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Abstract. In this paper we consider PDE-constrained optimization problems which in-
corporate an H1 regularization control term. We focus on a time-dependent PDE, and
consider both distributed and boundary control. The problems we consider include
bound constraints on the state, and we use a Moreau-Yosida penalty function to han-
dle this. We propose Krylov solvers and Schur complement preconditioning strategies
for the different problems and illustrate their performance with numerical examples.
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1 Introduction

As methods for numerically solving partial differential equations (PDEs) become more
accurate and well-understood, some focus has shifted to the development of numerical
methods for optimization problems with PDE constraints: see, e.g., [41,44,69] and the ref-
erences mentioned therein. The canonical PDE-constrained optimization problem takes
a given desired state, ȳ, and finds a state, y, and a control, u, to minimize the functional

‖y− ȳ‖2
Y+

β

2
R(u) (1.1)
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subject to the constraints

Ay=u,

ua≤u≤ub,

ya ≤y≤yb ,

where ‖·‖Y is some norm and R(u) is a regularization functional. We are free to choose
both the norm and the regularization functional here; appropriate choices often depend
on the properties of the underlying application. In the description above A denotes a PDE
with appropriate boundary conditions and β denotes a scalar regularization parameter.
The focus of this manuscript is regularization based on the H1 norm of the control, which
we motivate below.

The simplest choice of R(u) is ‖u‖2
L2(Ω), where Ω denotes the domain on which the

PDE is posed. This case has been well-studied in the literature, both from a theoreti-
cal and algorithmic perspective. However, the requirements of real-world problems has
necessitated the application of alternative regularization terms.

One area where there has been much interest is in regularization using L1 norms,
see, e.g., the recent articles [12, 73]. A related norm is the total variation norm R(u) =
‖∇u‖L1(Ω), has also aroused excitement recently – see e.g. [14, 59] and the references
therein. These L1 norms have the benefit that they allow discontinuous controls, which
can be important in certain applications.

For certain applications it is desirable to have a smooth control – for this reason the
H1 semi-norm, R(u) = ‖∇u‖2

L2(Ω), has long been studied in the context of parameter-

estimation problems [10, 46, 76], image-deblurring [13, 17, 48], image reconstruction [49],
and flow control [18, 34], for example. Recently van den Doel, Ascher and Haber [19]
argued that this norm can be a superior choice to its L1-based cousin, total variation, for
problems with particularly noisy data due to the smooth nature of controls which arise.
The test problems in PDE constrained optimization by Haber and Hanson [31], which
were designed to get academics solving problems more in-line with the needs of the real-
world, suggest a regularization functional of the form R(u)=‖u‖2

L2(Ω)+α‖∇u‖2
L2(Ω) for a

given α. Indeed, this form of regularization is commonly used in the ill-posed and inverse
problem communities. Another example of a field where the standard L2 regularization
may not be appropriate is flow control – see, e.g., Gunzburger [28, Chapter 4].

At the heart of many techniques for solving the optimization problem, whether it is
a linear problem or the linearization of a non-linear problem, lies the solution of a linear
system [35,41,44,70]. These systems are very often so-called saddle point matrices [4,23],
which have the form

A=

[
A BT

B 0

]
, (1.2)

where A represents the misfit and regularization terms in (1.1) and B represents the
PDE constraint. In the systems we consider in this paper, A is symmetric positive semi-
definite. Such saddle point matrices are invertible if B has full rank and ker(A)∩ker(B)=
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{0}: this condition holds for most of the examples we consider here, and in the cases
where it doesn’t – e.g. (2.3-2.4) – there is a well-understood one dimensional null-space
that can be straightforwardly dealt with [4, Section 3.2]. We are then left with the chal-
lenge of efficiently solving linear systems of the form (1.2).

Direct solvers based on factorizations [21] can be effective, but for large and, in par-
ticular, three-dimensional problems these are no longer sufficient. In such cases we turn
to iterative Krylov subspace methods, which can deal with these large and sparse sys-
tems efficiently provided that they employ a preconditioner which enhances the con-
vergence behaviour, ideally independent of problem-dependent parameters such as the
mesh-size or the regularization parameter. For a general overview of preconditioners we
refer to [29, 61], and in the particular case of saddle point problems see [4, 23, 77].

A number of preconditioners which are robust with respect to regularization param-
eters and mesh-parameters have recently been developed for PDE-constrained optimiza-
tion [1, 15, 20, 36, 47, 52, 53, 65]. However, these methods are tailored for an optimization
problem with R(u)=‖u‖2

L2(Ω) and heavily rely on the corresponding presence of a mass

matrix in the A block of (1.2). Benzi, Haber and Taralli [5] consider a block precondi-
tioner with of R(u) given by (a variant of) the H1−norm, but their approach is general
enough to work with most regularization and the form of this term is not exploited in
the method. To the authors’ knowledge there have been no other attempts to apply block
preconditioners – which have proved so successful with L2 regularization – in the case of
other choices of R(u). We address this issue here by considering a cost-functional where

R(u)=‖u‖2
L2
+‖∇u‖2

L2
,

and we present preconditioners that show robustness with respect to the regularization
parameter for this problem, which is more challenging from a linear algebra perspective.

