAi.

If we can find a feasible solution of q = (q1, · · · ,q16), then we can construct a PBN with

the transition probability matrix P.

Given any transition probability matrix P, from the above example it is evidently pos-

sible to find a set of possible component BNs with the transition probability matrices

A1, · · · ,Am2n , so Problem TP is then reduced. Thus given the transition probability ma-

trix P and transition probability matrices A1, · · · ,Am2n of the component BNs, we seek the

selection probabilities (q1, · · · ,q16) satisfying

P =

m2n

∑

i=1

qiAi (3.7)

and

0≤ qi ≤ 1 and

m2n

∑

i=1

qi = 1.

Similar to Problem ST, there can be infinitely many solutions, so we need some measure to

select an optimal solution. In [32], the entropy rate is employed as a measure of solution,

similar to Problem ST. Here we take the sparsity of q into consideration, to identify several
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major component BNs and neglect many unimportant BNs for a sparse solution. These

major BNs can simplify the identification of the network structure and design of control

policy, and neglecting the non-major BNs will not change the dynamics of the PBN to a

large extent. To find a sparse solution, we consider adding the following Lα norm to the

objective function:

β

m2n

∑

i=1

qαi . (3.8)

Then the objective function becomes

max
q






−

m2n

∑

i=1

qi logqi −β
m2n

∑

i=1

qαi






, (3.9)

which is subject to

P =

m2n

∑

i=1

qiAi , (3.10)

0≤ qi ≤ 1 and

m2n

∑

i=1

qi = 1. (3.11)

Similar to Problem ST, the first term in the objective function is the entropy rate of q, and

the second term

β

m2n

∑

i=1

qαi

is employed to obtained a sparse solution. Here α and β are two parameters, and by

varying them we can adjust the sparsity of the solution. In our experiments, we set the

range of α to be [0.01,0.99] and the range of β as [0.1,2.0].

To evaluate the performance of the new method and obtain the best pair of α and β ,

we employ both the entropy rate

−
2n
∑

i=1

qi logqi

and the weighted variance of q, as two measures of the solutions. Experiments indicate

that the two measures give consistent results.

3.3. The modified Newton’s method

We now discuss how to solve the optimization problems (3.4) - (3.5) and (3.9) - (3.11).

The solution of these two optimization problems is equivalent to solving the following

optimization problem:

max
x

(

−x i

N∑

i=1

log x i − β
N∑

i=1

xαi

)

(3.12)
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subject to

Cx = d, (3.13)

x i ≥ 0, i = 1,2, · · · , N . (3.14)

where x = (x1, · · · , xN )
T , C is a l-by-N matrix and d is an N -by-1 vector. We follow analysis

similar to that in Ref. [4], and apply the Lagrange multiplier method to this equivalent

optimization problem. The Lagrange function only involves the constraint Cz = d, but the

constraint x i ≥ 0 is checked in the whole process. Thus if y denotes the multiplier and

L(., .) the Lagrangian function, we have

L(x, y) =max
x

(

−
N∑

i=1

x i log x i − β
N∑

i=1

xαi + yT (d−Cx)

)

, (3.15)

so the optimal solution to the equivalent problem follows by solving

∇qi
L(x,y) =− log x i − 1−αβ xα−1

i − yT C.i

=0 , i = 1, · · · , N (3.16)

and

∇y j
L(x,y) =d j −C j.x = 0 , j = 1, · · · , l , (3.17)

where C.i is the ith column of matrix C and C j. is the jth row of matrix C.

Many numerical methods are available to solve Eqs. (3.16) and (3.17), but here we

choose to use our modified Newton’s method in conjunction with the CG method [11]. Let

z= (x1, · · · , xN , y1, · · · , yl)
T , and consider

F(z) = (F1(z), F2(z), · · · , FN (z), FN+1(z), · · · , FN+l(z))
T

where

Fi(z) = − log x i − 1−αβ xα−1
i − yT C.i, i = 1,2, · · · , N , (3.18)

FN+ j(z) = d j −C j.x, j = 1,2, · · · , l. (3.19)

Let M(z) be the diagonal matrix with diagonal entries

−
1

x i

−αβ(α− 1)xα−2
i , i = 1, · · · , N .

