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Abstract. This paper discusses a new fourth-order compact off-step discretization for

the solution of a system of two-dimensional nonlinear elliptic partial differential equa-

tions subject to Dirichlet boundary conditions. New methods to obtain the fourth-order

accurate numerical solution of the first order normal derivatives of the solution are also

derived. In all cases, we use only nine grid points to compute the solution. The proposed

methods are directly applicable to singular problems and problems in polar coordinates,

which is a main attraction. The convergence analysis of the derived method is discussed

in detail. Several physical problems are solved to demonstrate the usefulness of the pro-

posed methods.
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1. Introduction

We consider the system of two-dimensional (2D) nonlinear elliptic partial differential

equations (PDE)

Lu ≡ A
∂ 2u

∂ x2
+ B
∂ 2u

∂ y2
= f (1.1)

defined in the domain Ω = {(x , y)|0< x , y < 1} with boundary ∂Ω, where

A= diag
�

A(i)(x , y)
�

∈ RnX n, B= diag
�

B(i)(x , y)
�

∈ RnX n,

u=
�

u(1),u(2), · · · ,u(n)
�t

, f=
�

f (1), f (2), · · · , f (n)
�t

,
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and t denotes the transpose of the matrix. We consider i = 1(1)n throughout this paper.

Each f (i) is a function of x , y, u(1), u(2), · · · , u(n), u(1)x , u(2)x , · · · , u(n)x u(1)y , u(2)y , · · · , u(n)y ; and

the system (1.1) is subject to the Dirichlet boundary conditions given by

u(i)(x , y) = u
(i)
0 (x , y), (x , y) ∈ ∂Ω (1.2)

where u
(i)
0 are continuous functions in ∂Ω. In addition, Eqs. (1.1) are assumed to satisfy

the ellipticity conditions A(i)B(i) > 0 in Ω. Further, ∀ (x , y) ∈ Ω we assume that

(i) u(i)(x , y) ∈ C6;

(ii) A(i)(x , y), B(i)(x , y) ∈ C4;

(iii) f (i)(x , y,u(1),u(2), · · · ,u(n),u(1)x ,u(2)x , · · · ,u(n)x ,u(1)y ,u(2)y , · · · ,u(n)y ) is differentiable,

and for j = 1,2, · · · , n

(iv) ∂ f (i)/∂ u( j) ¾ 0;

(v) |∂ f (i)/∂ u
( j)
x | ¶ C and |∂ f (i)/∂ u

( j)
y |¶ D,

where C and D are positive constants and Cm denotes the set of all functions of x and

y with partial derivatives up to order m continuous in Ω [3]. Conditions (iii), (iv) and

(v) guarantee the existence and uniqueness of the solution of the given boundary value

problem.

The present paper is concerned with solving the system (1.1) of 2D nonlinear ellip-

tic PDE with variable coefficients by a new compact 9-point fourth-order off-step finite

difference discretization. Such systems of equations arise in various important mathe-

matical models in science and engineering. For linear elliptic problems, there has been

considerable work done on the development of high order compact schemes and the con-

vergence of relevant iterative solution methods — e.g. [5–10]. Ananthakrishnaiah & Sal-

danha [4] framed a 13-point fourth-order compact scheme for the solution of a scalar

nonlinear elliptic PDE, which was later extended to a system of equations [18]. A variety

of high order compact schemes have been developed for the solution of 2D steady state

Navier-Stokes (N-S) equations in stream function vorticity form in Cartesian coordinates

— e.g. [1,2,19–21].

One of the present authors previously proposed fourth-order difference methods for

2D nonlinear elliptic boundary value problems with variable coefficients using only 9 grid

points of a single compact cell, with application to the singular problems involving Poisson

equation and the Navier-Stokes equations in polar coordinates [12]. Subsequently, fourth-

order accurate estimates were developed for the first order normal derivatives (∂ u/∂ n)

[13]. However, these methods could not be applied to singular elliptic problems directly,

due to terms such as 1/rl−1 in polar coordinates that create difficulties at l = 1 where

r0 = 0. In such cases, a suitable difference approximation valid at r = 0 or a suitable

modification at the singular point is required. Consequently, Mohanty and Singh [14]

derived a new compact fourth-order discretization for the solution of singularly perturbed

2D nonlinear elliptic problems and the estimates of (∂ u/∂ n), in an approach referred to

as off-step discretization.
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Figure 1: Single 
ompa
t 
ell.
In this paper, we develop new fourth-order off-step discretizations for the solution of

the system (1.1) and estimates of (∂ u(i)/∂ n), using 9 grid points of a single compact cell

— cf. Fig. 1. In Section 2, we discuss the relevant proposed difference schemes, which

are derived in Section 3. Under appropriate conditions, the fourth-order convergence of

the method is established in Section 4. In Section 5, we consider numerical examples

to illustrate and examine the accuracy of the methods for linear and nonlinear problems,

including the singular problem mentioned earlier involving the 2D Poisson equation and

steady state Navier-Stokes equations in polar coordinates.

2. Formulation of the Numerical Method

We adopt a rectangular grid on the domain Ω, with spacing h> 0 in both the x and y

directions. The grid points are (x l , ym) for x l = (l − 1)h, ym = (m− 1)h; l, m = 1(1)N + 1,

where Nh= 1. At each grid point (x l , ym), let U
(i)

l ,m
, A
(i)

l ,m
and B

(i)

l ,m
denote the exact values of

u(i)(x l , ym), A(i)(x l , ym) and B(i)(x l , ym) respectively. Similarly, at each grid point (x l , ym)

we denote

A
(i)

x l ,m
=
∂ A
(i)

l ,m

∂ x
, A

(i)

yl ,m
=
∂ A
(i)

l ,m

∂ y
, A

(i)

x x l ,m
=
∂ 2A

(i)

l ,m

∂ x2
, · · · ,

and the approximate solution value of u(i)(x , y) by u
(i)

l ,m
. Thus at every grid point (x l , ym)

each differential equation of the system (1.1) can be written

A
(i)

l ,m

∂ 2U
(i)

l ,m

∂ x2
+ B

(i)

l ,m

∂ 2U
(i)

l ,m

∂ y2

= f (i)(x l , ym, U
(1)

l ,m
, U
(2)

l ,m
, · · · , U

(n)

l ,m
, U
(1)

x l ,m
, U
(2)

x l ,m
, · · · , U

(n)

x l ,m
, U
(1)

yl ,m
, U
(2)

yl ,m
, · · · , U

(n)

yl ,m
)

≡F
(i)

l ,m
.
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For the fourth-order discretization of the system (1.1) subject to boundary conditions

(1.2), we follow Chawla and Shivakumar [15] with the approximations

U
(i)

l±
1

2
,m
= 1

2
(U
(i)

l±1,m
+ U

(i)

l ,m
) (2.1a)

U
(i)

l ,m±
1

2

= 1

2
(U
(i)

l ,m±1
+ U

(i)

l ,m
) (2.1b)

U
(i)

x l ,m =
1

2h
(U
(i)

l+1,m
− U

(i)

l−1,m
) (2.1c)

U
(i)

x l±
1

2
,m
=

1

h
(±U

(i)

l±1,m
∓ U

(i)

l ,m
) (2.1d)

U
(i)

x l ,m±
1

2

=
1

4h
(U
(i)

l+1,m±1
− U

(i)

l−1,m±1
+ U

(i)

l+1,m
− U

(i)

l−1,m
) (2.1e)

U
(i)

yl ,m =
1

2h
(U
(i)

l ,m+1
− U

(i)

l ,m−1
) (2.1f)

