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Abstract. We describe our implementation of a parallel fast multipole method for eval-
uating potentials for discrete and continuous source distributions. The first requires
summation over the source points and the second requiring integration over a con-
tinuous source density. Both problems require O(N?) complexity when computed di-
rectly; however, can be accelerated to O(N) time using FMM. In our PVEMM software
library, we use kernel independent FMM and this allows us to compute potentials for
a wide range of elliptic kernels. Our method is high order, adaptive and scalable. In
this paper, we discuss several algorithmic improvements and performance optimiza-
tions including cache locality, vectorization, shared memory parallelism and use of
coprocessors. Our distributed memory implementation uses space-filling curve for
partitioning data and a hypercube communication scheme. We present convergence
results for Laplace, Stokes and Helmholtz (low wavenumber) kernels for both particle
and volume FMM. We measure efficiency of our method in terms of CPU cycles per
unknown for different accuracies and different kernels. We also demonstrate scala-
bility of our implementation up to several thousand processor cores on the Stampede
platform at the Texas Advanced Computing Center.
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CiCP scientific software URL:

Distribution format: .gz

Programming language(s): C/C++

Computer platform: Any

Operating system: Unix-like operating systems

Compilers: icpc, g++

RAM: atleast 1GB

External routines/libraries: MPI, OpenMP, BLAS, LAPACK, FFTW3
Running time:

Restrictions:

Supplementary material and references: Software homepage, http://pvimm.org

Additional Comments:

1 Introduction

Many problems in physics and engineering require computing potentials for discrete or
continuous source distributions. In this paper, we focus on potentials related to constant
coefficient elliptic PDEs. Applications include computing gravitational interactions in
astrophysics [12, 18, 24], fluid flows [7,12,17], electro-magnetic and acoustic scattering
[3,22] and many others [6,10,11]. Particle N-body problems also arise from discretization
of boundary integral representation [21,28]. Volume potentials are required for solution
of elliptic PDEs. Several applications discretize volume potential problems in to particle
N-body problems with mollification of the kernel function [17]. However, these methods
are low order. Our implementation uses a high order adaptive method of [15], which
is designed for computing volume potentials. The method uses piecewise Chebyshev
polynomials on an adaptive octree to represent the continuous source distribution and
also the final potential. Our particle and volume FMM is based on the kernel independent
formulation of [26] and this allows us to solve problems for a wide range of kernels
corresponding to constant coefficient elliptic PDEs. In this paper, we present results for
Laplace, Stokes and low-frequency Helmholtz (wavenumber < 20). We support free-
space and periodic boundary conditions. Our method can also be used to solve variable
coefficient elliptic PDEs by solving the integral formulation using iterative linear solvers.
The details of that work can be found in [20].
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Features We now summarize the most important features of our method:

® Our method is kernel independent and supports kernel functions for several differ-
ent constant coefficient elliptic PDEs.

¢ We modified the original Kernel Independent FMM (KIFMM) formulation to use
backward stable pseudoinverse and this allows us to achieve better accuracy.

¢ The volume FMM scheme is adaptive and high order accurate.

¢ The piecewise polynomial representation of potential, for volume FMM, allows us
to evaluate the potential at arbitrary points and also compute derivatives of the
potential.

¢ We support computation in both single and double precision.

¢ Our implementation is highly optimized and uses cache optimized algorithms for
far-field computations and vectorized kernel functions for near interactions.

¢ We support shared memory parallelism using OpenMP and distributed parallelism
using MPI. Our volume FMM implementation can also utilize NVIDIA GPU or Phi
coprocessor on heterogeneous architectures.

Related work The original particle FMM was first introduced in [9] for Laplace ker-
nel. The method has since been optimized [2] and extended to other kernel functions
in [6,7,11]. The earliest distributed memory algorithms for particles were presented
in [24,25]. They introduced the concepts of local essential tree and space-filling curves
which are now used in many implementations including ours. The original KIFMM was
presented in [26] and parallel implementations were presented in [16,27]. Other algo-
rithms for general kernel functions include [8] and black-box FMM of [5]. There has been
extensive work on optimizing the FMM. Our distributed memory FMM follows closely
on our previous work on particle FMM [16]. Other scalable implementations of particle
N-body codes include [12-14,28]. The importance of blocking to explore locality was also
discussed in [1]. An efficient implementation for far-field interactions in black-box FMM
was discussed in [23]; however, this approach worked well only for uniform particle dis-
tributions, using single precision computation on GPUs.

The volume FMM was first presented in [4] for 2D and then in [15] for 3D. We ex-
tended this work in [19], by including new algorithmic optimizations, vectorization, sup-
port for coprocessors and distributed memory parallelism.

Organization of the paper In Section 2, we explain the algorithms for our particle and
volume FMM. We also discuss modifications to the original algorithm, by using back-
ward stable pseudoinverse to improve the accuracy and convergence of the method.
Then, in Section 3, we briefly discuss several performance optimizations and distributed
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memory parallelism. In Section 4, we explain the steps for compiling our software and
running the code. In Section 5, we present convergence and scalability results for our
method. Finally, in Section 6 we conclude with a summary of our contributions.

2 Methodology and algorithms

In this section, we first introduce the particle N-body problem and briefly describe the
basic idea behind the fast multipole method in this context. We discuss the kernel inde-
pendent variant [26] for particle N-body problems. Finally, we describe the modifications
to the particle FMM, for evaluating volume potentials. In Table 1, we summarize nota-
tion used this section. We will introduce and explain the notation in detail as we discuss
these concepts in the following section.

Table 1: Notation used in this paper for N-body problems, tree data structure, particle and volume FMM.

