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Abstract. A Newton/LU-SGS (lower-upper symmetric Gauss-Seidel) iteration implicit
method was developed to solve two-dimensional Euler and Navier-Stokes equations
by the DG/FV hybrid schemes on arbitrary grids. The Newton iteration was employed
to solve the nonlinear system, while the linear system was solved with LU-SGS itera-
tion. The effect of several parameters in the implicit scheme, such as the CFL number,
the Newton sub-iteration steps, and the update frequency of Jacobian matrix, was in-
vestigated to evaluate the performance of convergence history. Several typical test
cases were simulated, and compared with the traditional explicit Runge-Kutta (RK)
scheme. Firstly the Couette flow was tested to validate the order of accuracy of the
present DG/FV hybrid schemes. Then a subsonic inviscid flow over a bump in a chan-
nel was simulated and the effect of parameters was investigated also. Finally, the im-
plicit algorithm was applied to simulate a subsonic inviscid flow over a circular cylin-
der and the viscous flow in a square cavity. The numerical results demonstrated that
the present implicit scheme can accelerate the convergence history efficiently. Choos-
ing proper parameters would improve the efficiency of the implicit scheme. Moreover,
in the same framework, the DG/FV hybrid schemes are more efficient than the same
order DG schemes.
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Key words: Implicit algorithm, discontinuous Galerkin method, DG/FV hybrid Scheme, Newton
iteration, Gauss-Seidel iteration.

1 Introduction

The use of unstructured meshes for computational fluid dynamics problems has become
widespread due to their ability to discretize arbitrarily complex geometries and the ease
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of adaptation in enhancing the solution accuracy and efficiency through the use of adap-
tive refinement techniques. In recent years, significant progress has been made in devel-
oping numerical algorithms for the solution of the Euler and Navier-Stokes equations on
unstructured grids. Nearly all production flow solvers are based on second-order numer-
ical methods, either finite volume method (FVM), finite difference method (FDM) or finite
element method (FEM). Nevertheless, many types of problems, such as computational
aeroacoustics (CAA), vortex-dominant flows and large eddy simulation (LES) of turbu-
lent flows, call for higher order accuracy (third-order and higher). The main deficiency
of widely available, second-order methods for the accurate simulations of the above-
mentioned flows is the excessive numerical diffusion and dissipation of vorticity. Appli-
cations of higher-order accurate, low-diffusion and low dissipation numerical methods
can significantly alleviate this deficiency of the traditional second-order methods, and
improve predictions of vortical and other complex, separated, unsteady flows. There-
fore, various higher-order methods have been developed in the last two decades [1–5],
especially for unstructured grids, including the well-known discontinuous Galerkin (DG)
method [3–7], the spectral volume (SV) method [8–11], and the spectral difference (SD)
method [12–14]. Interested readers can refer to the comprehensive review articles for
higher-order methods by Ekaterinaris [15] and Wang [16].

As the leader of higher-order numerical methods for compressible flow computations
in aerospace applications, the DG method has recently become popular for problems
with both complex physics and geometry. The DG method was originally developed by
Reed and Hill to solve the neutron transport equation [3]. The development of higher-
order DG methods for hyperbolic conservation laws was pioneered by Cockburn, Shu
and their collaborators in a series of papers on the Runge-Kutta DG (RKDG) method
[4–7]. Many other researchers have made significant contributions in the development
of the DG methods. Refer to [17] for a comprehensive review on the DG method history
and literature.

However, the DG method does have a number of weaknesses, including the huge
memory requirement and high computational cost. In order to improve the efficiency
in both memory and CPU time for 3D realistic complex configurations, many hybrid
approaches have been proposed, including 1) different schemes for inviscid and vis-
cous flux discretization [18, 19]; 2) hybrid approach based on domain decomposition
[20]; 3) hybrid approach based on local polynomial reconstruction, such as the PN PM

schemes [21–23], the reconstructed-based DG (RDG) scheme [24,25], the Hermite WENO
(HWENO) schemes [26, 27].

In our previous work [28–30], by comparing the DG methods, the k-exact FV meth-
ods and the lift collocation penalty (LCP) methods [31,32], a concept of “static reconstruc-
tion” and “dynamic reconstruction” was introduced for higher-order numerical methods.
Based on this concept, a class of high order DG/FV hybrid schemes was presented for
1D and 2D conservation law using a “hybrid reconstruction” approach. In the DG/FV
hybrid schemes, the lower-order derivatives of the piecewise polynomial are computed
locally in a cell by the DGM based on Taylor basis functions [33] (called as “dynamic
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reconstruction”), while the higher-order derivatives are re-constructed by the “static re-
construction” of the FVM, using the known lower-order derivatives in the cell itself and
its adjacent face neighboring cells.

The idea of DG/FV hybrid schemes came from that of the PN PM schemes proposed by
Dumbser et al. [21–23]. However, unlike the PN PM schemes, the present DG/FV hybrid
schemes are different from the PNPM schemes in the following aspects. Firstly, the orthog-
onalized Taylor basis functions are adopted in this paper, while the traditional Lagrange
finite element or hierarchical node-based functions are adopted in the PN PM schemes.
The purpose of choosing orthogonalized Taylor basis functions is to handle arbitrary
grids using a unified basis function. Secondly, the higher-order derivatives (DOFs) are
reconstructed directly by the Green-Gauss formulae since we let M = N+1, instead of
using another set of orthogonal basis functions as in the PN PM schemes or least-squares
reconstruction in the RDG schemes. The purpose of choosing M = N+1 is to ensure
the grid compactness and the reconstruction robustness. Thirdly, the semi-discretization
of the governing equations is considered only for discretization of the convection term,
while a local continuous space-time Galerkin method is used in the PN PM schemes to
construct a fully discrete scheme. The purpose of choosing the semi-discretization is to
develop the implicit algorithm to improve the convergence history further.