U
(i)

yl±
1

2
,m
=

1

4h
(U
(i)

l±1,m+1
− U

(i)

l±1,m−1
+ U

(i)

l ,m+1
− U

(i)

l ,m−1
) (2.1g)

U
(i)

yl ,m±
1

2

=
1

h
(±U

(i)

l ,m±1
∓ U

(i)

l ,m
) (2.1h)

U
(i)

x x l ,m =
U
(i)

l+1,m
− 2U

(i)

l ,m
+ U

(i)

l−1,m

h2
(2.1i)

U
(i)

x x l ,m±1 =
U
(i)

l+1,m±1
− 2U

(i)

l ,m±1
+ U

(i)

l−1,m±1

h2
(2.1j)

U
(i)

y yl ,m =
U
(i)

l ,m+1
− 2U

(i)

l ,m
+ U

(i)

l ,m−1

h2
(2.1k)

U
(i)

y yl±1,m =
U
(i)

l±1,m+1
− 2U

(i)

l±1,m
+ U

(i)

l±1,m−1

h2
, (2.1l)

and then define

F
(i)

l±
1

2
,m
= f (i)

�

x
l±

1

2

, ym, U
(1)

l±
1

2
,m

, U
(2)

l±
1

2
,m

, · · · , U
(n)

l±
1

2
,m

, U
(1)

x l±
1

2
,m

, U
(2)

x l±
1

2
,m

, · · · ,

U
(n)

x l±
1

2
,m

, U
(1)

yl±
1

2
,m

, U
(2)

yl±
1

2
,m

, · · · , U
(n)

yl±
1

2
,m

�

(2.2a)

F
(i)

l ,m±
1

2

= f (i)

�

x l , y
m±

1

2

, U
(1)

l ,m±
1

2

, U
(2)

l ,m±
1

2

, · · · , U
(n)

l ,m±
1

2

, U
(1)

x l ,m±
1

2

, U
(2)

x l ,m±
1

2

, · · · ,

U
(n)

x l ,m±
1

2

, U
(1)

yl ,m±
1

2

, U
(2)

yl ,m±
1

2

, · · · , U
(n)

yl ,m±
1

2

�

. (2.2b)
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Further, let

U
(i)

l ,m = U
(i)

l ,m
+

h2

16A
(i)

l ,m

�

F
(i)

l+
1

2
,m
+ F

(i)

l−
1

2
,m

�

+
h2

16B
(i)

l ,m

�

F
(i)

l ,m+
1

2

+ F
(i)

l ,m−
1

2

�

+
h2

8





1−
A
(i)

l ,m

B
(i)

l ,m





U
(i)

x x l ,m+
h2

8





1−
B
(i)

l ,m

A
(i)

l ,m





U
(i)

y yl ,m (2.3a)

U
(i)

x l ,m = U
(i)

x l ,m+
h

4A
(i)

l ,m

�

F
(i)

l+
1

2
,m
− F

(i)

l−
1

2
,m

�

+
h

8






1−

B
(i)

l ,m

A
(i)

l ,m







�

U
(i)

y yl+1,m− U
(i)

y yl−1,m

�

−
h2A

(i)

x l ,m

4A
(i)

l ,m

U
(i)

x x l ,m−
h2B

(i)

x l ,m

4A
(i)

l ,m

U
(i)

y yl ,m (2.3b)

U
(i)

yl ,m = U
(i)

yl ,m+
h

4B
(i)

l ,m

�

F
(i)

l ,m+
1

2

− F
(i)

l ,m−
1

2

�

+
h

8





1−
A
(i)

l ,m

B
(i)

l ,m







�

U
(i)

x x l ,m+1− U
(i)

x x l ,m−1

�

−
h2A

(i)

yl ,m

4B
(i)

l ,m

U
(i)

x x l ,m−
h2B

(i)

yl ,m

4B
(i)

l ,m

U
(i)

y yl ,m , (2.3c)

and define

F
(i)

l ,m = f (i)
�

x l , ym, U
(1)

l ,m, U
(2)

l ,m, · · · , U
(n)

l ,m, U
(1)

x l ,m, U
(2)

x l ,m, · · · ,

U
(n)

x l ,m, U
(1)

yl ,m, U
(2)

yl ,m, · · · , U
(n)

yl ,m

�

. (2.4)

Thus at each internal grid point (x l , ym) the system (1.1) is discretized by

L[U (i)]≡ [I (i)1 δ
2
x + I

(i)
2 δ

2
y + I

(i)
3 (2δ

2
xµyδy ) + I

(i)
4 (2δ

2
yµxδx) + I

(i)
5 (δ

2
xδ

2
y)]U

(i)

l ,m

= h2

�

J
(i)
1 F

(i)

l+
1

2
,m
+ J

(i)
2 F

(i)

l−
1

2
,m
+ J

(i)
3 F

(i)

l ,m+
1

2

+ J
(i)
4 F

(i)

l ,m−
1

2

− 2F
(i)

l ,m

�

+ T
(i)

l ,m (2.5)

for T
(i)

l ,m = O(h6), where l, m = 2(1)N and

K
(i)
1 = A

(i)

x l ,m
/A
(i)

l ,m
, K

(i)
2 = B

(i)

yl ,m
/B
(i)

l ,m
,

I
(i)
1 = 6A

(i)

l ,m
+

1

2
h2
�

A
(i)

x x l ,m
+ A

(i)

y yl ,m
− 2K

(i)
1 A

(i)

x l ,m
− 2K

(i)
2 A

(i)

yl ,m

�

,

I
(i)
2 = 6B

(i)

l ,m
+

1

2
h2
�

B
(i)

x x l ,m
+ B

(i)

y yl ,m
− 2K

(i)
1 B

(i)

x l ,m
− 2K

(i)
2 B

(i)

yl ,m

�

,



64 R. K. Mohanty and N. Setia

I
(i)
3 =

1

2
h
�

A
(i)

yl ,m
− K

(i)
2 A

(i)

l ,m

�

,

I
(i)
4 =

1

2
h
�

B
(i)

x l ,m
− K

(i)
1 B

(i)

l ,m

�

,

I
(i)
5 =

1

2

�

A
(i)

l ,m
+ B

(i)

l ,m

�

,

J
(i)
1 = 2− hK

(i)
1 , J

(i)
2 = 2+ hK

(i)
1 ,

J
(i)
3
= 2− hK

(i)
2

, J
(i)
4 = 2+ hK

(i)
2

,

with δx Ul = (Ul+1/2 − Ul−1/2) and µx Ul = (Ul+1/2 + Ul−1/2)/2 the central and average

difference operators in x -direction, etc..

