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Abstract. This paper is concerned with numerical solutions of time-fractional nonlin-
ear parabolic problems by a class of L1-Galerkin finite element methods. The analysis
of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack
of a fundamental Gronwall type inequality. In this paper, we establish such a fun-
damental inequality for the L1 approximation to the Caputo fractional derivative. In
terms of the Gronwall type inequality, we provide optimal error estimates of several
fully discrete linearized Galerkin finite element methods for nonlinear problems. The
theoretical results are illustrated by applying our proposed methods to the time frac-
tional nonlinear Huxley equation and time fractional Fisher equation.
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1 Introduction

In this paper, we study numerical solutions of the time-fractional nonlinear parabolic
equation

C
0D

α
t u−∆u= f (u), x∈Ω×(0,T] (1.1)
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with the initial and boundary conditions, given by

u(x,0)=u0(x), x∈Ω,
u(x,t)=0, x∈∂Ω×[0,T],

(1.2)

where Ω⊂R
d (d=1, 2 or 3) is a bounded and convex polygon/polyhedron. The Caputo

fractional derivative C
0D

α
t is defined as

C
0D

α
t u(x,t)=

1

Γ(1−α)

∫ t

0

∂u(x,s)

∂s

1

(t−s)α
ds, 0<α<1. (1.3)

Here Γ(·) denotes the usual gamma function.

The model (1.1) is used to describe plenty of nature phenomena in physics, biology
and chemistry [10,15,24,30]. In the past decades, developing effective numerical methods
and rigorous numerical analysis for the time-fractional PDEs have been a hot research
spot [6, 8, 11, 16, 25, 28, 33, 35–38]. Numerical methods can be roughly divided into two
categories: indirect and direct methods. The former is based on the solution of an integro-
differential equation by some proper numerical schemes since time-fractional differential
equations can be reformulated into integro-differential equations in general, while the
latter is based on a direct (such as piecewise polynomial) approximation to the time-
fractional derivative [4, 5, 17, 18].

Direct methods are widely used in practical computations due to its ease of imple-
mentation. One of the most commonly used direct methods is the so-called L1-scheme,
which can be viewed as a piecewise linear approximation to the fractional derivative [29]
and which has been widely applied for solving various time-fractional PDEs [9,12]. How-
ever, numerical analysis for direct methods is limited, even for a simple linear model (1.1)
with

f (u)= L0u, t∈ (0,T]. (1.4)

The analysis of L1-type methods for the linear model was studied by several authors,
while the convergence and error estimates were obtained under the assumption that

L0≤0 (1.5)

in general, see [13, 14, 23, 31]. The proof there cannot be directly extended to the case
of L0 > 0. Recently, the condition (1.5) was improved in [34], in which a time-fractional
nonlinear predator-prey model was studied by an L1 finite difference scheme and f (u)
was assumed to satisfy a global Lipschitz condition. The stability and convergence were
proved under the assumption

Tα
<

1

LΓ(1−α)
. (1.6)
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Here L denotes the Lipschitz constant. The restriction condition (1.6) implies that the
scheme is convergent and stable only locally in time. Similar assumptions appeared in
the analysis of L1 type schemes for time-fractional Burger equation [21] and nonlinear
Fisher equation [20], respectively, where L may depend upon an upper bound of numer-
ical solutions. In both [20] and [21], a classical finite difference approximation was used
for spatial discretization. Several linearized L1 schemes with other approximations in
spatial direction, such as spectral methods [2, 3] and meshless methods [27], were also
investigated numerically for time-fractional nonlinear differential equations. To the au-
thors’ knowledge, the analysis of stability and convergence on the fully discrete numeri-
cal scheme for nonlinear time-fractional problem has so far received little attention.

It is well known that the classical Gronwall inequality plays an important role in
analysis of parabolic PDEs (α=1) and the analysis of corresponding numerical methods
also relies heavily on the discrete counterpart of the inequality. Clearly, the analysis of
L1-type numerical methods for time-fractional nonlinear differential equations (0<α<1)
has not been well done mainly due to the lack of such a fundamental inequality.

The aim of this paper is to present the numerical analysis for several fully discrete
L1-Galerkin FEMs for the general nonlinear equation (1.1) with any given T>0. The key
to our work is to establish such a discrete fractional Gronwall type inequality, i.e., for a
positive sequence satisfying

Dα
τωn ≤λ1ωn+λ2ωn−1+gn, (1.7)

where Dα
τ denotes an L1 approximation to C

0D
α
t , λ1 and λ2 are both positive constants. In

terms of the fundamental inequality, we present optimal error estimates of several fully
discrete L1-Galerkin FEMs for Eq. (1.1) with linear or nonlinear source f (u). Moreover,
our work can be extended to many other direct numerical methods for time-fractional
parabolic equations.