In the following we use the heat equations as an example PDE. In principle the ap-
proaches described here can be extended to other PDEs, as for the L2 regularization case.
We deliberately choose to focus on the simplest PDE example to highlight the issues cor-
responding directly to the regularization, not the difficulties involved in using a more
complicated model, which is discussed elsewhere.

The structure of the paper is as follows. We begin in Section 2 by stating the optimal
control problem in the time-dependent and time-independent cases with both distributed
and boundary control. We illustrate how to obtain discretized first order conditions from
a so-called discretize-then-optimize approach. In Section 3 we describe how – following
a method first proposed by Ito and Kunisch [43] – the state constraints can be handled
using a Moreau-Yosida penalty approach and show how to incorporate this into possi-
ble preconditioning strategies. Sections 2 and 3, which describe the application of well
known techniques for solving such optimal control problems, show how the bottleneck
for such codes is the solution of a very large linear system.

In Section 4 we discuss the choice of possible Krylov solvers and introduce precon-
ditioning strategies for both the time-dependent and time-independent control problem,
with an emphasis on how to handle the H1 regularization term. This builds on the work
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in the literature that has been used to efficiently solve L2 regularized problems, but the
use of the H1 norm in the cost functional causes difficulties which require novel tech-
niques to overcome. The development of such techniques is the main contribution of the
paper. Our numerical results shown in Section 6 illustrate the efficiency of our approach.

2 Problem setup and discretization

2.1 A stationary control problem

Before describing the time-dependent control problem we fix ideas by considering a sta-
tionary optimal control problem. We wish to minimize the functional

J1(y,u)=
1

2
‖y− ȳ‖2

L2(Ω1)
+

β

2
‖u‖2

H1(Ω2)

=
1

2
‖y− ȳ‖2

L2(Ω1)
+

β

2
‖u‖2

L2(Ω2)
+

β

2
‖∇u‖2

L2(Ω2)
, (2.1)

where both Ω1 and Ω2 are subdomains of Ω∈R
d with d=2,3. The constraint is given by

the following elliptic PDE

−△y=

{
u in Ω2,

0 in Ω\Ω2,
(2.2)

together with Dirichlet boundary conditions, y=g on ∂Ω. We refer to y as the state and u
as the corresponding control, which is used to drive the state variable as close as possible
to the desired state (or observations) ȳ. The above problem is the distributed control
problem, as u defines the forcing of the PDE over the interior subdomain Ω2. Another
important case is given by the Neumann boundary control problem, where Ω2 = ∂Ω

together with the PDE constraint

−△y= f in Ω, (2.3)

∂y

∂n
=u on ∂Ω, (2.4)

where f represents a fixed forcing term.
In practice, physical characteristics of the application will require box constraints on

the control and/or the state. Typical bounds would be

ua≤u≤ub

for the control and
ya ≤y≤yb

for the state. The numerical treatment of these constraints is by now well established
[6,7,38] but nevertheless represents a computational challenge, in particular for the state
constraints [11].
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We follow the discretize-then-optimize paradigm and discretize the PDE and the ob-
jective function using Q1 finite elements [23, 67]; we employ the deal.II [2] finite element
package for our numerical experiments.

We derive the discrete optimality system for the cost functional (2.1) with the PDE
constraint (2.2), together with homogeneous Dirichlet boundary conditions for ease of ex-
position – the extension to other boundary conditions proceeds similarly. Let φ1,···φn be
a finite element basis for the interior of Ω, and suppose we extend this by φn+1,··· ,φn+∂n

to include the boundary. Let Yh
0 = 〈φ1 ···φn〉, Uh = 〈φ1 ···φn,φn+1,φn+∂n〉. Furthermore, let

YΩ1
:= 〈φ̂1 ··· φ̂m̂〉 and UΩ2

:= 〈φ̄1 ··· φ̄m̄〉 denote the subsets of Uh with support on Ω1 and
Ω2 respectively.

The finite dimensional analogue to (2.1), (2.2) is to find yh∈Yh
0 ⊂H1

0(Ω) and uh∈Uh⊂
H1(Ω) which satisfy

min
yh∈YΩ1

,uh∈UΩ2

1

2
||yh− ȳ||2L2(Ω1)

+
β

2
||uh||2H1(Ω2)

,

s.t.
∫

Ω

∇yh ·∇vh =
∫

Ω2

uhvh, ∀vh ∈Yh
0 .

We can write the optimization problem in terms of matrices as

min
y,u

1

2
yT Myy−yTb+

β

2
uT Muu+

β

2
uTKuu, (2.5)

s.t. Ky=Mu, (2.6)

where

(My)i,j =
∫

Ω

φ̂iφ̂j, i, j=1,··· ,m̂, (Ku)i,j=
∫

Ω

∇φ̄i ·∇φ̄j, i, j=1,··· ,m̄,

(Mu)i,j=
∫

Ω

φ̄iφ̄j, i, j=1,··· ,m̄, (K)i,j=
∫

Ω

∇φi ·∇φj, i, j=1,··· ,n,

(M)i,j=
∫

Ω

φiφ̄j, i=1,··· ,n, j=1,··· ,m̄, bi=
∫

Ω

ȳφi, i=1,··· ,m̂.