Let us now consider the fourth-order numerical methods for the estimates of (∂ u(i)/∂ x)

and (∂ u(i)/∂ y). If U
(i)

x l ,m
, U
(i)

yl ,m
denote the exact and u

(i)

x l ,m
,u
(i)

yl ,m
the approximate solu-

tions of (∂ u(i)/∂ x), (∂ u(i)/∂ y) respectively at the grid point (x l , ym), following Stephen-

son [16] we obtain

U
(i)

x l ,m
=

1

2h
(2µxδx )U

(i)

l ,m
+

1

6A
(i)

l ,m

(A
(i)

x l ,m
δ2

x + B
(i)

x l ,m
δ2

y)U
(i)

l ,m
+

B
(i)

l ,m

12hA
(i)

l ,m

(2δ2
yµxδx )U

(i)

l ,m

−
h

6A
(i)

l ,m

�

F
(i)

l+
1

2
,m
− F

(i)

l−
1

2
,m

�

+ T
(i,x)

l ,m , l, m = 2(1)N , (2.6)

U
(i)

yl ,m
=

1

2h
(2µyδy)U

(i)

l ,m
+

1

6B
(i)

l ,m

(A
(i)

yl ,m
δ2

x + B
(i)

yl ,m
δ2

y)U
(i)

l ,m
+

A
(i)

l ,m

12hB
(i)

l ,m

(2δ2
xµyδy)U

(i)

l ,m

−
h

6B
(i)

l ,m

�

F
(i)

l ,m+
1

2

− F
(i)

l ,m−
1

2

�

+ T
(i,y)

l ,m , l, m = 2(1)N , (2.7)

where T
(i,x)

l ,m = O(h4) and T
(i,y)

l ,m = O(h4). The numerical methods (2.6) and (2.7) are

applicable when the fourth-order difference solutions of the u(i) are known at each internal

grid point. Further, the Dirichlet boundary conditions are given by Eq. (1.2). The difference

method (2.5) for the determination of the u(i) can easily be expressed in tri-block-diagonal

matrix form, and the methods (2.6) and (2.7) for the determination of ux
(i) and uy

(i)

can be expressed in diagonal matrices form, and therefore easily solved. The proposed

methods (2.5)-(2.7) are directly applicable to singular elliptic problems in the region Ω.

3. Derivation of the Discretizations

For j = 1,2, · · · , n, we denote

α(i, j) =
∂ f (i)

∂ U ( j)
, β (i, j) =

∂ f (i)

∂ U
( j)
x

, γ(i, j) =
∂ f (i)

∂ U
( j)
y

.
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Simplifying Eqs. (2.1a) to (2.1l) with the help of Taylor series, we obtain

U
(i)

l±
1

2
,m
= U

(i)

l±
1

2
,m
+

h2

8
U
(i)

x x l ,m
±O(h3), (3.1a)

U
(i)

l ,m±
1

2

= U
(i)

l ,m±
1

2

+
h2

8
U
(i)

y yl ,m
±O(h3), (3.1b)

U
(i)

x l ,m = U
(i)

x l ,m
+

h2

6
U
(i)

x x x l ,m
+O(h4), (3.1c)

U
(i)

x l±
1

2
,m
= U

(i)

x l±
1

2
,m
+

h2

24
U
(i)

x x x l ,m
±O(h3), (3.1d)

U
(i)

x l ,m±
1

2

= U
(i)

x l ,m±
1

2

+
h2

6
U
(i)

x x x l ,m
+

h2

8
U
(i)

x y yl ,m
±O(h3), (3.1e)

U
(i)

yl ,m = U
(i)

yl ,m
+

h2

6
U
(i)

y y yl ,m
+O(h4), (3.1f)

U
(i)

yl±
1

2
,m
= U

(i)

yl±
1

2
,m
+

h2

8
U
(i)

x x yl ,m
+

h2

6
U
(i)

y y yl ,m
±O(h3), (3.1g)

U
(i)

yl ,m±
1

2

= U
(i)

yl ,m±
1

2

+
h2

24
U
(i)

y y yl ,m
±O(h3), (3.1h)

U
(i)

x x l ,m±1 = U
(i)

x x l ,m±1
+O(h2), (3.1i)

U
(i)

x x l ,m = U
(i)

x x l ,m
+O(h2), (3.1j)

U
(i)

y yl±1,m = U
(i)

y yl±1,m
+O(h2), (3.1k)

U
(i)

y yl ,m = U
(i)

y yl ,m
+O(h2). (3.1l)

Again invoking Taylor series, we first obtain

L[U (i)] ≡[I (i)
1
δ2

x + I
(i)
2
δ2

y + I
(i)
3
(2δ2

xµyδy) + I
(i)
4 (2δ

2
yµxδx) + I

(i)
5 (δ

2
xδ

2
y)]U

(i)

l ,m

=h2



J
(i)
1 F

(i)

l+
1

2
,m
+ J

(i)
2 F

(i)

l−
1

2
,m
+ J

(i)
3 F

(i)

l ,m+
1

2

+ J
(i)
4 F

(i)

l ,m−
1

2

− 2F
(i)

l ,m



+O(h6);

l, m = 2(1)N . (3.2)

Then with the approximations Eqs. (3.1a)-(3.1h), from Eqs. (2.2a) and (2.2b) and again

using Taylor series we obtain

F
(i)

l±
1

2
,m
= F

(i)

l±
1

2
,m
+

h2

24
T
(i)
1 +O(±h3+ h4), (3.3a)

F
(i)

l ,m±
1

2

= F
(i)

l ,m±
1

2

+
h2

24
T
(i)
2 +O(±h3+ h4), (3.3b)
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where

T
(i)
1 =

n
∑

j=1

h

3U
( j)

x x l ,m
α
(i, j)

l ,m
+ U

( j)

x x x l ,m
β
(i, j)

l ,m
+ (3U

( j)

x x yl ,m
+ 4U

( j)

y y yl ,m
)γ
(i, j)

l ,m

i

,

T
(i)
2 =

n
∑

j=1

h

3U
( j)

y yl ,m
α
(i, j)

l ,m
+ (4U

( j)

x x x l ,m
+ 3U

( j)

x y yl ,m
)β
(i, j)

l ,m
+ U

( j)

y y yl ,m
γ
(i, j)

l ,m

i

.

Now let

U
(i)

l ,m = U
(i)

l ,m
+ a1ih

2

�

F
(i)

l+
1

2
,m
+ F

(i)

l−
1

2
,m

�

+ a2ih
2

�

F
(i)

l ,m+
1

2

+ F
(i)

l ,m−
1

2

�

+a3ih
2U
(i)

x x l ,m+ a4ih
2U
(i)

y yl ,m, (3.4a)

U
(i)

x l ,m = U
(i)

x l ,m+ b1ih

�

F
(i)

l+
1

2
,m
− F

(i)

l−
1

2
,m

�

+ b2ih(U
(i)

y yl+1,m− U
(i)

y yl−1,m)

+b3ih
2U
(i)

x x l ,m+ b4ih
2U
(i)

y yl ,m, (3.4b)

U
(i)

yl ,m = U
(i)

yl ,m+ c1ih

�

F
(i)

l ,m+
1

2

− F
(i)

l ,m−
1

2

�

+ c2ih(U
(i)

x x l ,m+1− U
(i)

x x l ,m−1)

+c3ih
2U
(i)

x x l ,m+ c4ih
2U
(i)

y yl ,m , (3.4c)

where akis, bkis and ckis for k = 1(1)4 are suitable parameters yet to be determined.

Invoking Eqs. (3.3a), (3.3b), (3.1i)-(3.1l) and simplifying Eqs. (3.4a)-(3.4c), we obtain

U
(i)

l ,m = U
(i)

l ,m
+

h2

6
T
(i)
3 +O(h4) (3.5a)

U
(i)

x l ,m = U
(i)

x l ,m
+

h2

6
T
(i)
4 +O(h4) (3.5b)

U
(i)

yl ,m = U
(i)

yl ,m
+

h2

6
T
(i)
5 +O(h4) , (3.5c)

where

T
(i)
3 =[12(a1i + a2i)A

(i)

l ,m
+ 6a3i]U

(i)

x x l ,m
+ [12(a1i + a2i)B

(i)

l ,m
+ 6a4i]U

(i)

y yl ,m

T
(i)
4 =(1+ 6b1iA

(i)

l ,m
)U
(i)

x x x l ,m
+ 6(b1iA

(i)

x l ,m
+ b3i)U

(i)

x x l ,m
+ 6(b1iB

(i)

l ,m
+ 2b2i)U

(i)

x y yl ,m

+ 6(b1iB
(i)

x l ,m
+ b4i)U

(i)

y yl ,m

T
(i)
5 =(1+ 6c1iB

(i)

l ,m
)U
(i)

y y yl ,m
+ 6(c1iA

(i)

yl ,m
+ c3i)U

(i)

x x l ,m
+ 6(c1iA

(i)

l ,m
+ 2c2i)U

(i)

x x yl ,m

+ 6(c1iB
(i)

yl ,m
+ c4i)U

(i)

y yl ,m
.