The rest of the paper is organized as follows. We present three linearized fully discrete
numerical schemes and the main convergence results in Section 2. These schemes are
based on an L1 approximation in temporal direction and Galerkin FEMs in spatial direc-
tion. In Section 3, a new Gronwall type inequality is established for the L1 approximation
and optimal error estimates of the proposed numerical methods are proved. In Section 4,
we present numerical experiments on two different models, nonlinear fractional Huley
equation and Fisher equation. Numerical examples are provided to illustrate our theo-
retical analysis. Finally, conclusions and discussions are summarized in Section 5.

2 L1-Galerkin FEMs and main results

We first introduce some notations and present several fully discrete numerical schemes.
For any integer m≥0 and 1≤ p≤∞, let Wm,p be the usual Sobolev space of functions

defined in Ω equipped with the norm ‖·‖Wm,p . If p= 2, we denote Wm,2(Ω) by Hm(Ω).
Let Th be a quasiuniform partition of Ω into intervals Ti (i= 1,··· ,M) in R

1, or triangles
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in R
2 or tetrahedra in R

3, h=max1≤i≤M{diam Ti} be the mesh size. Let Vh be the finite-
dimensional subspace of H1

0(Ω), which consists of continuous piecewise polynomials of
degree r (r≥1) on Th. Let Tτ ={tn | tn=nτ; 0≤n≤N} be a uniform partition of [0,T] with
the time step τ=T/N.

Based on a piecewise linear interpolation, the L1-approximation (scheme) to the Ca-
puto fractional derivative is given by

C
0D

α
tn

u=
1

Γ(1−α)

n

∑
j=1

u(x,tj)−u(x,tj−1)

τ

∫ tj

tj−1

1

(tn−s)α
ds+Qn

=
τ−α

Γ(2−α)

n

∑
j=1

an−j(u(x,tj)−u(x,tj−1))+Qn,

where

ai =(i+1)1−α−i1−α, i≥0. (2.1)

If u∈C2([0,T];L2(Ω)), the truncation error Qn satisfies [23, 31]

‖Qn‖L2 =O(τ2−α). (2.2)

For a sequence of functions {ωn}N
n=0, we define

Dα
τωn :=

τ−α

Γ(2−α)

n

∑
j=1

an−jδtω
j =

τ−α

Γ(2−α)

n

∑
j=0

bn−jω
j, n=1,··· ,N, (2.3)

where δtω
n =ωn−ωn−1 and

b0= a0, bn =−an−1, bn−j= an−j−an−j−1, j=1,··· ,n−1. (2.4)

With above notations, a linearized L1-Galerkin FEM is: to find Un
h ∈Vh such that

(Dα
τUn

h ,vh)+(∇Un
h ,∇vh)=

(
f
(

Un−1
h

)
,vh

)
, ∀vh ∈Vh, n=1,2,··· ,N (2.5)

with U0
h =Πhu0, where Πh represents the interpolation operator.

By noting (2.4), we can rewrite the scheme (2.5) equivalently as

τ−α

Γ(2−α)

n

∑
j=0

bn−j

(
U

j
h,vh

)
+(∇Un

h ,∇vh)=
(

f (Un−1
h ),vh

)
, ∀vh ∈Vh. (2.6)

In this paper, we assume that the function f :R→R is Lipschitz continuous, i.e.

| f (ξ1)− f (ξ2)|≤ L|ξ1−ξ2|, for ξ1,ξ2 ∈R, (2.7)

where L denotes the Lipschitz coefficient. We present optimal error estimates of scheme
(2.6) in the following theorem and leave the proof in Section 3.1.
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Theorem 2.1. Suppose that the system (1.1)-(1.2) has a unique solution u∈C2([0,T];L2(Ω))∩
C1([0,T];Hr+1(Ω)). Then, there exists a positive constant τ0, such that when τ≤ τ0, the finite
element system (2.6) admits a unique solution Un

h , n=1,2,··· ,N, satisfying

‖un−Un
h‖L2 ≤C0(τ+hr+1), (2.8)

where un =u(x,tn) and C0 is a positive constant independent of τ and h.