K kernel function

v, q source: coordinates, density

X, U target: coordinates, potential

Npt number of source, target points

N number of unknowns in target potential
T octree

B tree node (octant)

Nieaf  number of leaf octants
N(B) near region of B
F(B) farregion of B: Q\N(B)

m multipole order: number of points on an edge of equivalent surface
q maximum degree of Chebyshev polynomials

f source density function

Etree tolerance for adaptive refinement

N-body problem We are given a set of N, source and target points. For each source
point, we have its coordinates y; € R* and its source density g;. For each target point, we
have its coordinates x; and the unknown potential ;. The potential u; at target points x;
is given by the sum:

Nyt

”i:ZK(xi;yj)q]‘; VZ.::l/"'/l\]pt/
j=1
where K is called the kernel function. Computing this sum directly requires O(N %t) time.
With FMM, we can evaluate this sum in O(N,;) time.
To solve the N-body problem with FMM, we first partition the domain using a tree
data structure 7 (Fig. 1). For each target point x; € B, we compute interactions from all
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F(B)

Near
N(B)

Figure 1. Near A'(B) and far F(B) interaction nodes for a target node 5.

other tree nodes in 7. In FMM, we split these interactions into two parts, near interac-
tions and far interactions:

ui= Y K(xpy)gi+ Y, K(xiy)g.
y;,EN(B) yi€F(B)

The near interactions are computed exactly through direct summation, by adding
contributions from each source point y; € N'(B). The tree nodes further away from B are
called well-separated from B.

Interactions from source points in a well-separated tree node to target points in B, are
low rank and can be approximated. Furthermore, instead of computing interactions at
the leaf level, far-field interactions in FMM are computed hierarchically at the coarsest
possible length scale. In Fig. 2, we show far-field interactions for a target node 5. At
the finest level, we compute interactions to 5 from other source nodes B;s € V(B) which
are not well-separated from P(B) (parent of 53). Similarly, at the next coarser level we
compute interactions to P (B) from source nodes B;€V (P (B)) and so on for all ancestors
of B. Finally, we combine the contributions from all ancestors of B to obtain the far-field
potential at target points in B.

P(P(B))

V(P(P(B)))

Figure 2: Far interactions broken into parts evaluated hierarchically at different levels in the tree.
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2.1 Kernel Independent FMM

Here we summarize the important features of the Kernel Independent FMM. In particu-
lar, we discuss the far-field translation operator, which is the defining feature of KIFMM.
We first discuss the two basic building blocks for the FMM in the context of KIFMM:
the multipole expansion and the local expansion. The far-field interactions will then be
defined by translation operators between these expansions.

Multipole Expansion For a tree node B, the multipole expansion (Fig. 3) approximates
the far-field potential due to the source points within B. In KIFMM, we evaluate the
potential u*5 from these source points at points x*% on a check surface. We then compute
a set of densities g*? for points y*% on an equivalent surface by solving a linear system

B B .
u” = Z K(x! Yi)gi, Vi
y]'GB

Then, the potential at a point well-separated from B can be evaluated by computing the
potential due to these equivalent sources. In 3D, the points y*® and x*5 are arranged in
regular grids on cubic surfaces (equivalent and check surface) centered on B. There are
m xm points on each face of the cube, where m is the multipole order and it determines
the accuracy of the multipole expansion. The edge length of the equivalent surface (s,)
and check surface (s.) must satisfy the relation s <s, <s. <3s, where, s is the edge length
of B. The ratios s./s and s./s are determined empirically and are set to 1.05 and 2.95
respectively in our implementation.

Check Surface (acEL’B) Check Surface (acEL’B)

Equivalent Surface (y}:’B, QZ’B) Equivalent Surface (y}:’B, q;:"B)

. B
L e

Sources (yj,q;) Sources (v, q;)

Figure 3: Left: Multipole expansion of a leaf octant computed directly from source points. Right: Multipole
expansion of a non-leaf octant computed from the upward-equivalent density of its children.

Local Expansion For a tree node B, the local expansion (Fig. 4) approximates the po-
tential at points in the interior of 5 due to the source points well-separated from it. We
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Figure 4: Left: Local expansion from upward-equivalent source distribution of a well-separated octant. Right:
Local expansion from downward-equivalent source distribution of the parent octant.

evaluate the potential u??® from well-separated source points at points x*% on a check

surface. We then compute a set of densities g%% for points y»® on an equivalent surface
by solving a linear system

d,B d,B .
u;” = Z K(x; ,y]-)q]-, Vi.
y]'GB

Then, the potential at a point in the interior of B can be evaluated by computing the
potential due to these equivalent sources. As for multipole expansion, the points y4?
and x%B are arranged in regular grids on cubic surfaces (equivalent and check surface)
centered on B, with m x m points on each face. The edge length of the equivalent surface
(se) and check surface (s;) must satisfy the relation s <s. <s, <3s, where, s is the edge
length of B. The ratios s./s and s./s are determined empirically and are set to 1.05 and
2.95 respectively in our implementation.

We now define five translation operators for computing far-field interactions using
multipole and local expansions.

® S2M translation. For a leaf node, we compute the check potential directly from its
source points and then compute its multipole expansion by solving a linear system
as discussed above (Fig. 3: left).

* M2M translation. For a non-leaf node, we compute the check potential by evaluating
the multipole expansion of each of its children and summing the result. We then
compute its multipole as discussed earlier (Fig. 3: right).