Finally, from Eq. (2.4) we obtain

F
(i)

l ,m = F
(i)

l ,m
+

h2

6
T
(i)

6
+O(h4) , (3.6)
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where

T
(i)

6
=

n
∑

j=1

[T
( j)

3 α
(i, j)

l ,m
+ T

( j)

4 β
(i, j)

l ,m
+ T

( j)

5 γ
(i, j)

l ,m
] .

Substituting the approximations (3.3a), (3.3b) and (3.6) into Eq. (2.5), and invoking

Eq. (3.2), we obtain

T
(i)

l ,m =
h4

6
(2T

(i)

6
− T

(i)
1 − T

(i)
2 ) +O(h6) . (3.7)

Thus the proposed difference method (2.5) is fourth-order if the coefficient of h4 in Eq. (3.7)

is zero, so we have

T
(i)
1 + T

(i)
2 − 2T

(i)

6
= 0 ,

which gives

n
∑

j=1

¨

nh

24(a1 j + a2 j)A
( j)

l ,m
+ 12a3 j − 3

i

U
( j)

x x l ,m
+
h

24(a1 j + a2 j)B
( j)

l ,m
+ 12a4 j − 3

i

U
( j)

y yl ,m

o

α
(i, j)

l ,m

+
nh

12b1 jA
( j)

l ,m
− 3
i

U
( j)

x x x l ,m
+ 12(b1 jA

( j)

x l ,m
+ b3 j)U

( j)

x x l ,m

+
h

12(bi jB
( j)

l ,m
+ 2b2 j)− 3

i

U
( j)

x y yl ,m
+12(b1 jB

( j)

x l ,m
+ b4 j)U

( j)

y yl ,m

o

β
(i, j)

l ,m

+
nh

12c1 jB
( j)

l ,m
− 3
i

U
( j)

y y yl ,m
+
h

12(c1 jA
( j)

l ,m
+ 2c2 j)− 3

i

U
( j)

x x yl ,m

+12(c1 jA
( j)

yl ,m
+ c3 j)U

( j)

x x l ,m
+ 12(c1 jB

( j)

yl ,m
+ c4 j)U

( j)

y yl ,m

o

γ
(i, j)

l ,m

«

= 0 . (3.8)

Equating the coefficients of each of α
(i, j)

l ,m
, β
(i, j)

l ,m
and γ

(i, j)

l ,m
for j = 1,2, · · · , n to zero, and

likewise the coefficients of U
( j)

x x l ,m
, U
( j)

y yl ,m
, U
( j)

x y yl ,m
, U
( j)

x x yl ,m
, U
( j)

x x x l ,m
and U

( j)

y y yl ,m
, for each

j = 1,2, · · · , n we have

a1 j =
1

16A
( j)

l ,m

, a2 j =
1

16B
( j)

l ,m

, a3 j =
1

8

�

1−
A
( j)

l ,m

B
( j)

l ,m

�

, a4 j =
1

8

�

1−
B
( j)

l ,m

A
( j)

l ,m

�

,

b1 j =
1

4A
( j)

l ,m

, b2 j =
1

8

�

1−
B
( j)

l ,m

A
( j)

l ,m

�

, b3 j = −
A
( j)

x l ,m

4A
( j)

l ,m

, b4 j = −
B
( j)

x l ,m

4A
( j)

l ,m

,

c1 j =
1

4B
( j)

l ,m

, c2 j =
1

8

�

1−
A
( j)

l ,m

B
( j)

l ,m

�

, c3 j = −
A
( j)

yl ,m

4B
( j)

l ,m

, c4 j = −
B
( j)

yl ,m

4B
( j)

l ,m

,

where T
(i)

l ,m = O(h6) and thus the difference method of O(h4) for the system (1.1).
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With the fourth-order accurate solution values for the u(i), approximate values of

(∂ u(i)/∂ x) and (∂ u(i)/∂ y) can be obtained by using the standard central differences

u
(i)

x l ,m
=

1

2h
(u
(i)

l+1,m
− u

(i)

l−1,m
) , (3.9a)

u
(i)

yl ,m
=

1

2h
(u
(i)

l ,m+1
− u

(i)

l ,m−1
) , (3.9b)

which yield second-order accurate results irrespective of whether the fourth-order differ-

ence method (2.5) or a standard difference scheme is used to solve the system (1.1). How-

ever, our new difference methods for computing the numerical values of ux and uy are

found to yield O(h4) accurate results, when used in conjunction with the 9-point formula

(2.5). From Taylor series, we obtain

U
(i)

x l ,m
=

1

2h
(2µxδx )U

(i)

l ,m
+

1

6A
(i)

l ,m

(A
(i)

x l ,m
δ2

x + B
(i)

x l ,m
δ2

y)U
(i)

l ,m
+

B
(i)

l ,m

12hA
(i)

l ,m

(2δ2
yµxδx )U

(i)

l ,m

−
h

6A
(i)

l ,m

 

F
(i)

l+
1

2
,m
− F

(i)

l−
1

2
,m

!

+O(h4) , l, m = 2(1)N , (3.10)

U
(i)

yl ,m
=

1

2h
(2µyδy)U

(i)

l ,m
+

1

6B
(i)

l ,m

(A
(i)

yl ,m
δ2

x + B
(i)

yl ,m
δ2

y)U
(i)

l ,m
+

A
(i)

l ,m

12hB
(i)

l ,m

(2δ2
xµyδy)U

(i)

l ,m

−
h

6B
(i)

l ,m

 

F
(i)

l ,m+
1

2

− F
(i)

l ,m−
1

2

!

+O(h4) l, m = 2(1)N ; (3.11)

and then using Eq. (3.3a) in Eq. (2.6) we have

U
(i)

x l ,m
=

1

2h
(2µxδx)U

(i)

l ,m
+

1

6A
(i)

l ,m

(A
(i)

x l ,m
δ2

x + B
(i)

x l ,m
δ2

y)U
(i)

l ,m
+

B
(i)

l ,m

12hA
(i)

l ,m

(2δ2
yµxδx)U

(i)

l ,m

−
h

6A
(i)

l ,m

 

F
(i)

l+
1

2
,m
− F

(i)

l−
1

2
,m

!

+ T
(i,x)

l ,m +O(h4), l, m = 2(1)N

where T
(i,x)

l ,m = O(h4) from Eq. (3.10), and the similar result for Uyl ,m with T
(i,y)

l ,m = O(h4).

4. Convergence Analysis

Let us consider the 2D nonlinear elliptic PDE

ux x + uy y = f (x , y,u,ux ,uy) (4.1)
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defined in the region Ω, subject to u(x , y) = u0(x , y) ∀ (x , y) ∈ ∂Ω. The difference method

(2.5) for the scalar equation (4.1) reduces to
h

6δ2
x + 6δ2

y + δ
2
xδ

2
y

i

ul ,m

= 2h2
�

F l+ 1

2
,m+ F l− 1

2
,m+ F l ,m+ 1

2
+ F l ,m− 1

2
− F l ,m

�

, l, m = 2(1)N . (4.2)

We now show that, under appropriate conditions, the difference method (4.2) for the PDE

(4.1) is O(h4) convergent.