Note that in this paper we only discuss the case where Ω2=∂Ω or Ω2=Ω and Ω1=Ω.
Other choices influence the matrix properties of My,Mu,Ku,M for which the techniques
presented here are still applicable.

In the distributed control case the first order optimality conditions lead to the follow-
ing saddle point system:




My 0 −KT

0 βMu+βKu MT

−K M 0






y
u

p


=




b
0

0


. (2.7)

Note that the addition of an H1 norm in the regularization leads to an optimality system
with substantially different properties compared to the L2 case; in particular, if p = 0
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on the boundary, we do not necessarily have that u = 0 on the boundary here, which
is known to be true if we use L2 regularization (see [58, 69, Section 2.8]). If we were to
use non-homogeneous boundary conditions the 3rd entry of the right hand side would
hold the boundary data, as the state equation (2.6) would become Ky=Mu−d for some
non-zero vector d.

We treat the boundary control problem similarly. Here we get

J1(y,u)=
1

2
yT Myy−bTy+

β

2
uT Mu,bu+

β

2
uTKu,bu (2.8)

together with
K̂y= N̂u+f. (2.9)

Here Mu,b and Ku,b are the boundary mass matrix and Laplacian, respectively, i.e.

(Ku,b)i,j=
∫

∂Ω

∇tr(φi)·∇tr(φj), (Mu,b)i,j=
∫

∂Ω

tr(φi)tr(φj), i, j=n+1,··· ,n+∂n,

where tr(·) is the trace operator, which we use here to give us a finite element discretiza-
tion of the boundary. The vector f represents the discretized forcing term, which for
simplicity we take to be zero for the remainder of the paper. The matrix K̂ is the stiff-
ness matrix, including the boundary nodes, and N̂ connects interior and boundary basis
functions, in particular

(N̂)ij =
∫

∂Ω

φitr(φj), i=1,··· ,n+∂n, j=1,···∂n.

We obtain the following first order optimality system



My 0 −K̂T

0 βMu,b+βKu,b N̂T

−K̂ N̂ 0






y

u

p


=




b

0

0


. (2.10)

2.2 Time-dependent problem

We now present a time-dependent version, which is of wide practical interest and will be
the focus of our numerical tests. The objective function is now given by

J2(y,u)=
1

2

∫ T

0

∫

Ω1

(y− ȳ)2dxdt+
β

2

∫ T

0

∫

Ω2

u2dxdt+
β

2

∫ T

0

∫

Ω2

(∇u)2
dxdt, (2.11)

where all functions are simply time-dependent versions of their steady counterparts
presented above. For the distributed control problem we apply the time-dependent
parabolic constraint

yt−△y=

{
u, for (x,t)∈Ω2×[0,T],

0, for (x,t)∈Ω\Ω2×[0,T],

y= g, on ∂Ω,

y=y0, at t=0,
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for some prescribed functions g, y0. In case of a boundary control problem, where Ω2 =
∂Ω and again take the heat equation as our PDE constraint:

yt−△y= f for (x,t)∈Ω×[0,T], (2.12)

∂y

∂n
=u on ∂Ω, (2.13)

y=y0, at t=0. (2.14)

For the discretization of the time-dependent objective function we use the trapezoidal
rule for the time integral and finite elements in space to give

J2(y,u)=
1

2
yTMyy+b̂Ty+

β

2
uTMuu+

β

2
uTKuu, (2.15)

where b̂=[1/2bT ,bT,··· ,bT, 1/2bT ]T,

M=blkdiag(My,··· ,My),

My=blkdiag(1/2My,My,··· ,My,1/2My),

Mu =blkdiag(1/2Mu,Mu,··· ,Mu,1/2Mu), and

Ku =blkdiag(1/2Ku,Ku,··· ,Ku,1/2Ku),

which are simply block-variants of the previously defined matrices over the domains Ω1

and Ω2. Note that in the time-dependent case we abuse the notation y, u defined earlier,

i.e., y=
[
yT

1 ,yT
2 ,··· ,yT

NT

]T
, etc.; we believe it will be clear from the context which of the

two we are currently considering. Using this notation and a backward Euler scheme, we
can write down a one-shot discretization of the time-dependent PDE as follows

−




L
−M L

. . .
. . .

−M L




︸ ︷︷ ︸
K

y+τMu=d (2.16)

with L = M+τK and d holding the initial conditions for the heat equation. For more
details see [5, 20, 66].