The DG/FV hybrid schemes had been successfully applied to solve the 2D Euler and
Navier-Stokes equations. The numerical results have demonstrated that, compared with
the same order DGM, the memory requirement and CPU time are reduced by approx-
imately 30% and 50%, respectively [29, 30]. We can expect the DG/FV hybrid scheme
to be more efficient for the three-dimensional cases, which is very important for realistic
applications.

Nevertheless, it is well known that higher-order spatial operators are much stiffer
than lower-order ones. The allowable CFL number decreases with increasing order of ac-
curacy for explicit schemes. For viscous problems with highly clustered mesh to resolve
the viscous boundary layer, explicit higher-order methods are severely limited by the
time step, and usually not competitive against implicit methods in terms of efficiency.
Therefore, a major pacing item in the CFD community is the development of efficient
time integration/iteration solution approaches for higher-order methods.

It has long been recognized that implicit algorithms are necessary to overcome the
time step limit suffered by explicit algorithms. Many types of implicit algorithms have
been successfully developed for flow solvers since 1970s, e.g., alternating direction im-
plicit (ADI) algorithm [34, 35], Newton iteration [36], the element Jacobi [37], Gauss-
Seidel (GS), preconditioned GMRES [38, 39], matrix-free Krylov [40], lower-upper sym-
metry Gauss-Seidel (LU-SGS) [41,42], point-wise relaxation algorithms [43], and implicit-
explicit Runge-Kutta iteration [44, 45]. Interested readers can refer to Ref. [46] for a com-
prehensive review on implicit algorithms. More recently, some of these implicit algo-
rithms have been applied to high-order spatial discretization mentioned earlier [36,38,40,
42, 43, 47–49]. For example, Xia et al. proposed a GMRES based implicit algorithm [47],
and then an implicit approach based on automatic differentiation [48] for their WENO
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RDG method; Sun et al. developed an implicit approach based on LU-SGS for their SD
method [42]. However, the pursuit of a faster and more efficient implicit algorithm for the
DG methods, as well as the DG/FV hybrid schemes, still remains one of active research
areas, especially for the high-order solvers on unstructured grids.

In this work, an implicit algorithm is divided into three iteration levels hierarchically.
The first level is the iteration of real-time advancing. For steady flows, the first-order
backward-difference Euler scheme is enough, because we do not care about the time
accuracy during reaching the converged solution. In general, it will result in a nonlinear
system about unknowns, and can’t be solved directly. Therefore, a second level iteration
strategy is employed with Newton iteration. Finally, a third level iteration is employed
to solve the large linear system generated by the second level iteration. In the third level
iteration, many schemes can be employed, such as the one-step lower or upper Gauss
Seidel, the lower-upper symmetric Gauss Seidel, Jacobian iteration, and GMRES, etc.

According to the hierarchical implicit framework, a Newton/LU-SGS iteration al-
gorithm was presented in this paper for the DG/FV hybrid schemes developed in our
previous work. The non-linear system of equations was “linearized” by the Newton it-
eration algorithm, and the linear system was then solved with the well-known LU-SGS
iteration approach. Furthermore, the effects on the convergence rate of several param-
eters in the implicit scheme were investigated with a set of typical test cases. The sim-
ulations were carried out on unstructured grids and triangular/quadrilateral (or Carte-
sian) hybrid grids to demonstrate the capability for arbitrary grids. The numerical re-
sults demonstrated that the implicit scheme speeds up the convergence rate more than
one order of acceleration, compared with the traditional explicit multi-stage Runge-Kutta
scheme. Choosing proper parameters (CFL-ratio, Newton sweep steps, and update fre-
quency of the mass matrix) would improve the convergence history. Moreover, in the
same framework, the DG/FV hybrid schemes are more efficient than the same order DG
schemes.

The remainder of this paper is organized as follows. In Section 2, the DG/FV hybrid
schemes based on Taylor basis functions are reviewed briefly. In Section 3, the implicit
algorithm is presented in detail, including Newton iteration, LU-SGS iteration, matrix-
free strategy, and the calculation of diagonal Jacobian matrix. In Section 4, some typical
2D test cases are simulated to validate the performance of the implicit scheme. Finally,
some concluding remarks are given in Section 5.

2 Spatial discretization of DG method and DG/FV hybrid

schemes

2.1 Flux divergence reconstruction procedure

For simplicity, consider the following two-dimensional Euler equations:

∂ui

∂t
+∇·Fi(u)=0, (2.1)
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where i is the index of variables, the state variable u=(ui). Fi(u)=( fi(u),gi(u))is the flux
vector. Assume that the domain Ω is subdivided into a collection of non-overlapping
elements Ωe. In [31], Huynh introduced a new approach to higher-order accuracy for
the numerical solution of conservation laws by using flux reconstruction (FR). In the FR
framework, a flux polynomial was defined by interpolating the values at the solution
points. Then a flux correction function was employed to account for the flux transporta-
tion between adjacent cells. In the further study [32], Wang introduced the penalty idea
to construct the correction function. In this subsection, we unify DG methods and the
DG/FV hybrid schemes via flux divergence reconstruction (FDR). Different from the
FR framework, FDR constructs flux divergence directly locally using Riemann flux as
boundary condition. In each Ωe, the flux divergence ∇·Fi is projected to a polynomial
space of degree n, Pn, noted as∇̂·Fi. It means that ∇̂·Fi can be expressed locally as a
piecewise polynomial of degree n

∇̂·Fi =
N−1

∑
p=0

d
(e)
i,p B

(e)
p , (2.2)

in which N = (n+1)(n+2)/2 for two-dimensional cases. In the following context, for
convenience, we sometimes omit the superscript of cell marker (·)(e), when there is no
confusion. Here, Bp are the finite element basis functions, di,p are the coefficients of flux
divergence, which can be calculated via L2 projection procedure.