Remark 2.1. The proof of Theorem 2.1 is based on a Lipschitz condition. If f ∈C1(R),
Theorem 2.1 still holds. In fact, by using the mathematical induction and inverse inequal-
ity [19, 32], we have

‖Un−1
h ‖L∞ ≤‖Rhun−1‖L∞+‖Rhun−1−Un−1

h ‖L∞ ≤‖Rhun−1‖L∞+Ch−
d
2 (τ+hr+1), (2.9)

where Rh denotes the Ritz projection operator. As we can see from (2.9), the boundedness
of ‖Un−1

h ‖L∞ can be obtained while mesh size being small. Therefore, we have

‖ f (un−1)− f (Un−1
h )‖L2 =‖ f ′(ξ)(un−1−Un−1

h )‖L2 ≤C‖un−1−Un−1
h ‖L2 ,

where ξ is between un−1 and Un−1
h . Hence, the results in Theorem 2.1 can be proved by

using similar analysis under the assumption f ∈C1(R).

We now present two more high-order fully discrete linearized methods.

With the Newton linearized approximation to the nonlinear term, a linearized L1-
Galerkin FEM is: to find Un

h ∈Vh such that

(Dα
τUn

h ,vh)+(∇Un
h ,∇vh)=

(
f (Un−1

h )+ f1(U
n−1
h )(Un

h−Un−1
h ),vh

)
, n=1,··· ,N, (2.10)

where f1(U
n−1
h )= ∂ f

∂u |u=Un−1
h

.

Moreover, with an extrapolation to the nonlinear term, a linearized L1-Galerkin FEM
is: to find Un

h ∈Vh such that

(Dα
τUn

h ,vh)+(∇Un
h ,∇vh)=

(
f (Ûn

h ),vh

)
, n=1,··· ,N, (2.11)

where Ûn
h =2Un−1

h −Un−2
h for n=2,··· ,N and Û1

h can be obtained by solving the governing
equation

(
Dα

τÛ1
h,vh

)
+
(
∇Û1

h ,∇vh

)
=
(

f (U0
h)+ f1(U

0
h)(Û

1
h−U0

h),vh

)
.

We next present the error estimates of schemes (2.10) and (2.11) in the following the-
orem.
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Theorem 2.2. Suppose that the system (1.1)-(1.2) has a unique solution u∈C2([0,T];L2(Ω))∩
C1([0,T];Hr+1(Ω)). Then, there exists a positive constant τ∗

0 , such that when τ≤ τ∗
0 , the finite

element system (2.10) or (2.11) admits a unique solution Un
h , n=1,2,··· ,N, satisfying

‖un−Un
h‖L2 ≤C∗

0(τ
2−α+hr+1), (2.12)

where C∗
0 is a positive constant independent of τ and h.

The representation of this paper focuses on the numerical analysis for the linearized
scheme (2.6). The analysis for (2.6) can be easily extended to the linearized schemes (2.10)
and (2.11). The main difference is that the schemes (2.10) and (2.11) have the convergent
order 2−α in the temporal direction, while the scheme (2.6) has the order 1.

In the remainder, we denote by C a generic positive constant, which is independent
of n,h,τ,τ0, τ∗

0 ,C0 and C∗
0 , but may depend upon u and f .

3 Error analysis

In this section, we will prove the optimal error estimate given in Theorem 2.1 for pro-
posed scheme (2.6). As we can see below, the following Gronwall type inequality plays
a key role in our work. For brevity, we first present the results of the Gronwall type
inequality, and leave the proof in Section 3.2.

Lemma 3.1. Suppose that the nonnegative sequences {ωn,gn |n=0,1,2,···} satisfy

Dα
τωn ≤λ1ωn+λ2ωn−1+gn, n≥1,

where λ1 and λ2 are both positive constants independent of the time step τ. Then, there exists a
positive constant τ∗ such that, when τ≤τ∗,

ωn ≤2
(

ω0+
tα
n

Γ(1+α)
max
0≤j≤n

gj
)

Eα(2λtα
n), 1≤n≤N. (3.1)

Here, Eα(z)=∑
∞
k=0

zk

Γ(1+kα)
is the Mittag-Leffler function and λ=λ1+

λ2

(2−21−α)
.

3.1 Proof of Theorem 2.1

To prove the main results, we first rewrite the system (2.6) as

τ−α

Γ(2−α)
b0(U

n
h ,vh)+(∇Un

h ,∇vh)=
(

f (Un−1
h ),vh

)
−

τ−α

Γ(2−α)

n−1

∑
j=0

bn−j

(
U

j
h,vh

)
. (3.2)

It is obvious that the coefficient matrix of the linear system (3.2) is symmetric and positive
definite. Thus, the existence and uniqueness of the solution of the FEM system (2.6)
follow immediately.
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We now let Πh denote a Lagrange interpolation operator and Rh : H1
0(Ω)→Vh the Ritz

projection operator defined by

(∇(v−Rhv),∇vh)=0, for all vh ∈Vh. (3.3)

By classical interpolation theory and finite element theories [32], we have

‖v−Πhv‖L2 +h‖∇(v−Πhv)‖L2 ≤Chs+1‖v‖Hs+1 , (3.4)

‖v−Rhv‖L2 +h‖∇(v−Rhv)‖L2 ≤Chs+1‖v‖Hs+1 , (3.5)

for any v∈H1
0(Ω)∩Hs+1(Ω) and 1≤ s≤ r.