* M2L translation. For a target node By we compute contributions from a well-separated
source node B;, by evaluating the multipole expansion of Bs at the check surface
for By and computing its local expansion by solving a linear system (Fig. 4: left).
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® L2L translation. For a node B, we add contribution from the local expansion of its
parent P(B) by evaluating the local expansion of P(B) at the check surface of B
and then computing the local expansion of B as discussed before (Fig. 4: right).

o L2T translation. For a leaf-node B, we evaluate far-field component of the potential
at its target points by evaluating its local expansion.

An outline of the steps in the FMM algorithm is presented below. We refer to steps
2,3 and 4 as the downward pass. Fig. 5 shows the interactions in upward and downward
passes for a quadtree.

1. Upward pass. For all leaf nodes compute S2M translation. Then, for all non-leaf
nodes compute M2M translations in a post-order traversal of the tree.

2. Far interactions. For all nodes, compute M2L translations from well separated source
nodes.

3. L2L and L2T interactions. For all nodes compute L2L translations in pre-order traver-
sal of the tree. Then, for all leaf nodes, evaluate the local expansion to get the target
potential.

4. Near interactions. For each leaf node, compute direct interactions from other leaf
nodes which are not well-separated from it and add the result to the target potential.

Figure 5: Upward Pass: constructing multipole expansions and Downward Pass: constructing local expansions,
evaluating near interactions.

FFT Acceleration of M2L interaction Each M2L translation involves computing the
downward-check potential for a node B from the multipole expansion of a node well-
separated from it. Each surface has O(m?) points and the translation requires O(m*)
complexity. Since the points are on a regular grid, this operation can be treated as a con-
volution in three dimensions. The convolution converts into a complex Hadamard prod-
uct in Fourier space. This reduces the computational cost to O (m*logm) when Fourier
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transform and its inverse are computed using FFT and IFFT. The FFT and IFFT need to
be computed only once for each tree node. The details can be found in [26].

Backward Stable Pseudo-inverse In the original KIFMM, when computing the multi-
pole expansion (or the local expansion) from the check potential, the linear system was
solved by computing a pseudo-inversei.e. by computing a singular value decomposition
(SVD), inverting the diagonal matrix with appropriate regularization and then multiply-
ing the factors together. However, it is an ill-conditioned linear system and therefore,
with finite precision arithmetic, we lose precision when computing the equivalent den-
sity. Consequently, for the original FMM, we could only achieve about 9-digits of accu-
racy in double precision.

There are two source of errors when computing the equivalent density. The first is
from the round-off error (due to finite precision) in the check potential which gets am-
plified by a factor equal to the condition number of the matrix. The second error source
is from multiplying the factors together to form the pseudo-inverse, since the diagonal
matrix has very large and very small numbers. It turns out that the error from check
potential, which is amplified by the condition number of the matrix, is also damped by
by a similar factor when computing the far-field potential from the equivalent density.
Therefore, this component of error does not affect the final accuracy of FMM. The error
introduced when forming the pseudo-inverse can be avoided by storing the inverse as its
factors. The diagonal matrix can be multiplied with one of the two orthonormal matrices
and therefore, we only need to store two factors. This is the basic idea behind the back-
ward stable pseudo-inverse. With this modification, we can now achieve about 14-digits
of accuracy with KIFMM in double precision.

2.2 Volume FMM

In this section we describe how the kernel independent FMM can be adapted to evaluate
potential due a to continuous source distribution f defined on a cubic domain (). Instead
of summation, as for particle FMM, we now need to evaluate integrals over the compu-
tational domain (). Similar to particle FMM, we partition the domain using an octree and
evaluate interactions over each leaf node in the tree. As before, we distinguish between
near and far (well-separated) octants:

u@)= [ Ka=nfe)+ [ Ka=pf).

N(x) F(x)

The far-field interactions (over F (x)) are approximated using multipole and local expan-
sions and near interactions (over N (x)) are evaluated exactly. Since the kernel function
has a singularity at the origin, this leads to singular and near-singular integrals which are
costly to evaluate.
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Next, we will discuss the octree data structure used to represent the source density
function f. We will also describe efficient computation of singular and near-singular
integrals on this data structure. A detailed discussion of the volume FMM can be found
in [15] and [19].

Tree construction We discretize the continuous source distribution f, using a piecewise
polynomial representation. We discretize the domain using an octree and use Chebyshev
polynomials at each leaf node. We evaluate the given density function f at the Cheby-
shev nodes in each leaf node and then use a tensor product rule to compute Chebyshev
coefficients and retain coefficients up to degree g. At each leaf node, the function f can
now be evaluated at a point (x1,x2,x3) as follows,

i+j+k<q

flrxoxs)= Y aTi(x1)Ti(x2) Te(xs), (2.1)
i, k>0

where a; ;; are the Chebyshev coefficients, T;(x) is the Chebyshev polynomial of degree
i in x. For adaptive mesh refinement, we start with a uniform octree, and compute the
absolute sum of the highest order coefficients for each tree node. This gives an estimate
of the polynomial truncation error for each node. For tree nodes with a truncation error
larger than a specified tolerance €., we further subdivide the nodes until we achieve the
desired tolerance or reach the maximum allowed depth for the tree. For volume FMM,
the final potential u is also represented by piecewise polynomials on this octree data-
structure, by first evaluating the potential at the Chebyshev points of each leaf node and
then computing the Chebyshev coefficients.

Singular integration With a polynomial representation of f at a leaf node B, we can
compute the potential from B at any point in the domain (). This lets us compute the
multipole expansion of a leaf node, by computing the potential at points on the check
surface, and also compute near interactions by evaluating the potential at the Chebyshev
node points of adjacent tree nodes. However, since the kernel function K is singular,
computing potential at points close to or within B can be very expensive. To compute
interactions efficiently, we precompute integrals I over Chebyshev basis functions T; for
each evaluation point x relative to the tree node. Then, the potential at a point x from a
tree node with Chebyshev coefficients a; is given by the sum, u(x) =Y ;4 IX. Therefore,
we can form matrices and compute S2M translations and near interactions between leaf
nodes through matrix-vector products.