For each l, m = 2(1)N , let

φl ,m = 2h2
�

F l+ 1

2
,m+ F l− 1

2
,m+ F l ,m+ 1

2

+ F l ,m− 1

2

− F l ,m

�

+ Boundary Values .

Let E= u−U; and for S = φ, u, U , T and E let

S=
�

S2,2,S3,2, · · · ,SN ,2,S2,3,S3,3, · · · ,SN ,3, · · · ,S2,N ,S3,N , · · · ,SN ,N

�t

(N−1)2×1
.

Then for l, m = 2(1)N in Eq. (4.2),

Du+φ(u) = 0 (4.3)

where D = [B A B](N−1)2×(N−1)2 is a tri-block diagonal matrix, involving the tri-diagonal

matrices A = [−4 20 − 4](N−1)×(N−1) and B = [−1 − 4 − 1](N−1)×(N−1). Since U is the

exact solution vector, it follows that

DU+φ(U)+ T= 0 (4.4)

where T l ,m = O(h6) for each l, m = 2(1)N . Denoting

f l± 1

2
,m = f

�

x
l±

1

2

, ym,ul± 1

2
,m,ux l± 1

2
,m,uyl± 1

2
,m

�

≃ F l± 1

2
,m ,

f l ,m± 1

2
= f

�

x l , y
m±

1

2

,ul ,m± 1

2
,ux l ,m± 1

2
,uyl ,m± 1

2

�

≃ F l ,m± 1

2
,

f l ,m = f
�

x l , ym,ul ,m,ux l ,m,uyl ,m

�

≃ F l ,m ,

we write

f l± 1

2
,m− F l± 1

2
,m =

�

ul± 1

2
,m− U l± 1

2
,m

�

G
(1)

l±
1

2
,m
+
�

ux l± 1

2
,m− U x l± 1

2
,m

�

H
(1)

l±
1

2
,m

+
�

uyl± 1

2
,m− U yl± 1

2
,m

�

I
(1)

l±
1

2
,m

, (4.5a)

f l ,m± 1

2
− F l ,m± 1

2
=
�

ul ,m± 1

2
− U l ,m± 1

2

�

G
(2)

l ,m±
1

2

+
�

ux l ,m± 1

2
− U x l ,m± 1

2

�

H
(2)

l ,m±
1

2

+
�

uyl ,m± 1

2

− U yl ,m± 1

2

�

I
(2)

l ,m±
1

2

, (4.5b)
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and

f l ,m− F l ,m =

�

ul ,m− U l ,m

�

G
(3)

l ,m
+

�

ux l ,m− U x l ,m

�

H
(3)

l ,m

+

�

uyl ,m− U yl ,m

�

I
(3)

l ,m
(4.5c)

for suitable Q
(1)

l±1/2,m
, Q
(2)

l ,m±1/2
and Q

(3)

l ,m
where Q = G, H and I . Also, for Q = H and I we

may write

Q
(1)

l±
1

2
,m
=Q

(1)

l ,m
±

h

2
Q
(1)

x l ,m
+O(h2), (4.6a)

Q
(2)

l ,m±
1

2

=Q
(2)

l ,m
±

h

2
Q
(2)

yl ,m
+O(h2), (4.6b)

G
(1)

l±
1

2
,m
= G

(1)

l ,m
±O(h), (4.6c)

G
(2)

l ,m±
1

2

= G
(2)

l ,m
±O(h). (4.6d)

From Eqs. (4.5a)-(4.5c) and Eqs. (4.6a)-(4.6d) we obtain

φ(u)−φ(U) = PE , (4.7)

with P = (Pr,s), [r = 1(1)(N − 1)2, s = 1(1)(N − 1)2] the tri-block diagonal matrix where

P(m−2)(N−1)+l−1,(m−2)(N−1)+l−1

= h2
h

2G
(1)

l ,m
+ 2G

(2)

l ,m
− 2H

(1)

x l ,m
− 2I

(2)

yl ,m
− 2G

(3)

l ,m
+H

(1)

l ,m
H
(3)

l ,m
+ I

(2)

l ,m
I
(3)

l ,m

i

+O(h4),

[l = 2(1)N , m = 2(1)N] ,

P(m−2)(N−1)+l−1,(m−2)(N−1)+l−1±1

= h
h

±2H
(1)

l ,m
±H

(2)

l ,m
∓H

(3)

l ,m

i

+
h2

2

h

2G
(1)

l ,m
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(1)

x l ,m
−H

(1)

l ,m
H
(3)

l ,m

i

+O(h3),

[l = 2(1)N − 1,3(1)N , m = 2(1)N] ,

P(m−2)(N−1)+l−1,(m−2±1)(N−1)+l−1

= h
h
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(2)

l ,m
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(2)
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i

+O(h3),

[l = 2(1)N , m = 2(1)N − 1,3(1)N] ,
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=
h

2

h
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l ,m
+ I
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l ,m

i

+
h2

8

h

±2H
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yl ,m
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∓ I

(1)

l ,m
H
(3)

l ,m
∓H

(2)

l ,m
I
(3)

l ,m

i

+O(h3),

[l = 2(1)N − 1,3(1)N , m = 2(1)N − 1] ,
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P(m−2)(N−1)+l−1,(m−3)(N−1)+l−1±1

=
h

2

h

±H
(2)

l ,m
− I

(1)

l ,m

i

+
h2

8

h

∓2H
(2)

yl ,m
∓ 2I

(2)

x l ,m
± I

(1)

l ,m
H
(3)

l ,m
±H

(2)

l ,m
I
(3)

l ,m

i

+O(h3),

[l = 2(1)N − 1,3(1)N , m= 3(1)N] .

Using the relation (4.7), in the absence of round-off errors we obtain from Eqs. (4.3) and

(4.4) the error equation

(D+ P)E= T . (4.8)

Let

G∗ = min
(x ,y)∈Ω

∂ f

∂ U
and G∗ = max

(x ,y)∈Ω

∂ f

∂ U
,

where Ω = ΩU∂Ω. Then

0< G∗ ≤ G
(1)

l±
1

2
,m

, G
(2)

l ,m±
1

2

, G
(3)

l ,m
≤ G∗ ;

and for Q = H and I let

0< |Q(1)
l±

1

2
,m
|, |Q(2)

l ,m±
1

2

|, |Q(3)
l ,m
| ≤ Q,

|Q(1)
x l ,m
| ≤ Q(1), |Q(2)

yl ,m
| ≤ Q(2) ,

for some positive constants Q,Q(1) and Q(2). It is now easy to verify that for sufficiently

small h

|P(m−2)(N−1)+l−1,(m−2)(N−1)+l−1| < 20, [l = 2(1)N , m= 2(1)N],

|P(m−2)(N−1)+l−1,(m−2)(N−1)+l−1±1| < 4, [l = 2(1)N − 1,3(1)N , m= 2(1)N],

|P(m−2)(N−1)+l−1,(m−2±1)(N−1)+l−1| < 4, [l = 2(1)N , m= 2(1)N − 1,3(1)N],

|P(m−2)(N−1)+l−1,(m−1)(N−1)+l−1±1| < 1, [l = 2(1)N − 1,3(1)N , m= 2(1)N − 1],

|P(m−2)(N−1)+l−1,(m−3)(N−1)+l−1±1| < 1, [l = 2(1)N − 1,3(1)N , m= 3(1)N].