From (1.1), we can see that the exact solution un satisfies the following equation

Dα
τun−∆un = f (un−1)+Tn (3.6)

with the truncation error Tn given by

Tn =Dα
τun− C

0D
α
tn

u+ f (un)− f (un−1).

By (2.2), (2.7) and Taylor expansion, we have

‖Tn‖L2 ≤Cτ. (3.7)

Let
en

h =Rhun−Un
h , n=0,1,··· ,N.

Subtracting (3.6) from the numerical scheme (2.6), it is easy to see that en
h satisfies

(Dα
τen

h ,vh)+(∇en
h ,∇vh)=(Dα

τ(Rhun−un),vh)+( f (un−1)− f (Un−1
h ),vh)+(Tn,vh) (3.8)

for any vh ∈Vh and n=1,2,··· ,N.
Taking vh = en

h in (3.8), we have

(Dα
τen

h ,en
h)+‖∇en

h‖
2
L2

≤

(
L

2
+1

)
‖en

h‖
2
L2+

L

2
‖en−1

h ‖2
L2 +

1

2
‖Dα

τ(Rhun−un)‖2
L2+Ch2(r+1)+

1

2
‖Tn‖2

L2

≤

(
L

2
+1

)
‖en

h‖
2
L2+

L

2
‖en−1

h ‖2
L2 +C

(
τ+hr+1

)2
, (3.9)

where we have used (3.7) and

‖Dα
τ Rhun− C

0D
α
tn

u‖L2 ≤‖Dα
τ Rhun− C

0D
α
tn

Rhu‖L2+‖ C
0D

α
tn

Rhu− C
0D

α
tn

u‖L2 ≤Cτ2−α+Chr+1.

On the other hand, noting that the coefficients aj (j=0,··· ,N) defined in (2.1) satisfy

1= a0 > a1 > ···> aN >0,
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we obtain

(Dα
τen

h ,en
h)=

τ−α

Γ(2−α)

(
a0en

h−
n−1

∑
j=1

(an−j−1−an−j)e
j
h−an−1e0

h,en
h

)

≥
τ−α

Γ(2−α)

(
a0‖en

h‖
2
L2−

n−1

∑
j=1

(an−j−1−an−j)
‖e

j
h‖

2
L2+‖en

h‖
2
L2

2
−an−1

‖e0
h‖

2
L2 +‖en

h‖
2
L2

2

)

=
τ−α

2Γ(2−α)

(
a0‖en

h‖
2
L2−

n−1

∑
j=1

(an−j−1−an−j)‖e
j
h‖

2
L2−an−1‖e0

h‖
2
L2

)

=
τ−α

2Γ(2−α)

n

∑
j=0

bn−j‖e
j
h‖

2
L2

=
1

2
Dα

τ‖en
h‖

2
L2 . (3.10)

Combining (3.9) and (3.10), we get

Dα
τ‖en

h‖
2
L2 ≤ (L+2)‖en

h‖
2
L2+L‖en−1

h ‖2
L2 +2C(τ+hr+1)2.

By Lemma 3.1, there exists a positive constant τ∗ such that, when τ≤τ∗,

‖en
h‖L2 ≤C(τ+hr+1)+C‖e0

h‖L2 .

With (3.5), the initial error estimate and (3.4), the above estimate further shows that

‖un−Un
h‖L2 ≤‖un−Rhun‖L2+‖en

h‖L2 ≤C(τ+hr+1). (3.11)

Taking τ0≤τ∗ and C0≥C, the proof of Theorem 2.1 is complete.

3.2 The proof of Lemma 3.1

To prove Lemma 3.1, we first present two useful lemmas.

Lemma 3.2. Let {pn} be a sequence defined by

p0=1, pn =
n

∑
j=1

(aj−1−aj)pn−j, n≥1. (3.12)

Then it holds that

(i) 0< pn <1,
n

∑
j=k

pn−jaj−k =1, 1≤ k≤n, (3.13)

(ii) Γ(2−α)
n

∑
j=1

pn−j ≤
nα

Γ(1+α)
, (3.14)
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and for m=1,2,··· ,

(iii)
Γ(2−α)

Γ(1+(m−1)α)

n−1

∑
j=1

pn−j j
(m−1)α≤

nmα

Γ(1+mα)
. (3.15)

Proof. (i) Since 1≥ aj−1 > aj > 0 for j≥ 1, it is easy to verify inductively from (3.12) that
0< pn <1 (n≥1) by mathematical induction. Moreover, we have

Φn ≡
n

∑
j=1

pn−jaj−1 =
n

∑
j=0

pn−jaj =
n+1

∑
j=1

pn+1−jaj−1 =Φn+1, n≥1.