We form the Lagrangian and write down the first order conditions in a linear system,



τMy 0 −KT

0 τβ(Mu+Ku) τM
−K τM 0






y

u

p


=




τb̂

0
d


, (2.17)

in the case of the distributed control problem, and



τMy 0 −KT

0 τβ(Mu,b+Ku,b) τN T

−K τN 0






y

u

p


=




Myȳ

0
d


 (2.18)

for boundary control, where N =blkdiag(N,··· ,N).
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3 Handling the state constraints

Box constraints for the state y can be dealt with efficiently using a penalty term. The
Moreau-Yosida penalty function has proven to be a viable tool: see [36, 43, 52] and the
references mentioned therein. One can also use the Moreau-Yosida technique for box
constraints on the control but the primal-dual active set method [38] is mostly the method
of choice. We briefly describe the Moreau-Yosida technique for the distributed control
problem. A more thorough discussion can be found in the references mentioned earlier.
The modified objective function becomes

JMY(y,u)=J2(y,u)+
1

2ε
‖max{0,y−yb}‖2

Q+
1

2ε
‖min{0,y−ya}‖2

Q (3.1)

for the state constrained case. Here Q=Ω1×[0,T] is the space-time cylinder. In accor-
dance with [36], we can employ a semi-smooth Newton scheme that leads to the follow-
ing linear system




τMy+ε−1GAMyGA 0 −KT

0 τβ(Mu,b+Ku,b) τN T

−K τN 0






y

u

p




=




Myȳ+ε−1
(
GA+

MyGA+
yb+GA−MyGA−ya

)

0
d


, (3.2)

where the block-diagonal matrix

GAMyGA=blkdiag(GA1 MyGA1 ,··· ,GANT MyGANT )

defines the contribution of the penalty term with the active set Ak for time-step k de-
fined as follows. We set where we define the active sets as Ak

+ =
{

i : yk
i > (yb)

k
i

}
, and

Ak
−
{

i : yk
i < (ya)k

i

}
, and Ak =Ak

+∪Ak
−; the matrices G are diagonal matrix variants of the

characteristic function for the corresponding sets, i.e.,

(GAk)ii =

{
1 for i∈Ak,
0 otherwise.

Our focus is on the efficient solution of the linear systems (3.2), which are of saddle point
type. Note that the active sets defined above within an iterative process such as the semi-
smooth Newton scheme are computed based on the state at the previous iteration, but
for simplicity we neglect the iteration index. For more details of semi-smooth Newton
methods we refer to [41, 44, 70]; there is also recent theory introducing path-following
approaches for the penalty parameter ε [39].
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4 Preconditioning

4.1 Choice of Krylov solver and Schur complement preconditioning

As mentioned in the introduction, the linear systems that arise from PDE-constrained
optimization are very often too large for direct solvers to be effective, and for scalable and
efficient solution of these linear systems the combination of a state-of-the-art solver with
an efficient preconditioning technique is crucial. In this section we derive preconditioners
for each of the problems presented earlier, but first mention the choice of the iterative
scheme. Krylov solvers are for many applications the method of choice [64], as they are
cheap to apply; at each step they only require a matrix vector product, the evaluation
of the preconditioners, and the evaluation of inner products. These methods build up
a low-dimensional subspace that can be used to approximate the solution to the linear
system.

There are a variety of Krylov subspace methods, and the most effective to use depends
on the properties of the linear system. Here we focus on the development of effective
preconditioners and we will focus less on the choice of linear solver.

Schur-complement based preconditioners, based on approximations to S :=BA−1BT,
have proved to be effective. Popular choices are a block diagonal preconditioner P1 =
blkdiag(A,S), or a nonsymmetric preconditioner,

P2=

(
A 0
B −S

)
.

Naturally, these are too expensive for any realistic problem, but if we can approximate
both the (1,1)-block and the Schur-complement of A, then the underlying Krylov method
will converge in a small number of steps. In the following sections we describe how to
find good approximations to these blocks for the application considered here.

4.2 The (1,1)-block

Our first goal is to efficiently approximate the (1,1)-block of the saddle point matrix.
Parts of the (1,1)-block here consist of lumped mass matrices, which are diagonal and
can simply be inverted. If, on the other hand, the user prefers to use consistent mass
matrices they can use the Chebyshev semi-iteration [72]. If the (1,1)-block part corre-
sponding to the discretization of the state misfit part of the objective function is only
semi-definite, e.g., via a partial observation operator, we can add a small perturbation to
the zero blocks within the preconditioned and hence make this part positive definite so
the above applies. In more detail, we replace the zero blocks in A by blocks of the form η I
with η a small parameter greater than zero. Note that this technique can also be used for
an approximation of the Schur-complement in case the (1,1)-block is semi-definite [5,66].

The matrix part corresponding to the discretization of the H1 term in the objective
function is more complicated as it is not diagonal. The good news in this case is that
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the operator and the corresponding matrix representation are not only symmetric but
also positive definite. This allows the use of either geometric [32, 75] or algebraic [24, 60]
multigrid techniques.

4.3 Schur-complement approximation

The methods described in Section 4.2 efficiently approximate the (1,1)-block, A, of the
saddle point system; we use Â to represent such an approximation to A for the remain-
der of this paper. Our goal now is to introduce efficient approximations Ŝ to the Schur-
complement S.

