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Abstract. The maximum entropy method for the Hausdorff moment problem suffers
from ill conditioning as it uses monomial basis {1,x,x2,··· ,xn}. The maximum entropy
method for the Chebyshev moment probelm was studied to overcome this drawback
in [4]. In this paper we review and modify the maximum entropy method for the
Hausdorff and Chebyshev moment problems studied in [4] and present the maximum
entropy method for the Legendre moment problem. We also give the algorithms of
converting the Hausdorff moments into the Chebyshev and Lengendre moments, re-
spectively, and utilizing the corresponding maximum entropy method.
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1 Introduction

The Hausdorff moment problem is to find an unknown density f ∗ such that

∫ 1

0
f ∗(x)xidx=µi, i=0,1,2,··· .

It is well known [11] that the above problem has a solution if and only if the moment
sequence {µi} is positive definite, i.e., ∆mµi≥0 for all m and i, where ∆m is the m-th forward
difference.
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Many mathematical physics problems are equivalent to the moment problem. Prac-
tically, it is often the case that only a finitely many moments are available. Thus, it is
desired to determine a density f that satisfies all the known moment conditions

∫ 1

0
f (x)xidx=µi, i=0,1,2,··· ,n.

Mathematically there are infinitely many candidates for the required function, so how to
locate the best one among them is important in applications.

The maximum entropy principle provides the most unbiased criterion for choosing
the best candidate with the given moments. In other words, the determined density
function gives the maximum entropy among all the densities with the given moments.
The realization of this principle is the solution of the following optimization problem:

maximize

H( f )=−
∫ 1

0
f (x)ln f (x)dx

among all the density functions subject to
∫ 1

0
f (x)xidx=µi, i=0,1,2,··· ,n.

Here the objective function H is called the Boltzmann entropy.
This principle was first proposed by Jayne in 1957 to numerically recover an unknown

density function in mathematical physics [8]. The resulting numerical scheme is well
known now as the maximum entropy method [10], and its idea has been extended to
solving, for example, Frobenius-Perron operator equations [1,2,4–6] for the computation
of a stationary density of an interval mapping S : [0,1]→ [0,1].

Although it is widely useful in physical science and engineering [3, 10], the classi-
cal maximum entropy method using Hausdorff moments has an intrinsic drawback of
sensitivity issue. Namely, the resulting system of nonlinear equations from the above
constrained maximization problem is ill-conditioned due to the involvement of the stan-
dard monomial basis {1,x,x2,··· ,xn}. So in [4] to overcome this drawback Chebyshev
polynomial basis was used.

In this paper we review and modify the Hausdorff and Chebyshev maximum en-
tropy methods and study Legendre maximum entropy method. We also consider the
algorithms of converting the Hausdorff moments into the Chebyshev and Legendre mo-
ments, respectively, and solving the corresponding moment problems with the maximum
entropy method.

We briefly review the basic properties of the Chebyshev and Legendre polynomials
in the next section. Then we review the general maximum entropy method in Section
3. In Section 4 we develop a polynomial maximum entropy method. Then in Section 5
we consider the algorithms of converting the Hausdorff moments into the Chebyshev or
Legendre moments. Numerical experiments of all the algorithms discussed in the paper
are performed and compared in Section 6. We conclude in Section 7.
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2 Chebyshev and Legendre polynomials

Let ω be a nonnegative function defined on an open interval (a,b). A sequence of poly-
nomials pn is said to be orthogonal with respect to the weight function ω over [a,b] if

〈pi,pj〉 :=
∫ b

a
pi(x)pj(x)ω(x)dx=0,

whenever i 6= j. For example, the Chebyshev polynomials

Ti(x)=cos(iarccosx), i=0,1,··· ,

are orthogonal polynomials with respect to ω(x)=1/
√

1−x2 over the interval [−1,1]. It
is well known that the Chebyshev polynomials satisfy the following recursive formula

Ti(x)=2xTi−1(x)−Ti−2(x), i=2,3,··· , (2.1)

with T0(x)=1 and T1(x)= x.
Similarly, the Legendre polynomials can be generated by the recursive formula

Li(x)=
2i−1

i
xLi−1(x)− i−1

i
Li−2(x), i=2,3,··· , (2.2)

with L0(x)=1 and L1(x)=x, and they are orthogonal polynomials with respect to ω(x)=1
over the interval [−1,1]. The first four Chebyshev polynomials are

T0(x)=1, T1(x)= x, T2(x)=2x2−1, T3(x)=4x3−3x,

and the corresponding Legendre polynomials are

L0(x)=1, L1(x)= x, L2(x)=
3

2
x2− 1

2
, L3(x)=

5

2
x3− 3

2
x.