Multiplying Eq. (2.2) by the test function Bq, integrating over the domain Ωe, and
performing integration by parts, we have

∫

Ωe

di,pBpBqdΩ=
∫

Ωe

Fi ·∇BqdΩ−
∫

Γe

(Fi ·n)BqdΓ, (2.3)

where Γe denotes the boundary of Ωe, n is the unit outward normal vector.
Replacing the flux function Fi ·n with the approximate Riemann flux hi= F̂i(u

+,u−,n),
we have

MiDi=Rhsi, (2.4)

in which Mi =
(

<BpBq>
)

is the local mass matrix. <BpBq >is the inner product of basis
functions in Ωe, and Di=(di,p) is the vector of the ith unknown. The right-hand-side term
Rhsi =(rhsi,p)

rhsi,p =
∫

Ωe

Fi ·∇BpdΩ−
∫

Γe

hiBpdΓ. (2.5)

Riemann flux F̂i is regarded as the boundary condition to reconstruct flux divergence
∇̂·Fi locally, illuminated in Fig. 1.

2.2 Taylor basis functions

In formula (2.5), the selection of basis function Bp is an issue. In [33], Luo et al. devel-
oped a DG method based on Taylor basis functions. Unlike the traditional DG methods,
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Figure 1: Flux divergene reonstrution.

this DG method represents the numerical polynomial solutions using a Taylor series ex-
pansion at the centroid of cell. The advantage of Taylor basis is uniform for different
element shape. In this paper, we choose an orthogonal, and hierarchical basis for arbi-
trary grid based on linear transformation. And the hierarchical structure is suitable for
the complementation of p-multigrid approach [49].

If we take Taylor series expansion for function f at the centroid of the cell Ωe, the
piece-wise polynomial solution fh can be expressed as follows:

fh =
k

∑
q=0

1

q!

(

ξ
∂

∂ξ
+η

∂

∂η

)q

fc=
k

∑
q=0

q

∑
r=0

Cr
qξq−rηr ∂q fc

∂ξq−r∂ηr
, (2.6)

in which fc means the centroid value, ξ,η are the local coordinates

{

ξ= x−xc
h ,

η= y−yc

h ,
(2.7)

(xc,yc) denotes the centroid coordinate, h :=
√

|Ωe| is defined as cell characteristic scale.
Furthermore, fh can be expressed as the cell-averaged value and its derivatives about
local coordinates at the centroid of the cell

fh = f̄ +
k

∑
q=0

q

∑
r=0

Cr
q

(

ξq−rηr−
〈

ξq−rηr
〉) ∂q fc

∂ξq−r∂ηr
. (2.8)

Here, f̄ is the cell-averaged value. 〈ξmηn〉 is called as the centroid moment with m−n
rank on Ωe. It was defined as

〈ξmηn〉=
1

|Ωe|

∫

Ωe

ξmηndΩ=
1

|Ωe|

∫

Ωe

(x−xc)m(y−yc)n

hm+n
dΩ. (2.9)
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〈ξmηn〉 can be calculated exactly with Gauss quadrature procedure, stored at the initial
step.

For the fourth order DG scheme in two-dimensional case, the total number of degree
of freedoms, N=10, and the Taylor basis functions can be written explicitly as

B0=1, B1= ξ, B2=η, B3=
1

2

(

ξ2−
〈

ξ2
〉)

, (2.10a)

B4= ξη−〈ξη〉 , B5=
1

2

(

η2−
〈

η2
〉)

, B6=
1

6
(ξ3−

〈

ξ3
〉

), (2.10b)

B7=
1

2
(ξ2η−

〈

ξ2η
〉

), B8=
1

2
(ξη2−

〈

ξη2
〉

), B9=
1

6
(η3−

〈

η3
〉

). (2.10c)

2.3 Review of DG method and DG/FV hybrid schemes

Another issue in formula (2.5) is how to construct the state variable distribution to com-
pute the convection term and the Riemann flux at Gauss quadrature points. Like flux
divergence, we project the state variables to Pn space locally,

u
(e)
i =

N−1

∑
p=0

u
(e)
i,p B

(e)
p . (2.11)

u
(e)
i,p is called as the degrees of freedom (DOFs). The discretization form of governing

equation can be re-written as

∫

Ωe

(

du
(e)
i

dt
+∇̂·F

(e)
i

)

dΩ=0. (2.12)

Substitute into Eq. (2.2),

Mi
d

dt

(

ui,p

)

=−rhsi,p. (2.13)