Then we have the following modified Newton’s method for solving Eqs. (3.16) and (3.17).

Modified Newton’s Method [11]:

Choose starting point z0 ∈ v⊥

k = 1;

while ||F(zk)− F(zk−1)||2 > tolerance
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find b̄k ∈ v̄⊥ with

�

M(zk−1) 0

0 −CM(zk−1)
−1CT

�

b̄k = −

�

I 0

CM(zk−1)
−1 I

�

F(zk−1); (3.20)

set

bk =

�

I M(zk−1)
−1CT

0 I

�

b̄k;

zk = zk−1 + bk;

k = k+ 1;

end.

To ensure the first N entries in zk (i.e. x1, x2, · · · , xN ) are positive, we set a small

positive lower bound r > 0 for all x i, and this guarantees the transition probability matrix

is aperiodic and irreducible. Henceforth, in the Newton’s method, whenever x i < r (i =

1, · · · , N) occurs in the iteration, we set x i = r in all further iterations. In this paper, we

set r = 10−5.

A possible starting point is the vector

z0 =

�
1

N
,

1

N
, · · · ,

1

N
︸ ︷︷ ︸

N

, d1, d2, · · · , dl
︸ ︷︷ ︸

l

�T

. (3.21)

Furthermore, we can consider the problem of finding b̄k ∈ v̄⊥ satisfying (3.20) as two

subproblems. We denote b̄ = (u , w)T , where u and w are N × 1 and l × 1 vectors, re-

spectively. Correspondingly, we denote the right-hand-side of Equation (3.20) as
�
e1 , e2

�
.

Thus Eq. (3.20) can be reconsidered as

Mu = e1 (3.22)

and

−CM−1CT w= e2. (3.23)

Here the positive definiteness of −CM−1CT on v⊥ suggests that one possible choice for

solving Eq. (3.23) is the CG method.

4. Numerical Experiments

In this section, we discuss some numerical examples to demonstrate our new approach

for Problem TP and Problem ST, and compare the results with existing methods. At the

same time, the process for choosing the parameters α and β is also considered.
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4.1. Numerical examples for Problem TP

We first discuss the performance of our method in solving Problem TP (less complicated

than for Problem ST), in comparison with results obtained from the method in Ref. [4].

Example 4.1. Consider the transition probability matrix [4] in Section 3.2 — i.e.

P1 =








0.1 0.3 0.5 0.6

0.0 0.7 0.0 0.0

0.0 0.0 0.5 0.0

0.9 0.0 0.0 0.4








.

As previously discussed, there are at most 16 possible BNs for a PBN with this transition

probability matrix, and we now seek the following decomposition:

P1 =

16∑

i=1

qiAi where

16∑

i=1

qi = 1 and qi ≥ 0, (4.1)

where A1, · · · ,A16 are given in Section 3.2.

Using our method, we obtain the solution shown in Fig. 1 (Right). Fig. 2 shows the

distribution of entropies and variances for different pairs of

(α,β) ∈ [0.01,0.99]× [0.10,2.00].

Each of the two figures consists of 99× 20 points. The higher (lower) the variances (en-

tropies) are, the lighter the points are. Among these 99 × 20 points, the largest vari-

ance (entropy) is 9.9× 10−3 (2.3231), while the smallest variance (entropy) is 2.4× 10−3

(1.5112), so different pairs of (α,β) can bring significant changes to the variance (en-

tropy) of q. The “good" pairs of (α,β) lie in a parabolic shaped region; and α and β work

in conjunction with each other to influence the variance (entropy) of q. The optimal so-

lution is reached when α = 0.63 and β = 1.40, for both measurements. We note that the

re-constructed PBN is dominated (over 99.7%) by the 6th, 8th, 10th, 12th, 13th and 15th

BNs. From the dominated BNs, one can therefore construct the underlying regulatory rules

— i.e. their truth tables. Here we see that our method can be used to identify the major

components of the BNs constituting the PBN better than the method in [4] — cf. Fig. 1

(Left).