In general, Ti and Li are even functions if i is even, and odd functions if i is odd. We
also note that if {pi} is a sequence of orthogonal polynomials with respect to the weight
function ω over [a,b], then {pi((b−a)x+a)} is an orthogonal polynomial sequence with
respect to the weight function ω((b−a)x+a) over [0,1].

3 Maximum entropy approach to moment problem

Let L1(0,1) be the space of all Lebesgue integrable functions defined on [0,1], and denote
by D the set of all density functions, i.e., a nonnegative functions in L1(0,1) with integral
value 1.

In the maximum entropy method for numerically approximating an unknown densi-
ty function f ∗ satisfying

∫ 1

0
f ∗(x)gi(x)dx=µi, i=0,1,··· ,n, (3.1)
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one maximizes the Boltzmann entropy functional H defined by

H( f )=−
∫ 1

0
f (x)ln f (x)dx, f ∈D,

with the equality constraints

∫ 1

0
f (x)gi(x)dx=µi, i=0,1,··· ,n,

where g0,g1,··· ,gn∈L∞(0,1). These functions g0,g1,··· ,gn are called the moment functions.
It is well known [9] that the maximum entropy solution to the above constrained

maximization problem exists and is unique. In fact, it has an explicit expression of the
form

fn(x)=
exp

(

∑
n
j=0λjgj(x)

)

∫ 1
0 exp

(

∑
n
j=0λjgj(x)

)

dx
,

where the numbers λ0,λ1,··· ,λn are chosen to satisfy the given constraints

∫ 1

0
fn(x)gi(x)dx=µi, i=0,1,··· ,n.

4 Polynomial maximum entropy method

First of all, we review the polynomial maximum entropy method developed in [4]. Sup-
pose that we choose the moment functions gi(x) = xi for i = 0,1,··· ,n. Then the corre-
sponding fn is written as

fn(x)=
exp

(

∑
n
j=0 λjx

j
)

∫ 1
0 exp

(

∑
n
j=0 λjxj

)

dx
,

where the numbers λ0,λ1,··· ,λn are chosen to satisfy the given constraints

∫ 1

0
fn(x)xidx=µi, i=0,1,··· ,n.

Note that using

exp
( n

∑
j=0

λjx
j
)

= eλ0 exp
( n

∑
j=1

λjx
j
)

,

we have

fn(x)=
exp

(

∑
n
j=1 λjx

j
)

∫ 1
0 exp(∑n

j=1 λjxj)dx
.
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So the corresponding constraints become

∫ 1
0 exp

(

∑
n
j=1λjx

j
)

xidx
∫ 1

0 exp
(

∑
n
j=1λjxj

)

dx
=µi, i=0,1,··· ,n.

Since f ∗ is a density and g0 = x0 = 1, it follows from (3.1) that µ0 = 1. Thus in the above
constraints the equation corresponding to i=0 is automatically fulfilled for any λ1,··· ,λn.
Hence we have come up with the following form of fn

fn(x)=
exp

(

∑
n
j=1λjx

j
)

∫ 1
0 exp

(

∑
n
j=1λjxj

)

dx

and the corresponding constraints

∫ 1
0

exp
(

∑
n
i=1λjx

j
)

xidx
∫ 1

0
exp

(

∑
n
j=1 λjxj

)

dx
=µi, i=1,··· ,n.