The Schur complement of the system matrix (2.17) is

S=τ−1KM−1
y K+τβ−1M(Mu+Ku)

−1MT. (4.1)

There are various ways to approximate S; one of the simplest is

S≈τ−1KM−1
y K,

which for larger β often performs well but is not robust with respect to this parameter.
In order to develop a more robust method we look for a more sophisticated approxi-

mation inspired by [53] that more accurately mirrors S by also including the second term
in (4.1). We have two options here, either a symmetric version,

Ŝ1=τ−1
(
K+M̂

)
M−1

y

(
K+M̂

)T
,

which can be used within MINRES [51], or a non-symmetric approximation

Ŝ2=τ−1
(
K+M̂1

)
M−1

y

(
K+M̂2

)T

to be employed with a non-symmetric solver, e.g. GMRES [63] or BICG [25]. The goal is
now to find M̂1, M̂2, and M̂ such that

τ−1M̂1M−1
y M̂T

2 =τβ−1M(Mu+Ku)
−1MT

and
τ−1M̂M−1

y M̂T =τβ−1M(Mu+Ku)
−1MT.

We start by deriving the symmetric approximation to S using

M̂ :=
τ√

β
M(Mu+Ku)

−1/2M1/2
y .

We then obtain the following Schur-complement approximation

Ŝ1=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1/2M1/2
y

)
M−1

y

(
K+

τ√
β
M(Mu+Ku)

−1/2M1/2
y

)T

.
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This has the advantage that the approximation is symmetric and positive definite, which
would allow us to use MINRES. However, the drawback is that this expression involves
the square root of large-scale non-diagonal matrices, Ku.

We now turn our attention to the non-symmetric approximation. Using

M̂1 :=
τ√

β
M(Mu+Ku)

−1My, (4.2)

M̂2 :=
τ√

β
M, (4.3)

we introduce the non-symmetric approximation

Ŝ2=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1My

)
M−1

y

(
K+

τ√
β
M
)T

.

This configuration does not require the square root of a potentially very large matrix.
For any preconditioner to be effective we must be able to evaluate the inverse of the

Schur-complement approximation quickly. We now focus on the non-symmetric approx-
imation but discuss the symmetric approximation in Section 5 when we analyze the ap-
proximation quality of both Schur-complement approximations.

The second part
(K+ τ√

β
M)

of Ŝ2 is easy to approximate as this is simply a block-

triangular matrix with symmetric positive definite matrices along the diagonal. We there-
fore use an algebraic multigrid approximation for the diagonal blocks and then proceed
backwards approximating the inverse of

(
K+ τ√

β
M
)

requiring the application of NT

algebraic multigrid operators.

The approximation of the inverse of
(K+ τ√

β
M(Mu+Ku)

−1My

)
is more involved.

We are interested in solving systems of the form

(
K+

τ√
β
M(Mu+Ku)

−1My

)
u= f

and interpret this as the Schur-complement of the auxiliary system

[
K M
My −

√
β

τ (Mu+Ku)

][
u
∗

]
=

[
f
0

]
. (4.4)

Recalling the block-structure of the involved matrices, it is easy to see that we can proceed
with a forward substitution that requires the solution of diagonal blocks given by

[
M+τK M

My −
√

β

τ (Mu+Ku)

]
. (4.5)
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Even this block is not suitable to be inverted directly and we use a stationary iteration to
approximate the solution to this system. Such an iteration proceeds by computing

uk+1=uk+ωW−1rk,

where rk is the residual for the system matrix used in (4.5) and a right-hand-side used
within the preconditioner application. The matrix

W=

[
M̂+τK √

β

τ
̂(Mu+Ku)

]

is the preconditioner for (4.5). Here (̂···) signifies the algebraic multigrid approximation
to the corresponding matrix.

Boundary control

The matrix structure in the case of a boundary control problem is very similar to the
distributed control problem but nevertheless there are significant differences in the prop-
erties of some of the blocks. Therefore, we now discuss a Schur complement approxi-
mation for the boundary control problem driven by the system matrix (2.18). The Schur
complement is now given by

S=τ−1KM−1
y KT+

τ

β
N (Mu,b+Ku,b)

−1N T.

For the reasons described above, we again focus on the non-symmetric approximation

Ŝ=τ−1

(
K+

τ√
β
N (Mu,b+Ku,b)

−1N T

)
M−1

y

(
K+

τ√
β
My

)T

.

Again, the evaluation of the preconditioner Ŝ−1 needs to be discussed. While the term(K+ τ√
β
My

)−T
can easily be approximated using multigrid techniques in combination

with backward substitution, the term
(
K+ τ√

β
N (Mu,b+Ku,b)

−1N T
)−1

is more compli-

cated to approximate. Note again that we only need to focus on the diagonal blocks of
this matrix which correspond to the system

[
M+τK N

NT −
√

β

τ (Mu,b+Ku,b)

]
. (4.6)

We proposed earlier the use of a stationary iteration, but found choice of damping pa-
rameter to be much more critical here; the value needed to be tuned by hand, which is
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not desirable. We therefore use the non-linear iterative method GMRES [63] to evaluate
the system (4.6), together with a preconditioner

W=

[
M̂+τK 0

NT − ̂(Mu,b+Ku,b)

]
. (4.7)

Here ·̂ ·· again represents that the action of the inverse of these blocks is given by a fixed
number of steps of an algebraic multigrid method. Note that, because of the use of GM-
RES as an inner iteration, the preconditioner P2 is nonlinear, and theory dictates that we
should use a flexible outer method such as FGMRES [62]. By using a rather small tolerance
to stop GMRES we seem to avoid convergence difficulties, allowing us to use a standard
Krylov method; see Section 6 for details. An alternative would be to use a sparse direct
method [22, 42] to solve for the sub-problem (4.6), giving us a hybrid solution method.