To limit the memory needed for these precomputed quadratures, we set a maximum
allowed depth for the tree and also enforce a 2:1 balance constraint on the tree nodes
i.e. adjacent leaf nodes can not differ by more than one level. To further reduce mem-
ory overhead, we note that kernel functions are translation invariant and therefore these
quadratures need to be computed for only one octant at each level in the octree. For many
problems, kernel function is also scale invariant (e.g. Laplace and Stokes), and for these
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we need to precompute for only one level in the tree. The kernel functions also have
directional symmetry and this further reduces the memory requirement.

3 Performance optimizations

In this section we mention several important optimizations and discuss parallel imple-
mentation of our method. For a detailed discussion of these concepts, we refer the inter-
ested readers to [19]. We first discuss intra-node optimizations in Section 3.1 and then
discuss distributed memory parallelism in Section 3.2.

3.1 Intra-node optimizations

Modern computing architecture is extremely complex, with multiple levels of cache,
multi-core CPUs, non-uniform memory access, vectorization and coprocessors. Extract-
ing maximum performance requires a considerable amount of programming effort and
often requires redesigning of the algorithms. In this section, we discuss these intra-node
optimizations which we have included in our implementation.

Near interactions In particle FMM, computing near interactions requires evaluating
the kernel functions. This is one of the most expensive parts of the FMM algorithm. In
our code, we have developed highly optimized implementations for Laplace, Stokes and
Helmholtz kernels. We offer single and double precision implementation with both SSE
and AVX vectorized versions for these kernels. For Laplace and Stokes kernels, evaluat-
ing inverse square root operation is the most expensive part of the computation. This op-
eration has high latency and low throughput on current architectures. In our implemen-
tation, we use the fast approximate inverse square root instruction to compute x ~a~1/2.
Then, for higher accuracy, we perform a Newton iteration x =0.5x(3—ax?). The scaling
by 0.5 is deferred until after computing the sum over all source points. With these op-
timizations we achieved about 3.8 x speedup for double precision with Laplace kernel.
For the Helmholtz kernel we use Intel SVML library, when available, for evaluating sin
and cos functions.

For the volume FMM, near interactions require computing matrix-vector products.
The interaction matrices depend only on the relative position of the source and target
tree nodes. Therefore, we group several interaction in the same direction and compute
all interactions with a matrix-matrix product. In addition, several interaction matrices
are related due to directional symmetry of the kernel function. Therefore, we also group
interactions in different directions together. This approach has better data locality and
gives higher performance. To compute these matrix-matrix products, we use BLAS li-
braries which are vectorized and highly tuned. Therefore, we can achieve close to the
peak theoretical performance.
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Far-field interactions Each M2L interaction requires computing a Hadamard product
and this has low arithmetic intensity when computed naively. The unoptimized imple-
mentation was memory bound and achieved just 5% of the peak floating point perfor-
mance. In our implementation, instead of computing interaction between two octants
at a time, we compute all 8 x 8 interactions between two groups of sibling octants. We
interleave sibling data and this allows us to vectorize the computation. We also use
spatial locality of interactions to further improve data locality and arithmetic intensity.
Our implementation has been carefully tuned and vectorized using AVX and SSE vector
intrinsics. These algorithmic improvements in addition to using shared memory par-
allelism with OpenMP have improved performance by over an order of magnitude. On
Intel Sandy Bridge architecture, we achieve over 50% of the peak theoretical performance
for far-field computation, for both particle and volume FMM.

Asynchronous execution on coprocessors In our volume FMM, we have added sup-
port for NVIDIA GPUs (using CUDA) and Intel Phi coprocessors. We use task parallelism
to compute near interactions on coprocessors and far interactions on the CPU. All com-
putations and memory transfers between the coprocessor and the host are asynchronous
and overlapped with computation on CPU.

3.2 Distributed memory parallelism

The PVFMM library supports distributed memory parallelism using MPI. In this section,
we discuss parallel tree data structures for particle and volume FMM and also discuss
the communication step in parallel FMM.

Parallel tree construction We use space-filling curve to partition data across processors.
For particle FMM, we start with a set of coordinates for source and target points and
compute the Morton id for each particle coordinate. We sort the particle coordinates
and the associated source density by Morton id and partition the data uniformly across
processors. Each processor constructs its local octree and then we remove duplicate leaf
octants at processor boundaries. This gives a distributed octree with leaf octants sorted
by their Morton id.

For volume FMM, we start with a uniform octree partitioned between processors as
described above. We refine this octree adaptively. If, at any stage in the adaptive refine-
ment, we observe a significant load imbalance, then we repartition this list of Morton id
sorted leaf nodes and continue adaptive refinement. We have also developed a very ef-
ficient parallel algorithm for 2:1 balance refinement. Our original algorithm did not load
balance during the refinement process and redistributed load as a post processing step.
For highly adaptive trees, this resulted in very large load imbalance and this affected
scalability. Our new algorithm is more robust to such load imbalance.
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FMM communication In the parallel FMM algorithm, at the end of the upward pass,
we need to communicate ghost octants so that the source densities and multipole expan-
sions of these ghost octants are available to the user processes. Once this communication
completes, the resulting tree is called a local essential tree and has all the necessary data
for downward pass of the FMM algorithm. To communicate these ghost octants, we use
the hypercube communication scheme of [16]. This scheme requires only point-to-point
communication of octree node data and has been shown to be scalable to several thou-
sand processors. For an uncongested network, and a uniform octree, the communication
cost is expected to scale as O((N/p)3/%logp) for p processors and N unknowns.