Based upon these equations, the Hausdorff maximum entropy algorithm was developed
in [4]. Similarly, in [4] the Chebyshev maximum entropy algorithm was developed based
upon

fn(x)=
exp

(

∑
n
j=1λjTj(2x−1)

)

∫ 1
0 exp

(

∑
n
j=1 λjTj(2x−1)

)

dx

and

∫ 1
0 exp

(

∑
n
i=j λjTj(2x−1)

)

Ti(2x−1)dx
∫ 1

0 exp
(

∑
n
j=1λjTj(2x−1)

)

dx
=µi, i=1,··· ,n.

In this paper we modify these maximun entropy equations based on a simple obser-
vation which is presented in the following lemma.

Lemma 4.1. Assume that 1∈span{g0,g1,··· ,gn}. If λ0,λ1,··· ,λn satisfy

∫ 1

0
exp

( n

∑
j=0

λjgj(x)
)

gi(x)dx=µi, i=0,1,··· ,n, (4.1)

then the maximum entropy solution fn can be written as

fn(x)=exp
( n

∑
j=0

λjgj(x)
)

.
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Proof. It is enough to show that exp(∑n
j=0λjgj(x)) is a density. Since 1 belongs to

span{g0,g1,··· ,gn}, there exist some constants c0,c1,··· ,cn such that ∑
n
i=0cigi(x)= 1. The

fact that f ∗∈D and (3.1) lead to

n

∑
i=0

ciµi =
n

∑
i=0

ci

∫ 1

0
f ∗(x)gi(x)dx=

∫ 1

0
f ∗(x)

n

∑
i=0

cigi(x)dx=
∫ 1

0
f ∗(x)·1dx=1.

So using (4.1) yields

∫ 1

0
exp

( n

∑
j=0

λjgj(x)
)

dx=
∫ 1

0
exp

( n

∑
j=0

λjgj(x)
) n

∑
i=0

cigi(x)dx

=
n

∑
i=0

ci

∫ 1

0
exp

( n

∑
j=0

λjgj(x)
)

gi(x)dx=
n

∑
i=0

ciµi =1.

So, we complete the proof.

Remark 4.1. In all of the Hausdorff, Chebyshev, and Legendre maximum entropy meth-
ods g0(x)=1. So Lemma 4.1 applies to all of them.

Remark 4.2. The partition of unity property of the piecewise linear method in [2] is also
a special case of Lemma 4.1 as 1 belongs to the span of the piecewise linear moment
functions.

Assume that 1∈span{g0,g1,··· ,gn} and that

µi=
∫ 1

0
f ∗(x)gi(x)dx, i=0,1,··· ,n,

are given. Now we want to approximate the density f ∗ with fn. Then the corresponding
maximum entropy method can be summarized as follows.

Step 1 Solve the following system of nonlinear equations

∫ 1

0
exp

( n

∑
j=0

λjgj(x)
)

gi(x)dx=µi, i=0,1,··· ,n,

for λ0,λ1,··· ,λn.

Step 2 The maximum entropy solution is

fn(x)=exp
( n

∑
i=0

λigi(x)
)

.

Remark 4.3. If gi(x)= xi, we have the Hausdorff maximum entropy method; if gi(x)=
Ti(2x−1), we have the Chebyshev maximum entropy method; and if gi(x)= Li(2x−1),
we have the Legendre maximum entropy method.
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5 Converting Hausdorff moments into Chebyshev and

Legendre moments

Because of high ill-conditioning of the Hausdorff moment problem solved directly with
the maximum entropy method, converting the Hausdorff moment problem into an or-
thogonal polynomial moment problem is of practical importance in realizing the maxi-
mum entropy principle. Using the recursive formula (2.1) it is easy to figure out all the
coefficients of Ti(x) for any i. So write

Ti(x)= ci0+ci1x+···+ciix
i.

Then we can compute c̃ij, 0≤ j≤ i≤n, such that

Ti(2x−1)=ci0+ci1(2x−1)+···+cii(2x−1)i

=ci0+ci1(−1+2x)+···+cii

i

∑
j=0

(

i

j

)

(−1)i−j2jxj =
i

∑
j=0

c̃ijx
j.

