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Abstract. In this paper, the idea of a combination of variable separation approach and
the extended homoclinic test approach is proposed to seek non-travelling wave so-
lutions of Calogero equation. The equation is reduced to some (14 1)-dimensional
nonlinear equations by applying the variable separation approach and solves reduced
equations with the extended homoclinic test technique. Based on this idea and with
the aid of symbolic computation, some new explicit solutions can be obtained.
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1 Introduction

Nonlinear evolution equations are related to nonlinear phenomena in nonlinear science
such as physics, mechanics, biology and chemistry. To further explain some physical phe-
nomena, seeking exact solutions of nonlinear evolution equations is of great significance.
It is well known that the method of variable separation is one of the most universal and
efficient means for studying linear partial differential equations (PDEs). Several meth-
ods of variable separation for nonlinear PDEs have been suggested, such as the ansatz-
based method [1], the formal variable separation approach [2], the functional variable
separation approach [3, 4], the derivative-dependent functional variable separation ap-
proach [5,6] and the multi-linear variable separation approach [7-9].
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In this paper, we consider the following (2+1)-dimensional breaking soliton equation
uxt_4uxuxy_2uyuxx+uxxxy:O/ (1-1)

which was first presented by Calogero and Degasperis [10,11]. This equation was also
constructed by Bogoyavlenskii and Schiff in different ways [12-14]. The equation is used
to describe the interaction of a Riemann wave propagating along the y axis with a long
wave along the x axis. The Plainlevé property, Darboux covariant Lax pairs, infinite con-
servation laws, Hamilton structure and the Lax pair of Eq. (1.1) have been discussed by
many researchers in [15-17]. The bilinear Backlund transformation, nonlinear superposi-
tion formula and Wronskian determinant solution have been discussed in [18]. Moreover,
a considerable number of exact specific solutions have been developed and can be found
in [19-25].

The goal of the present work is to investigate the non-travelling wave solutions for
Eq. (1.1) by using the multi-linear variable separation approach combining with the ex-
tended homoclinic test approach [26]. First, we apply the method of variable separation
to reduce Eq. (1.1) to some (1+1)-dimensional nonlinear equation. Then, solving the
reduced equation by the extended homoclinic test technique with the aid of Maple, we
obtain some new non-travelling wave explicit solutions of Eq. (1.1). These solutions can
provide an important practical check on the accuracy and reliability of such integrators.

2 The non-travelling wave solutions

In this section, we employ the method of separation of variables together with the ex-
tended homoclinic test technique solving the Calogero Equation (1.1). We assume that
the solutions for Eq. (1.1) are of the x-line form

u(x,y,t)=@(G,t)+q(y.t), (2.1)

where ¢ =px+6(y,t).
Substituting (2.1) into (1.1), one obtains

per-+(0:—2pay) pzz — 610y e ez +p 0y pzece = 0. (22)
In order to simplify Eq. (2.2), we assume that
0 —2pq, =0. (2.3)

Now we employ the method of separation of variables solving Eq. (2.3).
First we seek the multiplicative separable solution

0=f(t)g(y), (2.4)

where f(t), g(y) are smooth functions to be determined later.
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Inserting (2.4) into (2.3), we get

_f1) sy (2.5)

Substituting (2.4) and (2.5) into (2.2), we have

pet—6pf (D8 () pe ez + P f (1) (v) pecee =0 (2.6)

Let ¢’ (y) = constant, then we suppose without loss of generality that g(y) =y. Eq. (2.6)
reduces to the following variable coefficient equation

Pet—6pf () e pez+p* f () peeee =0 (2.7)

We make the transformation

o(&) =0, 1= [fDd @9
Substituting (2.8) into (2.7) yields a partial differential equation with constant coefficients
gy —6pvzves + PP 0gzee =0. (2.9)
Integrating (2.9) once with respect to ¢ and discarding the integration constant yield
vy —3pvi+p vgze =0. (2.10)
To solve Eq. (2.10), we introduce a transformation
v=—2p(In¢)¢. (2.11)
Substituting (2.11) into (2.10) yields
(DeDy+p*Dz)¢p-¢=0. (2.12)

With regard to (2.12), using the extended homoclinic test approach [26], we seek the so-
lution in the form

¢ =p1cos(G1)+paexp(G2) +exp(—¢2), (2.13)

where ¢1 =a15+c11, Ea=a8+c21, a;, ¢;, (i=1,2) are arbitrary constants to be determined
later.