4 Software installation and numerical examples

The latest version of this library can be obtained from the project webpage (http://
pvimm. org). After downloading and extracting the source code, the configure script must
be executed to configure the package for the target system. In most cases, the configure
script will detect the compiler and the libraries needed to build the library. If it is unable
to find a library, it will display options with which the user must specify the location
of the library. Our code requires at least an MPI C++ compiler, with OpenMP, FFTW3,
BLAS and LAPACK libraries. For GPU support, nvcc compiler and cuBLAS library are
needed. Additional compiler options or library paths can be specified to the configure
script. These details can be found in the INSTALL file. Once the configure script com-
pletes, the library can be compiled by running make.

Several examples are provided in the examples directory. These can be compiled by
running ‘'make all-examples” on the command line. Executing these examples lists the
arguments needed by them. In the scripts directory, we provide scripts to generate con-
vergence and scalability results for particle and volume FMM. We present these results
in the following section.

5 Numerical results and performance analysis

We present numerical results to demonstrate convergence of our method in Section 5.1.
We also demonstrate single node (shared-memory) performance for our code. Then, in
Section 5.2 we demonstrate scalability of our method. In Table 2, we summarize the
notation used in this section.

Hardware We use Stampede and Maverick platforms at Texas Advanced Computing
Center (TACC) for our experiments.

Stampede is a Linux cluster with 6400 compute nodes connected by a Mellanox FDR
InfiniBand network in a fat-tree topology. Each node has two 8-core Intel Xeon E5-2680
running at 2.7GHz and has 32GB of memory. In addition, each node also has one Intel
Xeon Phi SE10P coprocessor. The peak theoretical double-precision performance for each
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Table 2: Notation for convergence and performance results in Section 5.

Error maximum relative error in particle potential
|lef|loo, |leu||co  relative error in source density and potential
TTree tree construction time

Tsetup setup time

Temm FMM evaluation time

Tan total solve time = Tyee + Tsetup + TrvM
cycles/N number of CPU cycles per unknown

node is about 1.4TFLOPS'. There are also 16 large memory nodes with 32 cores and 1TB
of memory per node.

Maverick is a 132 node Linux cluster with a Mellanox FDR InfiniBand interconnect.
Each node has two 10-core Intel Xeon E5-2680 v2 running at 2.8GHz, 256GB of memory
and an NVIDIA Tesla K40 GPU.

Software We use the Intel compiler version 14.0.1.106, with Intel MPI library version
4.1.3.049 to compile our code. We compile our code with -O3 optimization level and with
-mavx option for AVX vectorization. We also use Intel SVML to vectorize the Helmholtz
kernel. In addition, we have used FFTW3/3.3.2 and Intel MKL libraries. For the GPU
runs, we used the NVIDIA compiler version 6.0 to compile the CUDA code and cuBLAS
library for GEMM on GPU.

5.1 Convergence results and single node performance

All results in this section were obtained on a single node of Stampede, using one MPI
process and 16 OpenMP threads. For most results, we have used a regular (16-core, 32GB)
node. However, for some results we needed to use the large memory node, while using
only 16-cores and with KMP_AFFINITY=compact. In the results, we indicate wherever
we have used a large memory node.

We first show convergence for the particle FMM. As mentioned earlier, for particle
FMM, the near interactions are computed exactly and the accuracy of the far-field inter-
actions is determined by the multipole order m. In our results, we report the maximum
relative error (estimated by computing direct interactions for a subset of the target parti-
cles) as we increase the multipole order. For each case the source and the target particles
coincide and the source densities are generated from a uniform random distribution in
the interval (-0.5, 0.5). We use two kinds of particle distributions: uniform distribution with
particles distributed uniformly in a cube and highly non-uniform distribution with particles
on the surface of an ellipsoid, distributed uniformly over the azimuthal and polar angles.

¥345.5GFLOPS for the CPU and 1.1TFLOPS for the coprocessor.
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Table 3: Convergence with increasing multipole order m for Laplace kernel with uniform particle distribution.
The timing results are for 16 cores on a single node of Stampede.

Npt Nieas m | Error Tan CyClES/Npt TTree TSetup Tevim (GFLOPS)
1.8e+44 4 | 5E-04 0.51 2.2E+4 | 0.19 0.14 0.15 (232)

1E+6 1.5e+4 6 | 5E-06  0.57 2.5E+4 | 0.18 0.11 0.25 (246)
41e+3 10 | 7E-09  1.26 54E+4 | 0.16 0.06 1.01 (174)
2.0E+3 16 | 2E-13 277 1.2E+5 | 0.15 0.09 2.49 (161)
1.5e+45 4 | 5E-04 5.09 2.7E+4 | 2.20 1.24 1.24 (235)

8E+6 1.2E+5 6 | 46-06 5.52 3.0E+4 | 213 0.92 2.08 (247)
33E+4 10 | 6E-09 11.66 6.3E+4 | 2.15 0.34 8.71 (173)
1.5e+4 16 | 1E-13 24.80 1.3e+5 | 2.09 0.24 22.02 (158)

Table 4: Convergence results for Laplace kernel with a highly non-uniform particle distribution. For m =4, the
octree is refined to 12 levels for 1E+6 particles and 14 levels for 8E+6 particles.