Eq. (2.13) is equivalent to the weak formulation of DGM. As well-known, one of the dis-
tinguished properties of DGM is the “compactness”, since it constructs the higher-order
piece-wise polynomial locally, instead of extending the grid stencil like the k-exact FVM.
As mentioned in Section 2.1, constructing piecewise polynomial in each cell is the key
step for numerical method. In DGMs, all DOFs are updated as time evolution (called
as “dynamic reconstruction” in Refs. [28–30]), while in FVMs, the high-order derivatives
are computed at the final output time (called as “static reconstruction”). Generally, the
“dynamic reconstruction” needs more CPU time and memory requirement to deal with
all the DOFs. However, the “static reconstruction” operator is unnecessary to update
all DOFs at each time step, most of the DOFs can be computed by reconstruction with
the help of neighboring cells, so a larger grid stencil should be adopted for higher-order
reconstruction, which results in a non-compact method. Naturally, a “hybrid reconstruc-
tion” approach can be adopted to achieve some balance between the “compact” property
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and the computational cost. A higher-order polynomial distribution of state variables
can be written as

v
(e)
i =

M−1

∑
p=0

v
(e)
i,p B

(e)
p . (2.14)

Thanks to the hierarchy of Taylor basis functions, v
(e)
i,p =u

(e)
i,p , when 0≤p≤N−1. Therefore,

the higher-order coefficients v
(e)
i,p , (N≤ p≤M−1) can be reconstructed like the traditional

FVMs. For example, the first order derivatives can be taken to construct the second order
derivatives with Green’s theorem, such as:

uxx=
1

|ΩG|

∫

ΩG

∂2u

∂x2
dΩ=

1

|ΩG|
∑

Γl∈∂ΩG

∫

Γl

∂u

∂x
nxdΓ. (2.15)

Similarly,

uyy=
1

|ΩG|

∫

ΩG

∂2u

∂y2
dΩ=

1

|ΩG|
∑

Γl∈∂ΩG

∫

Γl

∂u

∂y
nydΓ. (2.16)

The cross-derivatives can be calculated by Eq. (2.17) or Eq. (2.18). In our code, we take an
arithmetic mean to approximate the cross-derivatives

uxy=
1

|ΩG|

∫

ΩG

∂2u

∂x∂y
dΩ=

1

|ΩG|
∑

Γl∈∂ΩG

∫

Γl

∂u

∂x
nydΓ, (2.17)

uyx=
1

|ΩG|

∫

ΩG

∂2u

∂y∂x
dΩ=

1

|ΩG|
∑

Γl∈∂ΩG

∫

Γl

∂u

∂y
nxdΓ. (2.18)

The choice of the Gauss integral region ΩG is the main issue of this static reconstruction.
In this paper, we take the target cell as ΩG, it means ΩG =Ωe. The first-order derivatives
at nodes of the target cell are calculated from the neighboring cells using a weighted-
average approach. Here, the weight function is chosen as the inverse of the cell-center-to-
node distance. We call this static reconstruction operator as the cell-vertex type scheme.
The designed accuracy of this kind DG/FV hybrid scheme is the third order one, and
named as DG/FV3. Naturally, we can compute uxxx,uxxy,uxyy,uyyy using in the same
way, which is designed to achieve the fourth order, and named as DG/FV4. Anyway,
other kinds of Gauss integral region can be adopted here, which had been shown in [29].
Moreover, the least-squares approach can be adopted also to calculate the higher-order
derivatives, as shown in [24, 29].

Following this idea, the authors had successfully developed a class of DG/FV hy-
brid schemes for one-dimensional linear/non-linear scalar equation and Euler equations
in Ref. [28], and for two-dimensional scalar equations and Euler equations on arbitrary
grids in Refs. [29,30], respectively. More details can be found in these papers. For Navier-
Stokes equations, the second order spatial derivatives for viscous term in the governing
equations are eliminated by introducing a first-order auxiliary variable S=∇u. Thus, the
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original system is now rewritten as a component form of two first-order equations. In
this paper, the viscous flux is computed with the BR2 scheme (more details can be found
in Ref. [38]).

3 Implicit algorithm based on Newton/LU-SGS iteration

Assembling all DOFs of each state variable, each cell, Eq. (2.13) can be written as the
following ODE form,

M
dU

dt
=R(U), (3.1)

in which U=(Ue), Ue =(U
(e)
i ), U

(e)
i =(u

(e)
i,p ) and R(U)=(Rhse), Rhse =(Rhs

(e)
i ), Rhs

(e)
i =

(rhs
(e)
i,p ). M is the global mass matrix, which is block diagonal. The explicit multi-stage

Runge-Kutta iteration scheme is usually adopted to solve the above ODE formula. How-
ever, the explicit method is severely limited by the time step because of the restriction of
the CFL-stability. In this paper, we focus on the development of implicit time-integration
schemes to solve Eq. (3.1). Generally, an implicit algorithm can be divided into three
levels as follows.

3.1 The first level: temporal iteration

If we choose the first-order backward Euler difference scheme for time iteration, Eq. (3.1)
can be written as

M
∆Un+1

∆t
=R(Un+1), (3.2)

where ∆t is the time increment and ∆U is the difference of an unknown vector between
the nth and (n+1)th time steps. Obviously, in the first level, the first-order backward-
difference Euler scheme is enough for steady flows, since we do not care about the time
accuracy during iteration procedure. To ensure the time accuracy for unsteady flows,
other kinds of time integration schemes, such as the multi-step backward difference for-
mulations, the second-order accurate Crank-Nicolson scheme, or the implicit multi-stage
Runge-Kutta schemes are alternative. After the temporal iteration, it will result in a non-
linear system about Un+1. Then, the second level iteration strategy is employed to solve
the nonlinear system.