This implies Φn =Φ1= a0 p0 =1 for n≥1. Substituting j= l+k−1, we further find

n

∑
j=k

pn−jaj−k =
n−k+1

∑
l=1

pn−k+1−lal−1=Φn−k+1=Φn =1, 1≤ k≤n.

The equality (3.13) is proved.
(ii) To prove (3.14) and (3.15), we introduce an auxiliary function q(t)= tmα/Γ(1+mα)

for m≥1. Then for j≥1, we have

∫ j

0

(j−s)−αq′(s)

Γ(1−α)
ds=

B(mα,1−α)j(m−1)α

Γ(1−α)Γ(mα)
=

j(m−1)α

Γ(1+(m−1)α)
, (3.16)

where we have used the fact that for z,w>0

B(z,w)≡
∫ 1

0
sz−1(1−s)w−1ds=

Γ(z)Γ(w)

Γ(z+w)
.

Let Q(t) be a piecewise linear interpolating polynomial of q(t) satisfying Q(k)=qk :=
q(k). Moreover for j≥1, we define the approximation error by

∫ j

0

q′(s)−Q′(s)

Γ(1−α)(j−s)α
ds=

j

∑
k=1

∫ k

k−1

q′(s)−Q′(s)

Γ(1−α)(j−s)α
ds :=

j

∑
k=1

R
j
k, (3.17)

where

R
j
k=

∫ k

k−1

d[q(s)−Q(s)]

Γ(1−α)(j−s)α
=−

α

Γ(1−α)

∫ k

k−1

q(s)−Q(s)

(j−s)α+1
ds, 1≤ k≤ j.

Combining (3.16) and (3.17) yields

j(m−1)α

Γ(1+(m−1)α)
=

1

Γ(1−α)

j

∑
k=1

∫ k

k−1

Q′(s)

(j−s)α
ds+

j

∑
k=1

R
j
k

=
j

∑
k=1

aj−k
δtq

k

Γ(2−α)
+

j

∑
k=1

R
j
k. (3.18)
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Noting that q(t) is concave (i.e., q′′(t)≤0) for m=1, we have Q(t)≤q(t), R
j
k ≤0 and

1≤
j

∑
k=1

aj−k
δtq

k

Γ(2−α)
. (3.19)

Multiplying (3.19) by Γ(2−α)pn−j and summing it over for j from 1 to n, we have

Γ(2−α)
n

∑
j=1

pn−j ≤
n

∑
j=1

pn−j

j

∑
k=1

aj−kδtq
k=

n

∑
k=1

δtq
k

n

∑
j=k

pn−jaj−k=
n

∑
k=1

δtq
k=

nα

Γ(1+α)
,

where we have used the equality (3.13).

(iii) We multiply (3.18) by Γ(2−α)pn−j and sum the resulting equality for j from 1 to
n−1 to obtain

Γ(2−α)

Γ(1+(m−1)α)

n−1

∑
j=1

pn−j j
(m−1)α=

n−1

∑
j=1

pn−j

j

∑
k=1

aj−kδtq
k+Γ(2−α)

n−1

∑
j=1

pn−j

j

∑
k=1

R
j
k

=
n−1

∑
k=1

δtq
k

n−1

∑
j=k

pn−jaj−k+Γ(2−α)
n−1

∑
j=1

pn−j

j

∑
k=1

R
j
k

≤
n−1

∑
k=1

δtq
k+Γ(2−α)

n−1

∑
j=1

pn−j

j

∑
k=1

R
j
k

=
(n−1)mα

Γ(1+mα)
+Γ(2−α)

n−1

∑
j=1

pn−j

j

∑
k=1

R
j
k. (3.20)

If 1 ≤ m ≤ 1/α, q(t) is still concave (i.e., q′′(t)≤ 0). Then R
j
k ≤ 0 and (3.15) follows

immediately from the above estimate.