Npt Nieas m | Error Tan CyClES/Npt TTree TSetup Tevim (GFLOPS)
3.1E+4 4 | 1E-04 0.55 24E+4 | 0.23 0.14 0.15 (267)

1E+6 2.1E+4 6 | 2E-06  0.57 25E+4 | 0.21 0.10 0.24 (285)
1.8e+44 10 | 8E-10 1.32 57E+4 | 0.22 0.11 0.96 (156)
6.2E+3 16 | 2E-13 294 1.3e+5 | 0.19 0.12 2.61 (143)
21E+5 4 | 2E-04 4091 2.7E+4 | 2.31 1.06 1.13 (280)

8E+6 1.7E+5 6 | 1E-05  5.31 29e+4 | 221 0.84 1.83 (284)
1.5e+5 10 | 6E-10 12.13 6.6E+4 | 2.58 0.92 8.11 (154)
43E+4 16 | 4E-14 25.00 1.4e+5 | 2.30 0.37 21.82 (140)

The ellipsoid has a pole-to-pole distance of 0.9 and the equatorial cross-section is a circle
of diameter 0.225.

In Table 3 and Table 4, we report results for Laplace kernel with uniform and non-
uniform particle distributions respectively. In each table we report two sets of results, first
with 1E+6 particles and in the second with 8E+6 particles. In each case as we increase the
multipole order m, we observe spectral convergence in maximum relative error, almost
up to machine precision. We observe similar results for Stokes and Helmholtz kernels in
Table 5 and Table 6 respectively. The Helmholtz problem corresponds to a wavenumber
of ten. To get meaningful results, the distance between points on the check surfaces at
the coarsest scale in the tree must resolve the oscillatory part of the Helmholtz kernel
and therefore, we start with a larger multipole order. Ideally, we should use a larger
multipole order only at the coarsest levels of the octree; however, this feature is currently
not supported in our implementation.

In all results, we also report the total wall-time to obtain the solution T4y, and the
number of CPU cycles per particle. The cycles per particle is computed as Tay x 2.7GHz x
16cores / Ny and this provides an estimate of the efficiency of the algorithm for a given
accuracy, independent of the problem size and CPU frequency. For a particular kernel
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Table 5: Convergence results for Stokes kernel with a highly non-uniform particle distribution.

Npt Njeat m | Error Tan CyCles/ N, pt Tree TSetup TFMM(GFLOPS)
3.1E+4 4 | 6E-04 0.87 3.8E+4 | 0.23 0.15 0.44 (268)

1E+6 2.1E+4 6 | 4E-06 1.19 51E+4 | 0.21 0.11 0.81 (274)
1.3e+4 12 | 6E-10 7.48 32E+5 | 0.25 0.30 6.84 (137)
6.2E+3 16 | 2E-12 12.01 52E+5 | 0.25 0.73 10.96 (127)
21E+5 4 | 3803 7.70 4.2E+4 | 2.51 1.09 3.39 (273)

8E+6 1.7E+5 6 | 8E-05 10.76 5.8E+4 | 247 0.89 6.70 (272)
94gE+4 12 | 1E-09 61.18 33E+5 | 2.79 1.02 56.44 (136)
43E+4 16 | 6E-12 94.99 5.1E+5 | 2.64 1.14 90.30 (125)

and fixed multipole order, the cycles per particle is relatively independent of the prob-
lem size. Comparing Table 3 and Table 4, we observe that the cycles per particle is also
relatively independent of particle distribution.

We also report detailed breakdown of the time spent in different stages of the algo-
rithm. We report the tree construction time Tryee. This includes the time to sort the source
particles and the associated source densities by their Morton id and then construct the
octree with a prescribed maximum number of particles per octant. This stage is domi-
nated by the particle sort time and depends on the number of particles and the size of the
associated density data. Across tables, we note that for 1E+6 particles, Trye is about 0.2s
and for 8E+6 particles, it is about 2s. We also report the setup time Tsetyp, which involves
pre-allocating memory buffers and determining interaction lists for the FMM algorithm.
Finally, we report the time (Tevm) spent in the FMM algorithm and the FLOP rate for
this stage. At the end of the FMM algorithm, we redistribute the target potentials to the
original ordering of the particles and this stage is less than 5% of the total time and is not
reported in these results; however, it is included in the total time T,y. In all cases, we
choose the number of particles per octant to achieve the minimum Tgy. Results with
accuracy less than 1E-7 were computed in single precision. We observe a significant drop
in the FLOP rate as we switch from single to double precision, due to the smaller SIMD
vector length for double precision in the kernel implementation. In our implementation,
we count each inverse square root operation as two floating-point operations, with four
additional operations for each Newton iteration. We use one Newton iteration for sin-
gle precision and two for double precision. Therefore, each evaluation of the Laplace
kernel is counted as 16FLOP in single precision and 20FLOP in double precision. For
the Helmholtz kernel, we use Intel SVML to vectorize sin and cos operations. We count
each evaluation of sin and cos as one FLOP. Since evaluating these functions has lower
throughput on current architectures, we achieve low FLOP rates for the Helmholtz prob-
lem. Since the Helmholtz kernel is not scale-invariant, it requires much more memory
than Laplace and Stokes kernels. Therefore, for the high accuracy experiments (shaded
rows in Table 6), we needed more than 32GB of memory and we had to use the large
memory node on Stampede.
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Table 6: Convergence results for Helmholtz kernel with wavenumber 10 and a highly non-uniform particle

distribution. The results for the shaded rows are computed on a large memory node of Stampede using 16
processor cores.