State constraints

The situation is not much different in the case when state constraints are present. Here
the system matrix is 


τMε 0 −KT

0 τβ(Mu+Ku) τM
−K τM 0


, (4.8)

where each of the blocks of Mε is now given by My+ε−1GAi
MyGAi

. The Schur-complement
is now

S=τ−1KM−1
ε KT+

τ

β
M(Mu+Ku)

−1M.

We can now proceed as n the absence of state constraints. An approximation of S is
chosen to be

Ŝ=τ−1

(
K+

τ√
β
M(Mu+Ku)

−1M1/2
ε

)
M−1

ε

(
KT+

τ√
β
M1/2

ε M
)

.

We use the symmetric matrix M1/2
ε because this makes all factors of the approximation

Ŝ dependent on ε. A solve with Ŝ is approximated as before, where the diagonal blocks

of
(KT+ τ√

β
M1/2

ε M)−1
are approximated by an algebraic multigrid technique. Note

that due to the matrix Mε the diagonal blocks of this matrix are different at each outer
iteration, and we need to recompute the algebraic multigrid approximation; update tech-
niques to exploiting this structure should be investigated in the future to streamline the
solver.

The term
(
K+ τ√

β
M(Mu+Ku)

−1M1/2
ε

)
is again harder to deal with and as previ-

ously we use an auxiliary system
[

K M
M1/2

ε
−
√

β

τ (Mu+Ku)

]
,
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which we can permute to be of block-triangular form. We are then left with approxi-
mately solving a system for

[
M+τK M

M1/2
ε,i

−
√

β

τ (Mu+Ku)

]
,

where i indicates the i-th block corresponding to the i-th point in time and its correspond-
ing structure coming from the active set. Our strategy is again to use an accurate solution
via a preconditioner GMRES method employing the preconditioner

Wi =

[
̂[M+τK] 0

M1/2
ε,i − ̂[Mu+Ku]

]
.

Here [̂··· ] indicates the use of an algebraic multigrid in the inversion of this matrix.

5 Eigenvalue analysis

Our goal here is to analyze the quality of the preconditioners proposed earlier. As de-
scribed in the previous section, the approximation of the (1,1)-block is relatively straight-
forward using standard tools, such as multigrid, which are well understood. We therefore
focus solely on the quality of the Schur-complement approximation.

We use the methodology introduced by Pearson and Wathen [54] for the stationary
case that was later generalized for the time-dependent case (see [53]). There a symmetric
Schur-complement approximation was chosen, and the quality of the approximation was
measured by bounding the eigenvalues of Ŝ−1S via the Rayleigh quotient

R :=
vTSv

vT Ŝ1v
.

We here briefly illustrate their argument in order to assess what parts carry over here.
One can write

vTSv

vT Ŝ1v
=

aTa+bTb

aTa+bTb+bTa+aTb
(5.1)

with suitably chosen vectors a and b. It is easy to see from

0≤ (a−b)T(a−b)= aT a+bTb−aTb−bTa (5.2)

that R≥ 1
2 . Pearson and co-authors then proceeded by showing that aTb+bTa is positive

to conclude that the R is bounded by 1 from above. For the distributed control case this
is both true in the steady [54] and transient [53] case.
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Our goal is to carry this analysis over to our setup. We focus on the distributed control
case here, where

a :=τ−1/2M−1/2
y KTv, (5.3)

b :=τ1/2β−1/2(Mu+Ku)
−1/2MTv. (5.4)

Using

vTSv= aT a+bTb

as well as (5.2) we can see that the lower bound for the approximation Ŝ1 is still valid,
i.e., R≥ 1

2 regardless of the mesh-parameter and the regularization parameter.

The interesting question from now on is whether the upper bound R≤1 is still valid.
For this to be true we immediately see from (5.1) that aTb+bTa needs to be positive. We
proceed by considering the simpler time-independent case for which the matrix structure
is very similar. In that case we obtain

aTb+bTa=β−1/2vT
(

KM−1/2
y (Mu+Ku)

−1/2 MT+M(Mu+Ku)
−1/2 M−1/2

y K
)

v.

To see that in the L2 norm case this was positive we set Ku = 0 and Mu = My = M and
obtain

β−1/2vT
(

K+KT
)

v

which is obviously positive. The same is true for the time-dependent problem without
H1-norm (see [53] for a proof). Unfortunately, once the H1-norm is considered the posi-
tivity of aTb+bTa is lost.

So why does the H1-norm cause a problem as its discretization only introduces a
symmetric and positive definite matrix Mu+Ku? This is clear from the fact that in gen-
eral WV+VW≯0 even when both V and W are symmetric and positive definite matrices.
A simple example is given when W and V correspond to a Dirichlet and Neumann Lapla-
cian, respectively.

Note that in our case aTb+bTa is of precisely this form and the computation of the

eigenvalues of
(
KM−1/2

y (Mu+Ku)
−1/2 MT+M(Mu+Ku)

−1/2 M−1/2
y K

)
reveals several neg-

ative eigenvalues.