Further, the Direct graph of D+ P shows that D+ P is an irreducible matrix — cf. Fig. 2,

where the arrows indicate paths i → j for every nonzero entry (D+ P)(i, j) of the matrix

D + P. For any ordered pair of nodes i and j, there exists a direct path (
−→
i, l1), (

−−→
l1, l2),

· · · , (
−→
lk, j) connecting i to j, hence the graph is strongly connected so the matrix D+ P is

irreducible [23].

Now let Sk denote the sum of the elements in the kth row of D+ P, so for k = 1 and

N − 1 we have

Sk = 11+ h2
�

3G
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k+1,2
+ 3G

(2)

k+1,2
− 2G

(3)

k+1,2

�

+
h

8
(bk+ hck) +O(h3) , (4.9a)
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Figure 2: Dire
ted graph of D+ P.
where
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and also
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(2)

k+1,N
− 2G

(3)

k+1,N

i

+
h

8

�

b(N−1)(N−2)+k + hc(N−1)(N−2)+k

�

+O(h3) , (4.9b)

where

b(N−1)(N−2)+k = ±16H
(1)

k+1,N
± 12H

(2)

k+1,N
− 16I

(2)

k+1,N
− 12I

(1)

k+1,N
∓ 8H

(3)

k+1,N
+ 8I

(3)

k+1,N
,

c(N−1)(N−2)+k = 4H
(1)

k+1,N
H
(3)

k+1,N
+ 4I

(2)

k+1,N
I
(3)

k+1,N
− 8H

(1)

xk+1,N
− 8I

(2)

yk+1,N
∓ 2H

(2)

yk+1,N

∓ 2I
(1)

xk+1,N
± I

(1)

k+1,N
H
(3)

k+1,N
±H

(2)

k+1,N
I
(3)

k+1,N
.

For q = 2(1)N − 2,

S(q−1)(N−1)+k = 6+ h2
h

3G
(1)

k+1,q+1
+ 4G

(2)

k+1,q+1
− 2G

(3)

k+1,q+1

i

+
h

2

�

b(q−1)(N−1)+k + hc(q−1)(N−1)+k

�

+O(h3) , (4.9c)

where

b(q−1)(N−1)+k = ±4H
(1)

k+1,q+1
± 4H

(2)

k+1,q+1
∓ 2H

(3)

k+1,q+1
,

c(q−1)(N−1)+k = −2H
(1)

xk+1,q+1
+H

(1)

k+1,q+1
H
(3)

k+1,q+1
.
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For r = 2(1)N − 2,

S(k−1)(N−1)+r = 6+ h2[4G
(1)

r+1,k+1
+ 3G

(2)

r+1,k+1
− 2G

(3)

r+1,k+1
]

+
h

2
[b(k−1)(N−1)+r + hc(k−1)(N−1)+r] +O(h3) , (4.9d)

where

b(k−1)(N−1)+r = ±4I
(1)

r+1,k+1
± 4I

(2)

r+1,k+1
∓ 2I

(3)

r+1,k+1
,

c(k−1)(N−1)+r = −2I
(2)

yr+1,k+1
+ I

(2)

r+1,k+1
I
(3)

r+1,k+1
.

And finally, for q = 2(1)N − 2, r = 2(1)N − 2 we have

S(r−1)(N−1)+q = h2
h

4G
(1)
q+1,r+1

+ 4G
(2)
q+1,r+1

− 2G
(3)
q+1,r+1

i

+O(h4) . (4.9e)

From Eqs. (4.9a)-(4.9e), since

|bk| ≤ 36(H + I),

|ck| ≤ 4(H2+ I2) + 8(H(1) + I (2)) + 2(H(2) + I (1)) + 2IH

for k = 1, N − 1, (N − 1)(N − 2) + 1 and (N − 1)2 ,

|bk| ≤ 10H, |ck| ≤ 2H(1) +H2

for k = (q− 1)(N − 1)+ 1 and q(N − 1) where q = 2(1)N − 2 ,

|bk| ≤ 10I , |ck| ≤ 2I (2) + I2

for k = r and (N − 2)(N − 1)+ r where r = 2(1)N − 2, for sufficiently small h

Sk > 6h2G∗ for k = 1, N − 1, (N − 1)(N − 2)+ 1 and (N − 1)2 , (4.10a)

Sk > 7h2G∗ for k = (q− 1)(N − 1)+ 1 and q(N − 1); q = 2(1)N − 2 , (4.10b)

Sk > 7h2G∗ for k = r and (N − 2)(N − 1)+ r, r = 2(1)N − 2 , (4.10c)

S(r−1)(N−1)+q ≥ h2(8G∗− 2G∗)> 0 assuming G∗ < 4G∗ ,

for q = 2(1)N − 2 and r = 2(1)N − 2 . (4.10d)

Thus D+P is monotone for sufficiently small h, so (D+ P)−1 exists and (D+ P)−1 = J−1 > 0

[26], where J= (Jr,s) with r = 1(1)(N − 1)2 and s = 1(1)(N − 1)2. Since

(N−1)2
∑

r=1

Jp,rSr = 1, p = 1(1)(N − 1)2
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and G∗ > 0, for p = 1(1)(N − 1)2 it follows from Eqs. (4.10a)-(4.10d) that

Jp,k ≤
1

Sk

<
1

6h2G∗

[k = 1, N − 1, (N − 1)(N − 2)+ 1 and (N − 1)2] , (4.11a)
N−2
∑

q=2

Jp,kSk ≤
1

min
2≤q≤N−2

Sk

<
1

7h2G∗

[k = (q− 1)(N − 1) + 1 and q(N − 1),q = 2(1)N − 2] , (4.11b)
N−2
∑

r=2

Jp,k ≤
1

min
2≤r≤N−2

Sk

<
1

7h2G∗

[k = r and (N − 2)(N − 1)+ r, r = 2(1)N − 2] , (4.11c)
N−2
∑

q=2

N−2
∑

r=2

Jp,k ≤
1

min
2≤q≤N−2
2≤r≤N−2

Sk

≤
1

h2(8G∗ − 2G∗)

[k = (r − 1)(N − 1) + q,q = 2(1)N − 2 and r = 2(1)N − 2] . (4.11d)

Eq. (4.8) may be written as

‖E‖ ≤ ‖J‖‖T‖ , (4.12)

where

‖J‖= max
1≤p≤(N−1)2







Jp,1+

(N−2)
∑

q=2

Jp,q + Jp,N−1





+





N−2
∑

q=2

Jp,(q−1)(N−1)+1 +

N−2
∑

q=2

N−2
∑

r=2

Jp,(q−1)(N−1)+r +

N−2
∑

q=2

Jp,q(N−1)





+



Jp,(N−1)(N−2)+1 +

N−2
∑

q=2

Jp,(N−1)(N−2)+q + Jp,(N−1)2







 . (4.13)

Using Eqs. (4.11a)-(4.11d) in Eq. (4.12), for sufficiently small h we obtain from (4.13)

‖E‖ ≤ O(h4) . (4.14)

This establishes the convergence of the fourth-order difference method (2.5) with n = 1,

for the scalar elliptic equation (4.1).

We may extend the above convergence analysis carried out for a single equation to the

system of equations. Thus for each i = 1(1)n, we denote

E(i) = u(i) −U(i)

where u(i) and U(i) are the respective approximate and exact solution vectors for the system

of equations. Since the local truncation error is of O(h6) for each equation, then in a

similar manner to the above we may obtain ‖E(i)‖ ≤ O(h4) for each i, so the fourth-order

convergence of the difference method (2.5) can be established for the system.