If m>1/α, by (3.17), we have

R
j
k =

∫ k

k−1

(j−s)−α

Γ(1−α)

∫ k

k−1
(q′(s)−q′(µ))dµds

=
∫ k

k−1

(j−s)−α

Γ(1−α)

∫ k

k−1

∫ s

µ
q′′(η)dηdµds

≤
∫ k

k−1

(j−s)−α

Γ(1−α)

∫ k

k−1

∫ k

µ

dηmα−1

Γ(mα)
dµds

= aj−k

∫ k

k−1

kmα−1−µmα−1

Γ(2−α)Γ(mα)
dµ, 1≤ k≤ j. (3.21)
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Therefore, by applying (3.13) for n≥1, we have

Γ(2−α)
n−1

∑
j=1

pn−j

j

∑
k=1

R
j
k≤

n−1

∑
j=1

pn−j

j

∑
k=1

aj−k

∫ k

k−1

kmα−1−µmα−1

Γ(mα)
dµ

=
n−1

∑
k=1

∫ k

k−1

kmα−1−µmα−1

Γ(mα)
dµ

n−1

∑
j=k

pn−jaj−k

≤
n−1

∑
k=1

kmα−1

Γ(mα)
−

(n−1)mα

Γ(1+mα)

≤
nmα

Γ(1+mα)
−

(n−1)mα

Γ(1+mα)
. (3.22)

Substituting (3.22) into (3.20), the proof of (3.15) is complete.

Definition 3.1. Let X = [v1,x2,··· ,xn] and Y = [y1,y2,··· ,yn] be two vectors. If xi ≤ yi for
i=1,2,··· ,n, it is called that X is less than or equal to Y, denoted by X≤Y.

Lemma 3.3. Let −→e =(1,1,··· ,1)T ∈Rn and

J=2Γ(2−α)λτα




0 p1 ··· pn−2 pn−1

0 0 ··· pn−3 pn−2
...

...
. . .

...
...

0 0 ··· 0 p1

0 0 ··· 0 0




n×n

. (3.23)

Then, it holds that

(i) Ji =0, i≥n;

(ii) Jm−→e ≤ 1
Γ(1+mα)

(
(2λtα

n)
m,(2λtα

n−1)
m,··· ,(2λtα

1)
m
)T

, m=0,1,2,··· ;

(iii)
i

∑
j=0

J j−→e =
n−1

∑
j=0

J j−→e ≤
(

Eα(2λtα
n),Eα(2λtα

n−1),··· ,Eα(2λtα
1)
)T

, i≥n.

Proof. Noting that J is an upper triangular matrix, it is easy to check that (i) holds.
To prove (ii), we apply the mathematical induction. It is obvious that (ii) holds for

m=0. We assume that (ii) holds for m= k. Since tn =nτ and (3.23), we have

Jk+1−→e = J Jk−→e ≤
1

Γ(1+kα)
J
(
(2λtα

n)
k,(2λtα

n−1)
k,··· ,(2λtα

1)
k
)T

=
Γ(2−α)(2λτα)k+1

Γ(1+kα)

(n−1

∑
j=1

pn−j j
kα,

n−2

∑
j=1

pn−1−j(j−1)kα ,··· ,p11kα,0
)T

. (3.24)
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By using (3.15) in Lemma 3.2, we further have

Jk+1−→e ≤
(2λτα)k+1

Γ(1+(k+1)α)

(
n(k+1)α,(n−1)(k+1)α,··· ,2(k+1)α,1(k+1)α

)T

=
1

Γ(1+(k+1)α)

(
(2λtα

n)
k+1,(2λtα

n−1)
k+1,··· ,(2λtα

2)
k+1,(2λtα

1)
k+1

)T
. (3.25)

Thus (ii) holds for m= k+1.
Since (i) implies that ∑

i
j=0 J j−→e =∑

n−1
j=0 J j−→e for i≥n, and by (ii), we have

n−1

∑
j=0

J j−→e ≤
n−1

∑
j=0

1

Γ(1+ jα)

(
(2λtα

n)
j,(2λtα

n−1)
j,··· ,(2λtα

1)
j
)T

≤
(

Eα(2λtα
n),Eα(2λtα

n−1),··· ,Eα(2λtα
1)
)T

. (3.26)

The proof of Lemma 3.3 is complete.

We now turn back to the proof of Lemma 3.1.
By the definition of L1-approximation (2.3), we get

j

∑
k=1

aj−kδtω
k ≤Γ(2−α)τα(λ1ω j+λ2ω j−1)+Γ(2−α)ταgj. (3.27)

Multiplying the inequality (3.27) by pn−j and summing over for j from 1 to n, we have

n

∑
j=1

pn−j

j

∑
k=1

aj−kδtω
k≤Γ(2−α)τα

n

∑
j=1

pn−j(λ1ω j+λ2ω j−1)+Γ(2−α)τα
n

∑
j=1

pn−jg
j.