Nevertheless, the spread of the eigenvalues above the desired value of 1 with varying
β and mesh-parameter is not severe as illustrated by the eigenvalues shown in Fig. 1.
Fig. 1(a) shows the eigenvalues of Ŝ1 for a coarse mesh and four values of the regular-
ization parameter β and Fig. 1(b) shows the eigenvalues for the same values of β but
on a finer mesh. From these pictures we can see that the magnitude of the eigenvalues
does not increase for the finer mesh and that most of the eigenvalues are contained in the
interval

[
1
2 ,1
]

with some outliers that do not move much beyond 1 when the regulariza-

tion parameter is decreased. The major disadvantage of the approximation Ŝ1 is the use
of the matrix square roots, which is infeasible for large systems. We hence move to the
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Figure 1: Eigenvalues for two different meshes and a variety of regularization parameters. We show coarse mesh
on the left and slightly finer mesh on the right. We use NT =5.
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Figure 2: Eigenvalues for two different meshes and a variety of regularization parameters. We show coarse mesh
on the left and slightly finer mesh on the right. We use NT =5.

nonsymmetric approximation Ŝ2 for which the above used Rayleigh quotient analysis is
unfortunately not applicable.

Nevertheless, we expect the eigenvalues of the pencil (S,Ŝ2) to provide guidance on
the speed of convergence of our iterative scheme. We here want to numerically study the
eigenvalues of Ŝ−1

2 S to obtain information that can allow us to understand the conver-
gence of a nonsymmetric solver using the nonsymmetric Schur-complement approxima-
tion Ŝ2.

Fig. 2 shows eigenvalue distributions of Ŝ−1
2 S for two different mesh-sizes and a va-

riety of regularization parameters. The comparison of both plots 2(a) for the coarse mesh
and 2(b) for the refined one indicates that for very small values of β the eigenvalues move
closer towards the origin but stay sufficiently far away from zero. Additionally, this be-
haviour does not change when the mesh is refined so we expect robust iteration numbers
with respect to a refinement in space. We computed approximations to the eigenvalues
closest to the origin of Ŝ−1

2 S for one further mesh and found these to be in the same region
as the smallest eigenvalues shown in Fig. 2.

Our numerical results given in Section 6 indicate that this choice of Schur complement
approximation allows for good convergence with relatively robust iteration numbers.
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Figure 3: Eigenvalues for two different meshes and a variety of regularization parameters. We show a coarse

mesh on the left and slightly finer mesh on the right. The top row shows the eigenvalues for Ŝ−1
2 S for NT =5.

The lower figures illustrate the dependency of the smallest and largest eigenvalues of Ŝ−1
2 S on the number of

time-steps and hence τ.

6 Numerical results

We now want to illustrate how the preconditioners presented above perform when ap-
plied to a variety of problems. As mentioned earlier we employ a finite element dis-
cretization, here done with the finite element package deal.II [2]. We discretize the state,
control and adjoint state variables using Q1 elements. For symmetric methods the stop-
ping criterion is often inherent to the problem [74]. In the nonsymmetric context the
debate is much more open an we decide to use the relative residual with x0=0 based on
the discussion in [3]. Hence, we present results for both a tolerance of 10−4 and a tighter
tolerance of 10−6 for the relative residual within BICG using the preconditioner P2. For
the algebraic multigrid preconditioner we use the Trilinos ML package [27] that imple-
ments a smoothed aggregation AMG. Within the algebraic multigrid we used 6 steps of
a Chebyshev smoother in combination with the application of two V-cycles. For time-
dependent problems we show the degrees of freedom only for one grid point in time (i.e.
for a single time-step) and we are implicitly solving a linear system of dimension 3 times
the number of time-steps (Nt) times the degrees of freedom of the spatial discretization
(n). For example, a spatial discretization with 274625 spatial unknowns and 20 time-steps
corresponds to an overall linear system of dimension 16 477 500.
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6.1 Distributed control

No state constraints

In this section we show results for the time-dependent case. First, we consider the case
when no state constraints are present. Here, we work with a fixed time-step τ = 0.05,
which results in 20 time-steps. In all tables we only show the degrees of freedom as-
sociated with the discretization of the spatial domain. The desired state is now given
by

ȳ=exp
(
−64

(
(x0−0.5)2+(x1−0.5)2

))

and y= ȳ on ∂Ω, where the domain is [0,1]2. The results for this setup are shown in Table
1 for various mesh-parameters and values of the regularization parameter β.