A New Fourth Order Compact Off-Step Discretization 75

5. Numerical Illustrations

In this section, we discuss the numerical solution of some linear and nonlinear prob-

lems in Cartesian or spherical and cylindrical polar coordinates in specified domains, where

the exact solutions are known. (The functions on the right-hand side of the particular PDE

and the Dirichlet boundary conditions are obtained from the exact solutions.) The system

of linear difference equations is solved using the Block iterative method, and the system of

nonlinear difference equations by the Newton-Raphson method — e.g. see Hageman and

Young [25]. For all of the problems, the iterations were terminated once the absolute error

tolerance 10−12 was reached. Computer code was written using the MATLAB programming

language.

Problem 1. (Poisson equation in polar coordinates)

(i) ur r +
α

r
ur +

1

r2
uθθ = G(r,θ), 0< r,θ < 1.

For α = 1 and 2, this is the 2D Poisson equation in the r-θ plane for cylindrical and

spherical coordinates, respectively. The exact solution adopted was u = r2 cos(πθ).

(ii) ur r +
α

r
ur + uzz = G(r, z), 0< r, z < 1.

For α = 1, this is the 2D Poisson equation for cylindrical coordinates in the r-z plane. The

exact solution adopted was u = cosh r cosh z.

The Maximum Absolute Errors (MAE) for u and its normal derivatives tabulated in

Tables 1 and 2 for α = 1 and 2 are for Problems 1(i) and 1(ii), respectively. Figs. 3 and 4

give the plots of the exact and numerical solutions of Problems 1(i) and 1(ii), respectively.

Problem 2 (Nonlinear Convection Equation)

ǫ(ux x + uy y ) = u(ux + uy) + g(x , y), 0< x , y < 1.Table 1: Problem 1(i): The MAE.
Proposed O(h4) - methods O(h4) - methods discussed in [12,13]

h α= 1 α = 2 α = 1 α = 2

1/8 u 2.3294(-06) 4.6091(-06) 4.2944(-06) 6.8672(-06)

ur 8.1179(-06) 1.6529(-05) 8.8246(-06) 4.2834(-05)

uθ 3.9153(-04) 6.2317(-04) 4.4823(-04) 8.6298(-04)

1/16 u 1.4731(-07) 2.9153(-07) 2.7278(-07) 4.4629(-06)

ur 9.7119(-07) 1.8818(-06) 8.1105(-07) 3.0421(-06)

uθ 2.8537(-05) 4.5514(-05) 3.2188(-05) 6.3244(-05)

1/32 u 9.2898(-09) 1.8373(-08) 1.8642(-08) 3.2187(-07)

ur 7.9264(-08) 1.5078(-07) 7.0243(-08) 2.2424(-07)

uθ 1.9185(-06) 3.0633(-06) 2.3156(-06) 4.4341(-06)

1/64 u 5.8207(-10) 1.1480(-09) 1.1022(-09) 1.9068(-08)

ur 5.5941(-09) 1.0553(-08) 5.8124(-09) 1.4172(-08)

uθ 1.2425(-07) 1.9850(-07) 1.5510(-07) 2.7012(-07)
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Proposed O(h4) - methods O(h4) - methods discussed in [12,13]

h α= 1 α= 2 α = 1 α= 2

1/8 u 1.6604(-06) 2.8030(-06) 2.8604(-06) 4.2166(-06)

ur 1.0721(-05) 1.0390(-05) 2.1444(-05) 1.9833(-05)

uz 2.3486(-05) 3.6014(-05) 3.6218(-05) 4.8412(-05)

1/16 u 1.0530(-07) 1.7649(-07) 1.9884(-07) 2.6261(-07)

ur 8.1375(-07) 8.1496(-07) 1.1721(-06) 1.0104(-06)

uz 1.6895(-06) 2.5690(-06) 2.7520(-06) 3.8224(-06)

1/32 u 6.6915(-09) 1.1082(-08) 1.1645(-08) 1.6224(-08)

ur 5.6905(-08) 5.8312(-08) 8.2169(-07) 7.6186(-08)

uz 1.1430(-07) 1.7298(-07) 1.6644(-07) 2.3242(-07)

1/64 u 4.2259(-10) 6.9292(-10) 7.0120(-10) 8.8844(-10)

ur 4.5970(-09) 7.3664(-09) 5.0210(-08) 4.5458(-09)

uz 7.4703(-09) 1.1278(-08) 8.9744(-09) 1.4242(-08)

Exact Solution Numerical SolutionFigure 3: Solution of 2D Poisson equation in polar 
oordinates.Table 3: Problem 2: The MAE.
Proposed O(h4) - methods O(h4) - methods discussed in [12,13]

h ǫ = 0.1 ǫ = 0.01 ǫ = 0.001 ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

1/16 u 2.0616(-05) 2.4785(-04) 2.5130(-03) 4.4185(-05) 4.8266(-04) 3.9282(-03)

ux 1.2837(-04) 2.5155(-03) 1.5332(-02) 2.5208(-04) 2.8427(-03) 2.5834(-02)

uy 1.6447(-04) 1.3841(-03) 1.5891(-02) 3.0162(-04) 2.7129(-03) 2.4345(-02)

1/32 u 1.2695(-06) 1.7462(-05) 1.4391(-04) 2.9287(-06) 3.4324(-05) 2.8411(-04)

ux 1.6905(-05) 2.0866(-04) 1.6390(-03) 1.9812(-05) 2.2186(-04) 2.6928(-03)

uy 1.1825(-05) 8.9167(-05) 1.0726(-03) 2.1441(-05) 2.0412(-04) 1.8184(-03)

1/64 u 7.9012(-08) 1.1296(-06) 1.0375(-05) 1.8119(-07) 2.1204(-06) 2.1686(-05)

ux 1.5530(-06) 1.4118(-05) 2.4812(-04) 1.2124(-06) 1.3016(-05) 2.8928(-04)

uy 8.0908(-07) 6.2655(-06) 5.4500(-05) 1.2888(-06) 1.2162(-05) 1.1421(-04)

The exact solution adopted was u= ex sin(πy/2). The MAE for u, ux and uy are tabulated

in Table 3 for ǫ = 0.1, 0.01 and 0.001.
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Exact Solution Numerical SolutionFigure 4: Solution of 2D Poisson equation with 
ylindri
al symmetry.Table 4: Problem 3: The MAE.
Proposed O(h4) - methods O(h4) - methods discussed in [12,13]

h α = 1 α = 10 α = 25 α= 1 α = 10 α= 25

1/16 u 6.6498(-06) 1.4642(-04) 4.8477(-04) 7.6488(-06) 2.4122(-04) 5.6678(-04)

ux 9.4134(-05) 1.3702(-03) 3.1661(-03) 1.1012(-04) 2.3816(-03) 4.0465(-03)

uy 3.0028(-04) 2.5306(-03) 5.9721(-03) 3.8149(-04) 3.6296(-03) 6.8764(-03)

1/32 u 4.1944(-07) 9.1279(-06) 2.9675(-05) 4.8894(-07) 1.5158(-03) 3.6654(-05)

ux 6.6876(-06) 1.3007(-04) 4.3732(-04) 7.2724(-06) 2.2244(-04) 3.8975(-04)

uy 2.0286(-05) 1.7751(-04) 4.1266(-04) 2.6261(-05) 2.4890(-04) 4.8243(-04)

1/64 u 2.6367(-08) 5.6914(-07) 1.8430(-06) 3.0189(-08) 9.2284(-07) 2.2056(-06)

ux 4.4521(-07) 1.0153(-05) 4.3173(-05) 4.8484(-07) 1.8446(-05) 3.6698(-05)

uy 1.3205(-06) 1.1963(-05) 2.8454(-05) 1.6185(-06) 1.5177(-05) 3.0125(-05)

Problem 3 (Nonlinear Elliptic Equation)

(1+ x2)ux x + (1+ y2)uy y = αu(ux + uy) + f (x , y), 0< x , y < 1

with the exact solution u = ex sin(πy) adopted. The MAE for u, ux and uy are tabulated

in Table 4 for various values of α.