The stationary distribution of P1 is (0.4,0.00,0.00,0.60)T . If we approximate P1 by

using the six major BNs A6,A8,A10,A12,A13 and A15 with a normalization — i.e. we ap-

proximate P1 by

P̃1 =
1

0.997
(0.049A6+ 0.049A8+ 0.1495A10+ 0.1495A12+ 0.30A13+ 0.30A15)

— then the stationary distribution of P̃1 is (0.4001,0.0000,0.0000,0.5999)T with initial

probability distribution (0.25,0.25,0.25,0.25)T . This shows our method produces a good
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Figure 1: The Probability Distribution q for the Case of P1. Method in [4℄ (Left) and Our method(Right)

Figure 2: The Distribution of Entropies (Left) and the Distribution of Varian
es (Right)Table 2: The stationary distributions with di�erent approximations.
No. of BNs ||p̃− p||22 p̃ ||p̂− p||22 p̂

dropped

0 7.96× 10−10 (0.4000, 0.0000, 0.0000, 0.6000)T 7.96× 10−10 (0.4000, 0.0000, 0.0000, 0.6000)T

2 1.20× 10−4 (0.3999, 0.0000, 0.0000, 0.6001)T 4.25× 10−10 (0.4000, 0.0000, 0.0000, 0.6000)T

4 1.67× 10−4 (0.3999, 0.0000, 0.0000, 0.6001)T 0.01 (0.3927, 0.0000, 0.0000, 0.6073)T

6 3.57× 10−4 (0.3997, 0.0000, 0.0000, 0.6003)T 0.01 (0.3927, 0.0000, 0.0000, 0.6073)T

8 3.57× 10−4 (0.3997, 0.0000, 0.0000, 0.6003)T 0.04 (0.3750, 0.0000, 0.0000, 0.6250)T

10 1.87× 10−4 (0.4001, 0.0000, 0.0000, 0.5999)T 0.01 (0.4054, 0.0000, 0.0000, 0.5946)T

12 1.87× 10−4 (0.4001, 0.0000, 0.0000, 0.5999)T 1.2329 (0.0000, 1.0000, 0.0000, 0.0000)T

approximation of the PBN. In Table 2, we give the approximates p̃ (our method) and p̂

(method in [4]) of the stationary distributions p obtained when we drop a number of BNs

progressively, from the smallest selection probability to the highest selection probability.



14 X. Chen, H. Jiang and W.-K. Ching

Figure 3: The Probability Distribution q for the Case of P2. Method in [4℄ (Left) and Our method(Right)
We also compare the errors

||p̃− p||22 and ||p̂− p||22

of the two methods. It is clear that our method is better, and that the solution (Fig. 1, right)

obtained by our proposed method is “sparser” than the solution (Fig. 1, left) obtained by

the method in Ref. [4].

Example 4.2. Here we consider two genes (n= 2) and a transition probability matrix with

three non-zero entries (m = 3), and the observed transition probability matrix of the PBN

P2 =








0.1 0.3 0.2 0.1

0.2 0.3 0.2 0.0

0.0 0.0 0.6 0.4

0.7 0.4 0.0 0.5








. (4.2)

Using our modified entropy approach, we obtain the solution as shown in Fig. 3 (Right).

The optimal solution is reached when α = 0.61 and β = 0.6. Compared with results in

Ref. [4] (Fig. 3, left), our solution is much more sparse and we can more readily identify

the major BNs in the PBN.

4.2. Numerical examples for Problem ST

We now demonstrate the performance of our method in solving Problem ST with

some numerical examples, in comparison to results obtained from the method proposed in

Ref [11].