If we let µ∈Rn+1 with µi=
∫ 1

0 f ∗(x)xidx for i=0,1,··· ,n, and µ̃∈Rn+1 with µ̃i=
∫ 1

0 f ∗(x)Ti(2x−
1)dx for i=0,1,··· ,n, then

µ̃i=
∫ 1

0
f ∗(x)Ti(2x−1)dx=

∫ 1

0
f ∗(x)

i

∑
j=0

c̃ijx
jdx=

i

∑
j=0

c̃ij

∫ 1

0
f ∗(x)xjdx=

i

∑
j=0

c̃ijµj,

for i = 0,1,··· ,n. So if we define the (n+1)×(n+1) lower triangular matrix M̃ whose
(i, j)-entry is c̃ij for 0≤ j≤ i≤n, then

µ̃= M̃µ,

where µ̃ is the vector of Chebyshev moments.
Similarly, using (2.2) we can find ĉij, 0≤ j≤ i≤n, such that

Li(2x−1)=
i

∑
j=0

ĉijx
j.

Then, as before, if we define the (n+1)×(n+1) lower triangular matrix M̂ whose (i, j)-
entry is ĉij for 0≤ j≤ i≤n, we have

µ̂= M̂µ,

where µ̂ is the vector of Legendre moments.
So we can use the Chebyshev or Legendre maximum entropy methods starting with

the Housdorff moments to reduce the instability of the traditional maximum entropy
approach. In the next section we present the numerical implementation results of these
different schemes applied to solving the Frobenius-Perron fixed density equation.
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6 Numerical results

We first introduce the concept of the Frobenius-Perron operator for one dimensional
transformations. Let a measurable transformation S : [0,1]→ [0,1] be nonsingular, that is,
m(A)=0 implies m(S−1(A))=0 for every Lebesgue measurable subset A of [0,1], where
m denotes the Lebesgue measure. The linear operator PS : L1(0,1)→ L1(0,1) defined by

∫

A
PS f (x)dx=

∫

S−1(A)
f (x)dx

for every measurable A ⊂ [0,1] is called the Frobenius-Perron operator associated with S.
An extensive study of this class of Markov operators is referred to, e.g., [7, 9].

In the applications of ergodic theory to physical and engineering problems, stationary
density functions, which are also fixed points of Frobenius-Perron operators, play an im-
portant role since they determine the statistical properties of the deterministic dynamics
of the corresponding transformation.

In this section we use several versions of the polynomial maximum entropy method
to numerically recover a stationary density. We used the following piecewise monotonic
interval mapping

S(x)=











2x

1−x2
, 0≤ x≤

√
2−1,

1−x2

2x
,

√
2−1≤ x≤1,

to test the performance of the Hausdorff (H-MEM), Chebyshev (C-MEM) and Legendre
(L-MEM) maximum entropy methods as well as the algorithms of converting the Hau-
droff moments to the Chebyshev (HC-MEM) and Legendre moments (HL-MEM) and
applying the corresponding maximum entropy methods. The unique stationary density
of S is positive and given by

f ∗(x)=
4

π(1+x2)
.

After we used Newton’s method to solve the nonlinear system of equations for fn, we
estimated the L1-norm error

en =‖ fn− f ∗‖1=
∫ 1

0
| fn(x)− f ∗(x)|dx

with a numerical integration scheme. In Table 1, we recorded the L1-norm errors with
n=1,2,··· ,12, using H-MEM, C-MEM, and L-MEM, and in Table 2, we recorded the max-
imum matrix 1-norm condition numbers of the derivative matrix encountered during
Newton’s iterations for each n. In Table 3, we recorded the L1-norm errors with different
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Table 1: L1-norm errors in fn.

n H-MEM C-MEM L-MEM

1 3.3×10−2 3.3×10−2 3.3×10−2

2 6.7×10−3 6.7×10−3 6.7×10−3

3 2.1×10−4 2.1×10−4 2.1×10−4

4 1.8×10−4 1.8×10−4 1.8×10−4

5 3.0×10−5 3.0×10−5 3.0×10−5

6 1.6×10−6 1.6×10−6 1.6×10−6

7 1.3×10−6 1.3×10−6 1.3×10−6

8 3.3×10−7 1.6×10−7 1.6×10−7

9 2.0×10−4 2.3×10−8 2.3×10−8

10 1.3×10−5 9.8×10−9 9.8×10−9

11 2.4×10−7 7.7×10−10 7.7×10−10

12 1.3×10−5 2.7×10−10 2.7×10−10

Table 2: Maximum matrix 1-norm condition number encountered in computing fn.