Problem 4 (2D steady-state Navier-Stokes equations in Cartesian coordinates)

1

Re

(ux x + uy y ) = uux + vuy + f (x , y), 0< x , y < 1

1

Re

(vx x + vy y ) = uvx + vvy + g(x , y), 0< x , y < 1

where the constant Re > 0 is the Reynolds number.

The exact solution u = sin(πx) sin(πy), v = cos(πx) cos(πy) was adopted. The MAE

for u and v are tabulated in Table 5 for Re = 10, 102 and 103. Fig. 5 provides a comparison

of the exact and numerical solutions.
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Exact Solution u Numerical Solution u

Exact Solution v Numerical Solution vFigure 5: Solution of the 2D Navier-Stokes equations in Cartesian 
oordinates.Table 5: Problem 4: The MAE.
Proposed O(h4) - methods O(h4) - methods discussed in [12]

h Re = 10 Re = 102 Re = 103 Re = 10 Re = 102 Re = 103

1/16 u 3.8170(-05) 7.9117(-04) 1.1370(-02) 4.2172(-05) 8.1235(-04) 1.4212(-02)

v 2.0205(-05) 8.1179(-04) 1.6068(-02) 2.3785(-05) 8.4455(-04) 1.9872(-02)

1/32 u 2.4148(-06) 4.4070(-05) 6.8308(-04) 2.7868(-06) 4.7602(-05) 7.6880(-04)

v 1.2680(-06) 4.6982(-05) 1.9517(-03) 1.5742(-06) 4.9852(-05) 1.9702(-03)

1/64 u 1.5149(-07) 2.6562(-06) 5.3901(-05) 1.7044(-07) 2.9885(-06) 5.8280(-05)

v 7.9504(-08) 3.0175(-06) 1.0199(-04) 8.4324(-08) 3.3046(-06) 1.2692(-04)

Problem 5 (2D steady-state Navier-Stokes equations in polar coordinates)

(i) Spherical polar coordinates (r-θ plane):

1

Re

�

ur r +
1

r2
uθθ +

2

r
ur +

cotθ

r2
uθ −

2

r2
vθ −

2

r2
u−

2 cotθ

r2
v

�

= uur +
1

r
vuθ −

1

r
v

2+H(r,θ), 0< r,θ < 1,
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Proposed O(h4) - methods O(h4) - methods discussed in [12]

h Re = 10 Re = 100 Re = 500 Re = 10 Re = 100 Re = 500

1/4 u 4.0350(-03) 4.7668(-02) 1.0430(-01) 4.6880(-03) 5.3210(-02) 2.1678(-01)

v 2.8464(-03) 2.4988(-02) 8.0180(-02) 3.6584(-03) 3.0824(-02) 8.8249(-02)

1/8 u 4.5574(-04) 6.9580(-03) 2.4922(-02) 5.0324(-04) 7.3214(-03) 2.9911(-02)

v 1.9624(-04) 2.9897(-03) 1.5191(-02) 2.4454(-04) 3.4789(-03) 1.9923(-02)

1/16 u 2.6553(-05) 6.3235(-04) 2.4796(-03) 3.0355(-05) 6.6532(-04) 2.7697(-03)

v 1.2965(-05) 3.0081(-04) 1.0288(-03) 1.5569(-05) 3.3180(-04) 1.3288(-03)Table 7: Problem 5(ii): The MAE.
Proposed O(h4) - methods O(h4) - methods discussed in [12]

h Re = 10 Re = 100 Re = 500 Re = 10 Re = 100 Re = 500

1/8 u 4.4475(-04) 6.6056(-03) 7.5996(-03) 5.2574(-04) 7.4650(-03) 8.3699(-03)

v 1.0410(-03) 9.8564(-03) 2.0399(-02) 1.8014(-03) 1.1565(-02) 2.8993(-02)

1/16 u 2.9587(-05) 8.6235(-04) 1.9389(-03) 3.2785(-05) 9.1532(-04) 2.4983(-03)

v 6.6121(-05) 8.9744(-04) 3.6708(-03) 1.1060(-04) 9.3447(-04) 4.1807(-03)

1/32 u 1.9121 (-06) 6.3020(-05) 3.8183(-04) 2.0111(-06) 6.7022(-05) 4.1381(-04)

v 4.1297(-06) 5.7202(-05) 4.9547(-04) 6.8267(-06) 6.0204(-05) 5.2745(-04)

1

Re

�

vr r +
1

r2
vθθ +

2

r
vr +

cotθ

r2
vθ +

2

r2
uθ −

cos ec2θ

r2
v

�

= uvr +
1

r
vvθ +

1

r
uv + I(r,θ), 0< r,θ < 1.

The exact solution adopted was u= 2r3 cosθ , v = −5r3 sinθ .

(ii) Cylindrical polar coordinates (r-θ plane):

1

Re

�

ur r +
1

r2
uθθ +

1

r
ur −

2

r2
vθ −

1

r2
u

�

= uur +
1

r
vuθ −

1

r
v

2+H(r,θ), 0< r,θ < 1,

1

Re

�

vr r +
1

r2
vθθ +

1

r
vr +

2

r2
uθ −

1

r2
v

�

= uvr +
1

r
vvθ +

1

r
uv + I(r,θ), 0< r,θ < 1.

The exact solution adopted was u= r3 sinθ , v = 4r3 cosθ .

The MAE for u and v are tabulated in Tables 6 and 7 for various values of the Reynolds

number Re > 0. Figs. 6 and 7 provide a comparison of the exact and numerical solutions

to Problems 5(i) and 5(ii), respectively.
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Exact Solution u Numerical Solution u

Exact Solution v Numerical Solution vFigure 6: Solution of the Navier-Stokes equations in spheri
al polar 
oordinates (r,θ).
6. Conclusions

Nine-point compact difference methods of order four were developed in Ref. [12] for

the numerical solution of the system of second order non-linear 2D elliptic equations (1.1),

but these methods fail at singular points and a special treatment was required to solve

singular problems. Indeed, it was found that such numerical methods fail if it is difficult to

differentiate the singular coefficients twice. In this paper, a new stable method of accuracy

four for the solution of the system of non-linear elliptic equations (1.1) is developed, using

the same number of grid points. In addition, fourth order compact difference methods are

derived to estimate the normal derivatives of the solutions. Our new numerical methods

are directly applicable to elliptic equations in polar coordinates, and do not require any

fictitious points for computation. No special technique is needed to solve singular elliptic

problems, whether linear or nonlinear, and we obtain better results than some existing

fourth order numerical methods have produced. Tables 3, 5, 6 and 7 show the results for

model nonlinear equations, including the Navier-Stokes equations of motion. Although the

order of accuracy drops for high Reynolds number in the Navier-Stokes equations, there

is no numerical oscillation arising in the computed solution, in contrast to a second order
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Exact Solution u Numerical Solution u

Exact Solution v Numerical Solution vFigure 7: Solution of the Navier-Stokes equations in 
ylindri
al polar 
oordinates in r-θ plane.
method that becomes totally unstable [3,12,13]. We are now extending our new methods

to time-dependent problems.
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