By using the results (3.13) and (3.14) in Lemma 3.2, we obtain

n

∑
j=1

pn−j

j

∑
k=1

aj−kδtω
k=

n

∑
k=1

δtω
k

n

∑
j=k

pn−jaj−k =
n

∑
k=1

δtω
k=ωn−ω0, n≥1,

and

Γ(2−α)τα
n

∑
j=1

pn−jg
j ≤Γ(2−α)τα max

1≤j≤n
gj

n

∑
j=1

pn−j ≤
tα
n

Γ(1+α)
max

1≤j≤n
gj, n≥1.

It follows that

ωn≤Ψn+Γ(2−α)τα
n

∑
j=1

pn−j(λ1ω j+λ2ω j−1) , n≥1,
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where

Ψn :=ω0+
tα
n

Γ(1+α)
max

1≤j≤n
gj.

By noting that Ψn ≥Ψk for n≥ k≥1, we get

ωn ≤2Ψn+2Γ(2−α)
(

λ1τα
n−1

∑
j=1

pn−jω
j+λ2τα

n

∑
j=1

pn−jω
j−1

)
, n≥1, (3.28)

when τ≤ α

√
1

2Γ(2−α)λ1
.

Let V=(ωn,ωn−1,··· ,ω1)T. Thus (3.28) can be written in a vector form by

V≤ (λ1 J1+λ2 J2)V+2Ψn
−→e , (3.29)

where J1=
1
λ J and

J2 =2Γ(2−α)τα




0 p0 ··· pn−3 pn−2

0 0 ··· pn−4 pn−3
...

...
. . .

...
...

0 0 ··· 0 p0

0 0 ··· 0 0




n×n

.

By (3.12), we have

pi ≤
1

a0−a1
pi+1=

1

2−21−α
pi+1, i≥0.

Therefore,

J2V≤
1

2−21−α
J1V. (3.30)

Substituting (3.30) into (3.29), we get

V≤ JV+2Ψn
−→e , (3.31)

where J is defined in (3.23) with λ=λ1+
λ2

2−21−α .

As a result, we see that

V≤ JV+2Ψn
−→e ≤ J(JV+2Ψn

−→e )+2Ψn
−→e = J2V+2Ψn

1

∑
j=0

J j−→e

≤···≤ JnV+2Ψn

n−1

∑
j=0

J j−→e . (3.32)

By using (i) and (iii) in Lemma 3.3, we obtain (3.1) and complete the proof of Lemma 3.1.
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4 Numerical examples

In this section, we present two numerical examples which illustrate the theoretical results
given earlier for schemes (2.6), (2.10) and (2.11). The orders of convergence are examined.
All the computations are performed by using the software FreeFEM++.

Example 4.1. We first consider the two-dimensional time-fractional Huxley equation

C
0D

α
t u=∆u−u(1−u)2+g1, x∈ [0,1]×[0,1], 0< t≤1. (4.1)

Eq. (4.1) can describe many different physical models, such as population genetics in cir-
cuit theory and the transmission of nerve impulses [20,26]. To obtain a simple benchmark
solution, we take the exact solution in the form of

u=(1+t3)(1−x)sin(x)(1−y)sin(y).

To this end, it is to obtain the source term g1=
C
0D

α
t u−∆u+u(1−u)2.

We apply the linearized schemes (2.6), (2.10) and (2.11) to solve problem (4.1) with
linear and quadratic finite element approximations, respectively. Here and below, a uni-
form triangular partition with M+1 nodes in each spatial direction is used. To investi-
gate the temporal convergence rate, we use a quadratic FEM with a fixed spatial mesh
size h= 1/100 and several refined time steps τ. Table 1 shows the discrete L2-errors at
time T = 1 and convergence rates in temporal direction with different α. From Table 1,
one can see that the numerical schemes (2.10) and (2.11) have an accuracy of order 2−α,
while numerical scheme (2.6) has an accuracy of order 1.

Table 1: Discrete L2-errors ‖uN−UN
h ‖L2 and convergence rates in temporal direction for Eq. (4.1).

α=0.25 α=0.5 α=0.75

N error order error order error order

10 2.81E-4 – 3.19E-4 – 4.20E-4 –

Scheme (2.6) 20 1.43E-4 0.96 1.57E-4 1.02 2.04E-4 1.04

40 7.20E-5 0.99 7.72E-5 1.02 9.95E-5 1.05

80 3.60E-5 1.00 3.79E-5 1.02 4.73E-5 1.05

10 6.42E-6 – 1.06E-4 – 1.50E-4 –

Scheme (2.10) 20 2.46E-6 1.38 3.37E-5 1.37 6.59E-5 1.18

40 8.99E-7 1.45 6.75E-6 1.41 2.85E-5 1.21

80 3.17E-7 1.53 2.49E-6 1.44 1.22E-5 1.23

10 6.62E-5 – 1.06E-4 – 2.09E-4 –

Scheme (2.11) 20 1.83E-5 1.85 3.37E-5 1.65 8.17E-5 1.36

40 4.97E-6 1.88 1.08E-5 1.64 3.25E-5 1.32

80 1.35E-6 1.88 3.53E-6 1.62 1.32E-5 1.30
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Table 2: Discrete L2-errors ‖uN−UN
h ‖L2 and convergence rates in spatial direction for Eq. (4.1).