3.2 The second level: Newton iteration

Considering (3.2) as an example, we define a non-linear unsteady residual Res(W), for
the corresponding backward-difference Euler scheme as

Res(W)=W−Un−∆tM−1R(W). (3.3)
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The solution of the scheme can be achieved by solving the non-linear problem if R(W)=0
at each time step. Then, Newton iteration scheme can be written as

{

∂Res
∂W ∆Wm+1=−Res(Wm),

Wm+1=Wm+∆Wm+1,
m=0,1,2··· , (3.4)

where m refers to the sub-iteration index for the linearized system in the Newton iteration
scheme. The vector W represents intermediate solutions in the Newton solver for the
solution of Un+1. The initial guess for W is set as W0=Un. Note that if Eq. (3.4) is solved
to machine zero, the unsteady residual Res(Wm+1)=0, then Wm+1 will converge to Un+1.
If only one step of the Newton iteration is employed, Eq. (3.4) is equivalent to residual
linearization. For steady state problems, it is not necessary to drive the unsteady residual
to machine zero in each time step. In fact, if only one Newton sweep is adopted here, it
also can achieve a convergence solution for steady flows. In the numerical test, we found
that properly more Newton sweeps would be more efficient even for steady flows. The
main purpose of choosing Newton iteration algorithm is to unify the implicit treatment of
steady and unsteady solvers, instead of the traditional dual-time stepping technique [51].
For unsteady cases, a higher-order temporal scheme could be employed in first level.

The term ∂Res/∂W represents symbolically Jacobian matrix of unsteady residual,

∂Res

∂W
= I−∆tM−1 ∂R

∂W
, (3.5)

where ∂R/∂W is the Jacobian matrix of spatial discretization procedure, which is a large,
sparse block matrix, since the spatial discretization of both DG methods and the DG/FV
hybrid schemes are only depended on adjacent cells. Eq. (3.4) represents a system of
linear algebraic equations and needs to be solved at each Newton sweep. It is impossible
to solve directly by matrix inversion because of the large Jacobian matrix. Then a third
level iteration should be employed to solve this linear system.

3.3 The third level: lower-upper symmetric Gauss-Seidel iteration

The lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm proposed firstly by Jame-
son and Yoon [52] on structured grids has been successfully generalized for FVMs. The
LU-SGS algorithm is attractive because of its good stability properties and competitive
computation cost in comparison with explicit method. So we employ a LU-SGS sweep
to solve Eq. (3.4) approximately in this work. In LU-SGS, the Jacobian matrix of residual
∂R/∂W, can be split into three (block) matrices, a strict lower matrix, a diagonal matrix,
and a strict upper matrix, respectively,

∂R

∂W
=L+D+U , (3.6)
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where

L=(rek)e<k=
∂R(We,Wk)

∂Wk
, (3.7a)

D=(rek)e=k=
∂R(We,Wk)

∂Wk
, (3.7b)

U=(rek)e>k=
∂R(We,Wk)

∂Wk
. (3.7c)

Then, the Newton scheme can be written as

(I−∆tM−1(L+D+U))∆Wm+1 =−Res(Wm). (3.8)

If we choose a LU-SGS iteration to solve Eq. (3.8), we can employ the following forward
and backward sweeps:

(

I−∆tM−1(L+D)
)

∆W∗=−Res(Wm), (3.9a)
(

I−∆tM−1(U+D)
)

∆Wm+1=−Res(Wm)+∆tM−1L∆W∗ . (3.9b)

3.4 The matrix-free strategy

To avoid saving the lower and upper matrix, the matrix-free strategy is employed here.
Following the idea of a matrix-free approach, the product of Jacobian matrix and the
incremental vector is approximated by the increment of the flux vector
{

∑e>krek∆Wm+1
k ≈Rhse(Wm

e ,Wm
e<k,Wm+1

e>k )−Rhse(Wm
e ,Wm

k ),

∑e<krek∆Wm+1
k ≈Rhse(Wm

e ,Wm+1
e<k ,Wm

e>k)−Rhse(Wm
e ,Wm

k ),
m=0,1,2··· . (3.10)

3.5 Calculation of the diagonal Jacobian matrix

The diagonal Jacobian matrix can be calculated by an analytical or numerical method, at
least for Euler equations. In this work, the numerical method is employed following the
idea in Ref. [42]

ree =
∂rhsi,p(u

(e)
j,q ,u

(k)
j,q )

∂u
(e)
j,q

=
rhsi,p(u

(e)
j,q +ε,u

(k)
j,q )−rhsi,p(u

(e)
j,q ,u

(k)
j,q )

ε
, (3.11)

where ε is a small parameter, e.g., ε= 1×10−8. Although this approach is very easy to
implement for an arbitrarily complex residual operator like viscous term, or turbulence
model, it is quite expensive because each variable, as well as each degree of freedom, has
to be computed. Fortunately, it is not necessary to compute the matrix in each iteration.
In practice, we update the matrices every 10~100 time steps. Numerical tests in the fol-
lowing section show that this matrix-frozen approach does not significantly degrade the
convergence rate for steady flow.
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4 Numerical results and discussion

In this section, several typical steady cases are selected to illustrate the performance of the
proposed implicit algorithm for the 2D Euler and Navier-Stokes equations. The compu-
tational cost in the test cases represent the actual CPU time (second) on an Intel R© coreTM

i5-760(2.8GHZ) machine running the Windows system.