Table 1: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 15(40.1) 17(45.9) 28(72.9)

4225 15(129.2) 18(153.5) 29(242.1)

16641 18(554.2) 22(669.7) 31(932.2)

66049 19(1627.6) 27(2280.1) 36(2995.4)

263169 23(5922.8) 28(7203.9) 44(11389.2)

Table 2: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 13(35.1) 13(35.2) 22(57.3)

4225 13(112.6) 15(128.8) 22(184.8)

16641 15(462.3) 15(462.2) 25(756.1)

66049 17(1442.6) 20(1691.4) 31(2578.7)

263169 19(4928.3) 22(5843.9) 34(8368.3)

State constraints

We now consider the problem with state constraints. The defining parameters are given
by the desired state

ȳ=−tx0exp
(
−
(
(x0−0.5)2+(x1−0.5)2

))
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Table 3: Results for the distributed control problem and varying mesh and regularization parameter. This table
shows iteration numbers and timings for BICG with a nonsymmetric Schur complement approximation using 10
Uzawa steps and a damping parameter ω=0.1. The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4 β=10−6

# it(t) # it(t) # it(t)

1089 13(35.1) 13(35.2) 22(57.3)

4225 13(112.6) 15(128.8) 22(184.8)

16641 15(462.3) 15(462.2) 25(756.1)

66049 17(1442.6) 20(1691.4) 31(2578.7)

263169 19(4928.3) 22(5843.9) 34(8368.3)

Table 4: Results for the state-constrained problem. We here vary the penalization parameter ε. Shown are the

Newton iteration numbers for a Newton tolerance of 10−3 for the first two columns and a tolerance for 10−2

for the case ε=10−4. As the number of Newton iterations increased we here only show iteration numbers for a

stopping tolerance of 10−2 for the outer iteration. Further we give the average number of BICG iterations and
the maximal number of GMRESiterations needed for the evaluation of the preconditioner. The tolerance of the

iterative solver is set to 10−6.

DoF ε=100 ε=10−2 ε=10−4

AS/BICG/GMRES AS/BICG/GMRES AS/BICG/GMRES

81 3/23.7/12 7/21.3/19 6/25.8/41

289 3/32.7/16 7/26.9/23 6/35.2/52

1089 3/51.3/19 6/37.0/27 2/45.5/75

4225 3/74.0/23 6/53.3/43 2/56.5/109

with zero initial and boundary condition. We then consider a fixed regularization pa-
rameter β = 10−4, which then allows us to consider the lower bound −0.1 ≤ y for all
time-steps. The results are shown in Table 4, where we vary the penalization parameter
from 1 to 10−4. The iteration numbers obtained show a small increase with respect to the
mesh-size. This might be due to the approximation quality of the diagonal blocks used
within the evaluation of the preconditioner W. We observed that we needed to increase
the number of V-cycles within the AMG method to 8 to obtain a robust performance. Fu-
ture research should be devoted to obtaining preconditioners that allow updating to deal
with the changing blocks involving components from the active sets and also show more
robustness with respect to parameter-dependent matrices (here in particular β and ε).

6.2 Boundary control

We now show results for the boundary control case where the desired state is given by

ȳ=−exp(t)sin(2πx0x1x2)exp
(−((x0−0.5)2+(x1−0.5)2+(x2−0.5)2

))

on the three-dimensional domain Ω = [0,1]3. The results with the Schur complement
approximation Ŝ with varying mesh-size and regularization parameter β are shown in
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Table 5: Results for the boundary control problem and varying mesh and regularization parameter. This table
shows iteration numbers for BICG and the maximal number of GMRES iterations used for the preconditioner.

The tolerance of the iterative solver is set to 10−6.

DoF β=10−2 β=10−4

BICG/GMRES BICG/GMRES

729 18(21) 19(38)

4913 18(22) 17(40)

35937 19(24) 17(44)

274625 19(25) 19(47)

Table 5. We again want to emphasize that we use preconditioned GMRES to evaluate
the diagonal-blocks of the Schur-complement approximation. The tolerance is set rather
tight on the one hand to guarantee that as an outer iteration BICG is still suited and on the
other hand to guarantee that we obtain robustness with respect to parameter changes. We
additionally state for every problem the maximal number of iterations that was needed
for GMRES. It can be seen that the number of BICGiterations are robust with respect to
parameter changes. The number of iterations for the GMRES preconditioner increases
slightly with a decrease of the regularization parameter.

(a) Desired state ȳ12 (b) Computed state y12

Figure 4: Desired state and computed state for boundary control problem. Here the regularization parameter

was set to β=10−6.

7 Conclusions and outlook

In this paper we presented optimal control problems subject to the Poisson equation or
the heat equation in a distributed or boundary control setting. The control was added to
the objective function as a regularization term in the H1 norm. We introduced the corre-
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sponding discrete optimality system and introduced preconditioners for both the steady
as well as the transient problem. Due to the Laplacian term coming from the H1 norm we
were not able to introduce preconditioners that are fully independent of the regulariza-
tion parameter but for the simple preconditioners we introduced the dependence on the
regularization parameter seemed rather weak. We also showed that our approach works
for state-constrained problems, which were treated using a Moreau-Yosida penalty ap-
proach. Numerical results showed that our preconditioners provided satisfactory results
when applied to three-dimensional test problems.

The method presented here has not focused on the storage efficiency of our all-at-once
approach. One might employ checkpointing [30] techniques when alternately solving
forward and adjoint PDEs. Multiple shooting approaches are one way of splitting up the
time-interval [33] and can lead to the same type of system. A possible way forward is to
compute suboptimal solutions on a sequential splitting of the time-interval [33] or to use a
parallel implementation of our approach. It is also possible to reduce the storage require-
ments by performing block-eliminations of some form, usually via a Schur-complement
approach.
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