n H-MEM C-MEM L-MEM

1 2.7×101 3.8×100 3.8×100

2 7.5×102 6.8×100 6.9×100

3 2.8×104 1.2×101 9.8×100

4 9.4×105 1.5×101 1.3×101

5 2.9×107 1.9×101 1.6×101

6 9.9×108 2.2×101 1.9×101

7 3.4×1010 2.7×101 2.2×101

8 9.9×1011 3.0×101 2.6×101

9 3.7×1015 3.4×101 2.9×101

10 1.6×1014 3.7×101 3.2×101

11 1.3×1013 4.1×101 3.6×101

12 1.6×1014 4.4×101 3.9×101

n using HC-MEM and HL-MEM, and in Table 4, we recorded the matrix 1-norm condi-
tion numbers of the conversion matrices M̃ and M̂ respectively for each n.

From Table 1 we can see that both the Chebyshev and Legendre maximum entropy
methods outperform the Hausforff maximum entropy method considerably, especially
when the number of the moments becomes large since the errors of the latter do not
decrease for those n due to the instability signaled by the high condition numbers which
can be seen from Table 2. We also observe from Table 2 that the condition numbers for
the orthogonal polynomial based maximum entropy methods are only in the order of
101 for all n in this example, as compared to the order of 1014 with n=9,10,11,12 for the
Hausdorff maximum entropy method.

For the algorithms of converting the Hausdorff moments to the Chebyshev and Leg-
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Table 3: L1-norm errors in fn.

n HC-MEM HL-MEM

1 3.3×10−2 3.3×10−2

2 6.7×10−3 6.7×10−3

3 2.1×10−4 2.1×10−4

4 1.8×10−4 1.8×10−4

5 3.0×10−5 3.0×10−5

6 1.6×10−6 1.6×10−6

7 1.3×10−6 1.3×10−6

8 1.6×10−7 1.6×10−7

9 2.4×10−8 2.3×10−8

10 9.8×10−9 9.8×10−9

11 2.5×10−9 2.8×10−9

12 2.1×10−8 1.9×10−8

Table 4: Matrix 1-norm condition numbers of M̃ and M̂.

n M̃ M̂

1 3.0×100 3.0×100

2 1.9×101 1.5×101

3 1.2×102 7.5×101

4 7.1×102 3.7×102

5 3.8×103 1.8×103

6 2.4×104 1.0×104

7 1.4×105 5.5×104

8 8.3×105 3.0×105

9 5.1×106 1.7×106

10 3.2×107 1.0×107

11 1.9×108 5.5×107

12 1.1×109 3.1×108

endre moments, we see that the growing condition numbers of the conversion matrices
(Table 4) limit the accuracy of the algorithms HC-MEM and HL-MEM (Table 3). How-
ever, the algorithms HC-MEM and HL-MEM are still more accurate that the algorithm
H-MEM. So if only the Hausdorff moments are available, it is recommened to use the
algorithms HC-MEM or HL-MEM rather than the algorithm H-MEM.

7 Conclusions

Using a very mild condition that the constant function 1 can be written as a linear com-
bination of the moment functions used in the maximum entropy method, which is often
the case in the numerical implementation of the method, such as the monomial moment
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functions, orthogonal polynomial moment functions, and piecewise polynomial moment
functions satisfying the partition of unity property, we have been successful in remov-
ing the denominator in the nonlinear system of equations, thus simplied the algorithms.
We have also demonstrated that an orthogonal maximum entropy method outpeform
the monomial maximum entropy method. Finally, we discussed how to reduce the ill-
conditioning of the monomial moment problem by converting the monomial moments
into orthogonal polynomial moments.
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