L-FEM Q-FEM

M error order error order

5 6.16E-3 – 2.08E-4 –

10 1.57E-3 1.97 2.61E-5 2.99

20 3.96E-4 1.99 3.26E-6 3.01

40 9.91E-5 2.00 4.08E-7 3.00

To investigate the spatial convergence rate, we apply the scheme (2.6) to solve equa-
tion (4.1) using both linear and quadratic FEMs with several refined spatial meshes h.
Table 2 shows the discrete L2-errors and convergence rates with α=0.25 and N=M3. The
results in Table 2 indicate that the scheme (2.6) is of optimal convergence order r+1 in
spatial direction.

Example 4.2. Secondly, we consider the three-dimensional time-fractional Fisher equa-
tion

C
0D

α
t u=∆u+u(1−u)+g2, x∈ [0,1]×[0,1]×[0,1], 0< t≤1. (4.2)

Eq. (4.2) was originally proposed to describe the spatial and temporal propagation of a
virile gene. Later, it is revised by providing some characteristics of memory embedded
into the system [1, 20]. Again, to get a benchmark solution, we calculate the right-hand
side g2 of (4.2) based on the exact solution

u= t2sin(πx)sin(πy)sin(πz).

We apply all three proposed schemes with quadratic FEMs to solve Eq. (4.2) by taking
M=60 and several refined time steps. Table 3 shows the discrete L2-errors at time T=1
and convergence rates in temporal direction with different α. Table 4 shows the discrete
L2-errors at time T=1 and convergence rates in spatial direction for the scheme (2.6) with
α=0.25 and N=M3. Again, the results in Tables 3 and 4 illustrate our theoretical analysis.

5 Conclusions

Several linearized L1-Galerkin FEMs have been proposed for solving time-fractional non-
linear parabolic PDEs (1.1) to avoid the iterations at each time step. Error estimates in
previous literatures were generally obtained only in a small (local) time interval or in
the case that the evolution of the numerical solution decreases in time. In this paper, we
established a fundamental Gronwall type inequality for L1 approximation to the Caputo
fractional derivative, and provided the theoretical analysis to derive the corresponding
optimal error estimates without the restrictions required in previous works. Two numer-
ical examples are given to illustrate our theoretical results. In the future, we will consider
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Table 3: Discrete L2-errors ‖uN−UN
h ‖L2 and convergence rates in temporal direction for Eq. (4.2).

α=0.25 α=0.5 α=0.75

N error order error order error order

5 3.48E-4 – 4.16E-4 – 6.50E-4 –

Scheme (2.6) 10 2.24E-4 0.64 2.47E-4 0.75 3.51E-4 0.89

20 1.25E-4 0.84 1.32E-4 0.90 1.76E-4 0.99

40 6.61E-5 0.92 6.75E-5 0.97 8.65E-5 1.02

5 1.05E-3 – 1.34E-3 – 1.98E-3 –

Scheme (2.10) 10 2.96E-4 1.82 4.11E-4 1.70 7.09E-4 1.48

20 7.99E-5 1.88 1.24E-4 1.72 2.60E-4 1.45

40 2.15E-5 1.89 3.77E-5 1.72 9.89E-5 1.39

5 3.04E-4 – 5.85E-4 – 1.21E-3 –

Scheme (2.11) 10 9.26E-5 1.72 2.04E-4 1.52 4.99E-4 1.28

20 2.65E-5 1.80 6.91E-5 1.56 2.05E-4 1.28

40 7.86E-6 1.74 2.39E-5 1.53 8.46E-5 1.27

Table 4: Discrete L2-errors ‖uN−UN
h ‖L2 and convergence rates in spatial direction for Eq. (4.2).

L-FEM Q-FEM

M error order error order

5 5.73E-2 – 2.63E-3 –

10 1.54E-2 1.90 3.27E-4 3.01

20 3.91E-3 1.97 4.09E-5 3.00

40 9.86E-4 1.99 5.11E-6 3.00

the sharp error estimate with non-uniform meshes to deal with the singularity of the
solution at the initial value for the time fractional reaction-subdiffusion equations [22].
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