4.1 Couette flow

Couette flow between two parallel walls is used to evaluate the accuracy of the DG/FV
hybrid method on triangle grids. The upper wall moves at a constant speed, and the
lower one is static. The computational domain is a 4×2 rectangle as shown in Fig. 2. The
exact solution for this case is

u=
y

H
, v=0, (4.1a)

p=const=
1

γMa2
∞

, (4.1b)

T=T0+
y

H
(T1−T0)+

Pr(γ−1)

2Ma2
∞

y

H

(

1−
y

H

)

. (4.1c)

Figure 2: Computational grids for Couette �ow (Top: Grid1; Middle: Grid2; Bottom: Grid3).
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Table 1: Auray study and Comparison of e�ieny by DGM and DG/FV for Couette �ow.

L2error Order CPU cost on Grid1

2ndDGM

Grid level1 5.63E-06 —

3.68E-02Grid level2 1.41E-06 1.99

Grid level3 3.56E-07 1.99

3rdDGM

Grid level1 1.47E-08 —

6.46E-02Grid level2 1.83E-09 2.99

Grid level3 2.31E-10 2.99

4thDGM

Grid level1 2.70E-11 —

6.46E-02Grid level2 1.79E-12 3.87

Grid level3 1.40E-13 3.68

3ndDG/FV

Grid level1 8.31E-08 —

4.66E-02Grid level2 7.72E-09 2.89

Grid level3 1.01E-09 2.93

4ndDG/FV

Grid level1 3.15E-10 —

8.28E-02Grid level2 1.39E-11 3.89

Grid level3 9.36E-13 3.90

The following parameters are chosen as [53]: the temperature of the lower wall T0 =0.8,
the upper wall temperature T1 = 0.85, the domain size in y direction H = 2. The Mach
number Ma∞ of upper wall is set to be 0.1 and Reynolds number is set to be 100. The
flow variables at boundary faces are fixed to the exact solution, and the initial condition
is set to be a uniform flow, i.e. (ρ,u,v,T) = (1,1,0,1). Three meshes generated by an h-
refinement manner are used to take an accuracy study, as shown in Fig. 2. The pressure
is used to measure the order of accuracy, since it is constant as an exact solution. The
accuracy of results for different DG and DG/FV hybrid schemes, and CPU cost per time
step are shown in Table 1. We can see that the DG/FV hybrid schemes have achieved the
designed 3rd and 4th order of accuracy, even though the absolute errors of DG/FV hybrid
schemes are relatively larger than those of same-order DG scheme. It is reasonable, since
the DG/FV hybrid schemes extend the reconstruction stencil to the neighboring cells,
and DGM is constructed in the local cell. However, the reconstruction cost of DG/FV is
more efficient than that of DGM, because less Gauss points are required to calculate the
right hand side in the DG/FV hybrid schemes. Fig. 3 shows the convergence histories
of different schemes on Grid1 for both the 3-stage Runge-Kutta explicit scheme and the
present Newton/LU-SGS implicit scheme. We can observe that the convergence rate
with the implicit scheme is more efficient than the explicit one. In addition, the DG/FV
hybrid schemes consume less CPU time compared with the same order DG schemes,
even though they are almost the same with respect to the iteration steps.
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Figure 3: Residual histories of Couette �ow for di�erent shemes on Grid1 (Left: Residual vs. iteration step;

Right: Residual vs. CPU Time.)

4.2 Internal inviscid flow over a smooth bump

The bump shape is defined as

y=0.0625e−25x2
.

The numerical simulations are carried out on a triangular mesh as shown in Fig. 4. The
finer girds are generated recursively by refining each coarser grid cell into four finer grid
cells, denoted as level-1, level-2, level-3, level-4 grids, respectively. Anyway, the grid
points on the bump are modified onto the curve boundary. The level-1 grid has 120 cells.
All the simulations start from a uniform free stream with Mach number 0.5 everywhere
on the four level grids. The relative L2 norm of the density residual is taken as a criterion
to test the convergence history. Fig. 5 shows the Mach number contours by DGM2 and
DG/FV4 on level-2 grid. The Mach number contours by DGM3, DGM4 and DG/FV3 are
very similar to those by DG/FV4, so we do not show them here. It can be seen that the
flow field is more symmetric with accuracy increasing.

Figure 4: The omputation grid for bump problem.
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Figure 5: Mah number ontours on level-2 grid (0.45~0.78 with 30 lines, top: DGM2, bottom: DG/FV4).

To quantify the results, we take the L2 errors in entropy production as the accuracy
indicator until achieving steady state, which is defined as:

ErrorL2(Ω)=

√

√

√

√

∫

Ω
(S−S∞)

2dΩ
∫

Ω
S2

∞dΩ
,

where the entropy S = p/ργ . Table 2 lists the computed errors of entropy production.
Note that the optimal accuracy has been almost achieved, except DGM4 and DG/FV4.
Generally, the curve boundaries are represented with straight line segment in the 2nd or-
der CFD solvers. However, for higher-order solvers, this simple geometry representation
don’t match with spatial discretization, which may result in non-physical solution, even
make the solvers unstable. In [54], a curve modification technique was proposed to im-
plement solid wall boundary conditions. In this work, the Algorithm II in [54] is adopted,
where the curved element are not required, instead of an accurate representation of the
boundary normal at the quadrature points to impose the solid wall boundary condition
for curve geometries. In our implementation, the normal at the quadrature points are
computed using the local true surface normal based on the analytically defined bound-
ary geometries. Indeed, the curve modification is helpful to improve flow quality, and
can match with the 3rd order schemes. However, for the 4th order schemes, the accuracy
degrades. So more accurate algorithm for curve boundary should be studied further.