Example 4.3. Given the stationary distribution [11]

π = (0.1,0.2,0.3,0.4)
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of a Markov chain with four states, we want to construct a sparse transition probability

matrix corresponding to it. In Ref. [11], the optimal solution obtained is

P3 =








0.1860 0.1344 0.0947 0.0653

0.2390 0.2220 0.2010 0.1784

0.2741 0.2918 0.3031 0.3083

0.3009 0.3518 0.4012 0.4480








.

Using our method, we obtain the following “optimal” transition probability matrix:

P4 =








0.0335 0.0358 0.0337 0.1984

0.0313 0.0312 0.0278 0.4557

0.9024 0.8990 0.0284 0.0536

0.0327 0.0341 0.9100 0.2923








.

Clearly P4 is more sparse than P3.

The optimal solution is reached when α = 0.94 and β = 1.6. In this numerical experi-

ment, we employ a grid search method to adjust the values of α and β to reach the optimal

solution. Here α ranges from 0.01 to 0.99 with grid size 0.01, and β ranges from 0.1 to 2.0

with grid size 0.1 — i.e. we tried 1980 pairs of values for α and β , and chose the pair that

produces the maximum objective value in (3.4). We find there are fewer non-zero entries

in our solution, so we obtain a sparser solution.

Example 4.4. Let us consider a 3-gene example, with the randomly generated stationary

distribution

π = (0.1282,0.2139,0.0667,0.1766,0.1758,0.0887,0.1324,0.0177).

Using our our method, we obtain the following transition probability matrix for our optimal

solution:

P5 =
















0.0046 0.5758 0.0050 0.0085 0.0051 0.0049 0.0084 0.0094

0.0039 0.0044 0.0045 0.7506 0.0039 0.0043 0.5920 0.0089

0.0048 0.0068 0.0051 0.1948 0.0054 0.0050 0.2140 0.0095

0.0051 0.0081 0.9677 0.0120 0.0060 0.9685 0.1542 0.0097

0.0048 0.0067 0.0051 0.0093 0.9668 0.0050 0.0090 0.0095

0.0049 0.3884 0.0052 0.0101 0.0055 0.0051 0.0095 0.0095

0.9707 0.0089 0.0054 0.0136 0.0063 0.0054 0.0115 0.0098

0.0012 0.0009 0.0020 0.0011 0.0010 0.0017 0.0014 0.9338
















.
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The result obtained by the method in Ref. [11] is

P6 =
















0.4777 0.0715 0.0878 0.0742 0.0743 0.0839 0.0783 0.1050

0.1193 0.5626 0.1317 0.1130 0.1131 0.1263 0.1186 0.1547

0.0456 0.0411 0.3825 0.0428 0.0428 0.0489 0.0454 0.0626

0.1022 0.0933 0.1133 0.5296 0.0967 0.1085 0.1017 0.1341

0.1018 0.0929 0.1129 0.0963 0.5288 0.1081 0.1013 0.1336

0.0580 0.0524 0.0651 0.0545 0.0545 0.4225 0.0577 0.0787

0.0808 0.0734 0.0901 0.0762 0.0763 0.0861 0.4828 0.1076

0.0145 0.0129 0.0165 0.0135 0.0135 0.0156 0.0144 0.2236
















.

Clearly, P5 is much sparser than P6.

5. Concluding Remarks

In this paper, we have presented two modified entropy methods for (1) constructing

a sparse transition probability matrix from a given stationary distribution, and (2) for

constructing a PBN from a given sparse transition probability matrix. Both are inverse

problems of large size, which we solved by Newton’s method in conjunction with the CG

method. The entropy rate and weighted variance were both employed to measure the

sparsity of the solution obtained, and give consistent results in our numerical experiments.

We also found encouraging sparsity for some small size networks, compared with results

from existing methods. In future, we intend to apply our approach to more practical

examples.
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