Npt Nieat m | Error Tan CyClES/Npt Tree TSetup TFMM<GFLOPS)
27E+4 8 | 6E-05 2.50 1.1E+5 | 0.21 0.13 211 (122)
1E46 1.9e+4 10 | 2E-06 3.10 1.3e+5 | 0.19 0.15 2.72 (137)
1.4e+4 12 | 3E-09 9.67 4.2E+5 | 0.22 0.50 8.89 ( 63)
6.2E+3 16 | 8E-14 22.46 9.7E+5 | 0.30 2.17 19.92 ( 44)
2.0e+5 8 | 3e-04 2037 1.1E+5 | 2.44 1.06 16.35 (124)
8E+6 1.6E+5 10 | 4E-05  25.80 1.48+5 | 2.37 0.97 21.90 (147)
1.0e+5 12 | 7E-09 78.14 4.2E+5 | 3.04 1.33 72.94 ( 63)
43E+4 16 | 2E-13 172.11 9.3E+5 | 3.49 328 164.39 ( 44)

Now, we present convergence results for volume potential problems. In Table 7, we
solve the Poisson problem with free-space boundary condition and f(x) = —(4a?|x|>—
60&)6_‘"""2 where, « =160, x € (—0.5,0.5)3. The solution u(x) is given by e~ Aswe in-
crease 1m, we also use a smaller tolerance (€¢.) for the adaptive refinement of the Cheby-
shev octree and therefore, the maximum relative error (||ef||«) in approximating f con-
verges with €. We choose the Chebyshev degree g to approximately match the cost
of near and far-field interactions. We report the maximum relative error in the output
||ex||co, and this shows spectral convergence with m. We also report the total time to solu-
tion Tay and the number of CPU cycles per unknown. We give a breakdown of the time
spent in the different stages of the algorithm: the tree construction time Tryee, the setup
time Tsetyp and the FMM evaluation time Teyv. We also report the FLOP rates for the
evaluation phase. In general, the number of CPU cycles per unknown should be smaller
for the low order cases; however, at low orders, the setup time dominates and therefore
the cycles per unknown is larger. It is sometimes possible to amortize the setup cost when
multiple FMM evaluations are required on the same octree, such as when solving a linear
system iteratively when the matrix-vector product is implemented with FMM.

In Table 8 we show convergence for the following Stokes problem, where we solve
for the velocity field u(x), with free space boundary condition in the domain (—0.5,0.5)>

—uAu+Vp=4L*>(5-2L |x]2)e’”’“|2 (x3e2—x2e3), divu=0,

2L 7L|x|2
ulx)=—e

(xsez - xzea),

where e;, e3 are unit vectors along Y and Z axes respectively, L =125, and the viscosity
1 =1. The analytical solution for the velocity field u(x) is used to compute the output
relative error.

In Table 9, we demonstrate the case of an oscillatory kernel by solving the Helmholtz
equation with wavenumber 10 and free space boundary condition in the domain
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Table 7: Convergence with multipole order m for Poisson problem.

825

| |ef| |0° m q Nieaf ‘ ‘eu | |°° Tan C]/CZBS/N Tree TSetup TFMM(GFLOPS)
4E-05 4 8 1.8E+2 1E-04 0.16 2.4E+5 | 0.02 0.14 0.01 ( 56)
5E-07 6 10 5.1E+2 5E-06 0.25 74E+4 | 0.04 0.19 0.02 (150)
2E-09 10 13 8.5E+2 2E-08 0.51 4.7e+4 | 0.09 0.30 0.12 (218)
3E-12 14 15 1.2E+3 9e-12 0.96 43E+4 | 0.16 0.38 0.42 (220)
2E-14 18 17 1.9+3 7E-14 2.35 48E+4 | 0.25 0.52 1.57 (201)
Table 8: Convergence with multipole order m for Stokes problem.
leflle  m g Nias | [leullo Tan cycles/N | Tree  Tsetup  Trnvm(GFLOPS)
2E-04 4 8 1.8E+2 1E-03 0.27 1.3e+5 | 0.02 0.22 0.02 (121)
2E-06 6 10 5.1E+2 7E-05 0.45 448+4 | 0.05 0.27 0.13 (220)
3e-07 10 13 2.9E+2 3E-07 1.02 9.1E+4 | 0.08 0.59 0.35 (196)
2E-11 14 15 1.4E+3 5E-11 4.83 6.3E+4 | 0.18 1.17 3.48 (241)
1E-12 18 17 1.1E+3 18-12 11.23 1.3E+5 | 0.25 3.32 7.66 (192)

Table 9: Convergence with multipole order m for Helmholtz problem with wavenumber 10. The results for the
shaded row are computed on the large memory node of Stampede using 16 processor cores.

‘ ‘ef| |0° m q Nieaf ‘ ‘eu | |0° Tan C]/CZBS/N Tree TSetup TFMM(GFLOPS)
4g-04 8 6 1.8E+2 | 3E-03 0.11 1.7E+5 | 0.01 0.04 0.06 ( 38)
1E-08 12 10 9.6E+2 | 4E-08  0.99 7.8E+4 | 0.06 0.43 0.51 (143)
5e-13 16 13 3.6E+3 | 1E-12  8.86 9.5E+4 | 0.19 1.39 7.28 (132)
1E-13 18 14 3.6E+3 | 7E-14 13.57 1.2E+5 | 0.31 2.14 11.12 (131)

(—0.5,0.5)3

A+ pPu= (402 |x|* —6zx+y2)e’“|x|2,

u(x)=e

—ax[?
7

where o =160, 4 =207t. The analytical solution u(x) is used to compute the output error.
As before, for particle FMM, we need to use a multipole order of 8 or larger.