Fig. 6 shows the convergence histories of different schemes on level-4 grid for both the
3-stage Runge-Kutta explicit scheme and the present Newton/LU-SGS implicit scheme.
From Fig. 6, we can observe that the convergence rate with the implicit scheme is more
than an order of magnitude faster than the explicit one. In addition, the DG/FV hybrid
schemes consume less CPU time, compared with the same order DG schemes (see Fig. 6),
even though they are almost same with respect to the iteration steps. Fig. 7 displays the
convergence histories of DGM4 on different grids (level-1 to level-4), in which we employ
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Table 2: Auray study of DGMs and the DG/FV hybrid shemes for the bump ase.

L2error Order

2ndDGM

Grid level1 3.017E-03 —

Grid level2 5.636E-04 2.42

Grid level3 1.206E-04 2.22

Grid level4 2.429E-05 2.31

3rdDGM

Grid level1 4.865E-04 —

Grid level2 4.491E-05 3.44

Grid level3 4.841E-06 3.21

Grid level4 4.966E-07 3.29

4thDGM

Grid level1 6.961E-05 —

Grid level2 2.559E-06 4.77

Grid level3 2.249E-07 3.51

Grid level4 3.368e-08 2.74

3ndDG/FV

Grid level1 4.884E-04 —

Grid level2 4.779E-05 3.35

Grid level3 5.533E-06 3.11

Grid level4 6.810E-07 3.02

4ndDG/FV

Grid level1 6.900E-05 —

Grid level2 3.429E-06 4.33

Grid level3 3.491E-07 3.30

Grid level4 4.295E-08 3.02

the logarithm coordinate of iteration steps and CPU time in the x-axis to demonstrate the
convergence history more clearly. It can be seen that the performance of this implicit
schemes are very similar on different grids. Next, we study the effects of several parame-
ters on the convergence rate. These simulations are carried out on level-2 grid. Obviously
the maximum allowable time step is an important convergence parameter. In this work,
the CFL ratio is taken as the criterion of implicit maximum time, it is defined as

CFL_ratio=
dtimp

dtexp

in which dtexp is the maximum allowable time step of the RK explicit scheme. The effects
of CFL_ratio on the convergence rates are shown in Fig. 8 for DGM2. It is easily observed
that the convergence rate strongly depends on CFL_ratio. The larger CFL_ratio results in
better convergence rate. However, excessively large CFL_ratio may also cause relatively
lower convergence rate to steady state. The same conclusion is illustrated in Figs. 9-12,
which show the convergence histories of other spatial schemes. Generally, the CFL_ratio
= 40~100 is appropriate. The second parameter on the convergence rate is the number
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Figure 6: Residual histories of bump problem for di�erent shemes on level-4 grid (Left: Residual vs. iteration

step; Right: Residual vs. CPU Time).

Figure 7: Residual histories of bump problem on di�erent grids with DGM4 (Left: Residual vs. iteration step;

Right: Residual vs. CPU Time).

Figure 8: E�et of CFL_ratio for DGM2 (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).
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Figure 9: E�et of CFL_ratio for DGM3 (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).

Figure 10: E�et of CFL_ratio for DGM4 (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).

Figure 11: E�et of CFL_ratio for DG/FV3 (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).



L. Zhang et al. / Commun. Comput. Phys., 17 (2015), pp. 287-316 305

Figure 12: E�et of CFL_ratio for DG/FV4 (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).

Figure 13: E�et of Newton_sweep for DGM2 (Left: Residual vs. iteration step; Right: Residual vs. CPU

Time).

of Newton sweep steps in Section 3.2, denoted as Newton_sweep. For unsteady flow, the
unsteady residual in each time step should be driven to machine zero by enough Newton
sweeps. For steady state problems, it is unnecessary. In fact, if only one Newton sweep
is adopted, it also can achieve a convergent solution. In this numerical test, we study
the effect of Newton sweep steps for steady flow when CFL_ratio is set to be 40. The
convergence histories are illustrated in Figs. 13-17. We can observe that the convergence
rate depends either on Newton_sweep even for steady flow. When Newton_sweep = 1,
which means residual linearization, every time step consumes less CPU time, but more
iteration steps should be carried out to steady state, the total convergence rate is not op-
timal. With Newton_sweep increasing, the convergence efficiency is improved. Certainly,
too much Newton_sweep also results in lower convergence efficiency as shown in these
figures. Generally, Newton_sweep = 3~10 is preferable.

The computation of the Jacobian matrix is quite expensive as Eq. (3.11). To improve
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Figure 14: E�et of Newton_sweep for DGM3 (Left: Residual vs. iteration step; Right: Residual vs. CPU

Time).

Figure 15: E�et of Newton_sweeps for DGM4 (Left: Residual vs. iteration step; Right: Residual vs. CPU

Time).

Figure 16: E�et of Newton_sweep (Left: Residual vs. iteration step; Right: Residual vs. CPU Time).
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Figure 17: E�et of Newton_sweep for DG/FV4 (Left: Residual vs. iteration step; Right: Residual vs. CPU

Time).

Figure 18: E�ets of nUpdate for DGM4 and DG/FV4 (Left: Residual vs. iteration step; Right: Residual vs.

CPU Time).

efficiency, the matrix can be frozen for several time steps. The update frequency of Ja-
cobian matrix is denoted as nUpdate. Fig. 18 shows the convergence histories with dif-
ferent nUpdate for DGM4 and DG/FV4. In this test, the CFL_ratio is set to be 50, and
Newton_sweep=6. We can observe that the convergence rate weakly depends on nUpdate
when nUpdate ≈ 10. When nUpdate = 1, it means that the matrix is computed every
time step, which results in lower efficiency. With nUpdate increasing (more than 10), the
computation efficiency is almost similar, since the saved cost of updating the matrix is
counteracted during the residual convergence.

4.3 Subsonic flow over a cylinder

In this test case, we consider a subsonic flow around a circular cylinder on a hybrid tri-
angular/quadrilateral grid to demonstrate the applicability of the implicit method for
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Figure 19: Hybrid grid over irular ylinder.

Figure 20: Mah number ontours over a irular ylinder (0~0.9 with 30 lines). Top & Left: DGM2, Top &

Right: DGM4, Bottom & Left: DG/FV3 Bottom & Right: DG/FV4.
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Figure 21: Pressure oe�ient on the surfae (left) and entropy prodution on the surfae (right).

Figure 22: Convergene histories for �ow over a irular ylinder.

hybrid grids. The Mach number of incoming flow is set to be 0.38. The mesh is shown
in Fig. 19 with 800 quadrilateral cells and 2170 triangles. The quality of the numerical
solution can be checked by the left-to-right symmetry of the computed Mach number
contours around the cylinder, which is displayed in Fig. 20. It can be seen that the flow
field by DG/FV4 is indeed more accurate than that by DGM2. Fig. 21(left) shows the
pressure coefficients on the super surface of the cylinder. The entropy production distri-
bution of each scheme on the upper surface is provided in Fig. 21(right). It can be seen
that the distribution becomes more symmetric for higher-order schemes. Obviously, the
higher-order schemes (both DG and DG/FV) result in less entropy production for invis-
cid flows as we expected. The residual convergence histories are illustrated in Fig. 22.
We can observe that the residual can achieve machine zero efficiently for DGM2. For
higher-order schemes, the convergence rate is very efficient before the residual is driven
to about 1.0−7, afterwards, the residuals drop down slowly. We guess that it be related to
the curve boundary modification algorithm, as mentioned in the bump case (Section 4.2).



310 L. Zhang et al. / Commun. Comput. Phys., 17 (2015), pp. 287-316

In that case, the curve boundary modification can works well for residual convergence
since the curvature of the bump is small.

4.4 Low speed viscous flow in a square cavity

The last test involves a low speed laminar flow in a square cavity whose top wall moves
with a uniform velocity in its own plane. This test is performed with Mach number
of 0.1, and Reynolds number (Re) of 1000 and 10000, and by several DG and DG/FV
schemes. For the case of Re= 1000, a hybrid grid with 640 quadrangular cells and 478
triangular cells is adopted, as shown in Fig. 23(left), while for the case of Re= 10000, a
hybrid grid with 1440 quadrangular cells and 1110 triangular cells is adopted, as shown
in Fig. 23(right). The results are compared with those in Ghia [55] with second-order FD
scheme on 129×129 and 257×257 uniform structured grids, respectively. The computed
streamlines agree well with the results in Ghia [55] as shown in Fig. 24 and Fig. 25. It
can be seen clearly from Fig. 24 that, for the case of Re= 1000, there is a primary vortex
in the center and two secondary vortices in left-bottom corner and right-bottom corner
respectively. For the case of Re=10000, there is a vortex in the left-top corner and addi-
tional corner vortices in the left-bottom and right-bottom corner. Fig. 26 and Fig. 27 show
the velocity profiles for u along vertical line and v along horizontal line passing through
the geometric center of the cavity when Re=1000 and Re=10000, respectively. It can be
observed that the computed velocity profiles with the 4th order DG/FV4 scheme show
good agreement with the results in Ghia [55] and by DGM4, even though the grids are
one-order less than those in Ghia [55]. The residual convergence histories are illustrated
in Fig. 28 and Fig. 29 for the cases of Re= 1000 and Re= 10000, respectively. Compared
with the same-order DG schemes, the DG/FV hybrid schemes are more efficient, and this
conclusion is the same as the former tests.

Figure 23: The hybrid grid in a square avity. Left: Grid for the ase of Re=1000, Right: Grid for the ase of

Re=10000.
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Figure 24: Streamlines of omputation with Re=1000.

Figure 25: Streamlines of omputation with Re=10000.

Figure 26: Veloity pro�le of omputation with Re=1000. Left: u at x=0.5, Right: v at y=0.5.
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Figure 27: Veloity pro�le of omputation with Re=10000. Left: u at x=0.5, Right: v at y=0.5.

Figure 28: Convergene history of omputation (Re=1000).

Figure 29: Convergene history of omputation (Re=10000).
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5 Concluding remarks

In this work, an efficient implicit method based on Newton and LU-SGS iteration has
been developed for the high-order DG/FV hybrid schemes on two-dimensional unstruc-
tured/hybrid grids. The numerical results indicate that the Newton/LU-SGS implicit
method leads to a significant improvement of convergence rate over the traditional Runge-
Kutta explicit method. In addition, the effects of several parameters in the implicit scheme,
such as the CFL number, the Newton sub-iteration steps, and the update frequency of
mass-matrix have been investigated numerically. The results demonstrate that the CFL
number is the dominate parameter of efficiency of the implicit algorithm. Properly in-
creasing Newton sweeps are helpful for convergence rate. Less update frequency of the
Jacobian matrix will results in faster convergence. Moreover, the DG/FV hybrid schemes
are more efficient than the same order DG schemes. We are currently extending the im-
plicit method to three-dimensional cases, and the results will be presented in a future
publication.
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