5.2 Scalability results

In Fig. 6 and Fig. 7 we show fixed-size or strong scalability results for Laplace and
Helmholtz problems respectively with 1E+8 particles. For the Laplace problem we use
particles on the surface of an ellipsoid, distributed uniformly over the space of polar and
azimuthal angles. This leads to a very high density of particles at the poles of the ellip-
soid and results in an octree with 18 levels of refinement. For the Helmholtz problem,
we uniformly distribute particles over the surface of a sphere and the resulting octree
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Figure 6: Strong scalability results for Laplace kernel with multipole order m =6 and a highly non-uniform
distribution of 1E+8 particles with 18 levels of octree refinement. We increase the number of processor cores
from 32 to 8k and observe a 95 speedup and 37% parallel efficiency. We achieve 14TFLOPS of double precision
performance on 8k CPU cores.
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Figure 7: Strong scalability results for Helmholtz kernel (wavenumber=10) with multipole order m =10 and
a non-uniform distribution of 1E+8 particles with 9 levels of octree refinement. We increase the number of
processor cores from 128 to 16k and observe a 60x speedup and 47% parallel efficiency. We achieve 37TFLOPS
of performance on 16k CPU cores.

has 9 levels of refinement. In each case we report the total processor time (computed as:
wall-time x #of-cores). We also report breakdown of the total time in to the time for tree
construction (Ttyee), the setup time (Tsetyp), the FMM communication time (Trvimcoy)s
the FMM computation time (Tevmceyy) and the time to scatter the target potentials to
original ordering of the particles (Tscatter)-

For the Laplace problem, we get perfect scalability up to 256 cores. Beyond 256 cores
the communication costs begin to grow. Notice that all stages, except FMM computation,
require MPI communication. The FMM computation stage scales much better than the
other stages. Overall, we achieve 95x speedup which corresponds to about 37% parallel
efficiency.
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Figure 8: Strong scaling on Stampede while using Phi coprocessor for Laplace kernel with m=10, g=13, 2E+5
leaf octants and 16 levels of refinement for 1.13E+8 unknowns. We observe 43X speedup as we scale up to 2k

CPU cores with 33% parallel efficiency. We achieve 19TFLOPS of performance with a wall-time of 0.36s on 2k
cores.
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Figure 9: Strong scaling on Stampede for Helmholtz kernel with wavenumber=10, m =10, g=14, 2.6E+5 leaf
octants and 6 levels of refinement for 3.6E+8 unknowns. We observe 20X speedup as we scale up to 4k CPU
cores with 31% parallel efficiency. We achieve 35TFLOPS of performance with a wall-time of 1.04s on 4k cores.

We observe similar results for the Helmholtz problem, except that a much larger frac-
tion of the total time is spent in the FMM computation stage since the Helmholtz kernel is
much more costly to evaluate and also because the multipole order is higher. We achieve
a 60x speedup and 47% parallel efficiency.

Next, we present strong scaling results for the volume FMM in Fig. 8 and Fig. 9. We
report the total CPU time, computed as wall-time x CPU cores, for the FMM evalua-
tion phase (excludes tree construction and setup) and also present a breakdown of this
time into the upward pass, the communication phase and the downward pass. For these
results, we have also used the Phi coprocessor on each compute node. For the Laplace
kernel (Fig. 8), we achieve 439GFLOPS on a single compute node (16 CPU cores). This
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high FLOP rate is made possible due to the use of the Phi coprocessor. As we scale up to
2k CPU cores we achieve 43x speedup and 19TFLOPS of performance. We observe good
scalability for the computational part of the algorithm (the downward pass); however,
the communication costs become significant beyond 512 CPU cores.

In Fig. 9, we present strong scaling results for the Helmholtz kernel as we scale from
64 to 4k CPU cores. We achieve 20x speedup with 31% parallel efficiency and 35TFLOPS
of performance. Although we observe good performance on a small number of cores
(1.7TFLOPS on 64 CPU cores), unlike for Laplace kernel, the computational phase does
not scale well for the Helmholtz kernel. This is primarily due to the overhead of copying
interaction matrices to the coprocessor. These precomputed interaction matrices can be
several gigabytes in size and therefore cannot be stored on the coprocessor and must be
copied from the host memory to the coprocessor for computing interactions at each level
in the octree.

In Table 10, we report results on Maverick using 32 compute nodes and K40 GPUs on
each node. We observe high FLOP rates (~800GFLOPS per compute node) due to the use
of the GPU.

Table 10: Results for volume FMM on 32 compute nodes of Maverick using the K40 GPU on each node. We
use uniform octrees for Helmholtz problem and non-uniform octrees for Laplace and Stokes. We use m =10
and g=16. The FLOP rates are for the FMM evaluation only.

kernel N Ly Tiee Trpm  TFLOPS
Laplace 1.8E+9 14 | 3.98 5.34 255
Laplace 7.1E+9 14 | 1994 20.78 252
Stokes 1.8E+9 14 | 232 1178 31.3
Stokes  6.6E+9 14 | 742 4582 31.9
Helmholtz  5.1E+8 6| 084 2.90 21.8
Helmholtz 4.1E+9 71 527 17.86 30.6

6 Conclusions

We have discussed our implementation of the PVFMM software library. The method can
efficiently solve N-body problems and also compute volume potentials for elliptic kernels
such as Laplace, Stokes, Biot-Savart, Helmholtz (low frequency) and modified Laplace.
We have discussed several performance improvements for near and far-field interactions.
Our volume FMM is adaptive, high order accurate and is optimized to utilize GPU or Phi
coprocessors. We have discussed the distributed memory implementation of the method.
We have studied the singled node CPU performance of the method and presented results
showing convergence with multipole order for both particle and volume FMM. With
new modifications using backward stable pseudoinverse, we can achieve convergence
up to 14-digits of accuracy. We have demonstrated scalability of our method to thousands
processors on the Stampede platform at TACC.
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