Substituting (2.13) into (2.12) and equating all coefficients of sin (&1 ), cos(&1), exp(¢2),
exp(—¢&2) to zero, one yields the following set of algebraic equation for a;, ¢;, p;, (i=1,2)

p1pa(aica+azcr +4p? alaz 4p?a az) 0,

p1(aico+aze; +4p? ma, —4p a az) 0,

plpz(azcz—alcl—l—p —|—p 3 —6p*a3a3) =0, (2.14)
p1(azca—aicr+pPay+p*a Pza%”%) 0,

4p?prat+4prazc, —prajcy —|— 16p>paa3 =0.
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Solving Eq. (2.14) with the aid of Maple, one gets the following results:
Case 1:
p=0, m=m, a=c, p=p, ®=0, o=-4p’s

From (2.13), (2.15), (2.11) and (2.1), we get

p2exp(62) —exp(=62) | f'()y?
paexp(8a)+exp(—¢2)  4p

u=—2pap

When p; >0, one obtains a kinky non-traveling wave solution
_ 1 f'(By?

11 = —2paztanh <§2 + 5 lnpz) + Tap

When p; <0, one obtains a kinky non-traveling wave solution

1 (112
up = —2pascoth |:§2—}— Eln(—pz)] +%
Case 2:
al:al/ [l2:ﬂ2, plzpll P2 p41 21/

a1 (p*ai —3p*a3), ca=az(3p’al—p?a3).
Combining (2.13), (2.19), (2.11) with (2.1) yields

a1 p1sin(1) +a2 (4 1e><})(§2)+e><P( 2)) f/()
prcos(2) —Hlsl exp(22) +exp(~2) 4p

where
G =ai(px+£(1)y) +m (e} —3p%3) [ F(t)a
Ga=ax(px+f(t)y)+ax(3pai —p*a3 /f
Let pyayaz >0, then (2.20) can be written as follows

sin(&;)+cosh (& +6;) +f/(t)y2
azcos(g) —arsinh(G+61)  4p

91:1n<’92%1).

Uz =2a1azp

where

1039

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Let p1aja2 <0, then (2.20) can be written as follows

_ sin(g1) —cosh(@+62)  f/(H)y?
= _2ala2pa2cos(§1) +aysinh( +65) + 4p 7 222)
where pra
—1n( - %1
92 =In ( 26!2 ) '
Case 3:
ay=—ia, m=4ai, p1=pi, p2="p2,
2.23
{ 1 :4;7251{’, ¢y =—4ip*a’ (2.23)
Combining (2.13), (2.23), (2.11) with (2.1), we have
. _ . . . _ . / 2
w=2pa; pisin(é1) —iexp(icy) +ipaexp(—id1) | f(y” (2.24)
p1cos(C1)+paexp(—idy)+exp(idy) — 4p
where
trman (e F09) 4% 7
We make the dependent variable transformation in Eq. (2.24) as follows
a :iAl, (225)
where Aj is real.
We obtain new form for Eq. (2.24) as follows
% ! 2
u=—2pA; plslnh(é )+P29XP(§1) ( Ci) +f (t)y , (2.26)
prcosh(Zy)+ PzeXP(§1)+eXP( &) 4p
where
&= A(px-+ () —4p* A7 [ f(1)d
Let pp >0, then (2.28) can be written as follows
inh(¢7)+2 inh(¢;+6 "()y?
ts— 2 p1sinh(¢7) V/P,sin (81 +65) +f (t)y (2.27)

" cosh(¢y)+2,/p,cosh(&] +03) 4p '

where

1

Let pp <0, then (2.28) can be written as follows

pisinh(&}) —2y/=pacosh(&i +64) | f'(H)y* (2.28)
picosh(&1) —2,/=pzsinh(¢; +64) 4p 7 '

M6:2p 1
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where

3= 3In(~ps).
Case 4:
2
_ _ _ _Pn
ay=1az, d=day, Pl - Pl/ PZ - Z/ (229)
a1 =—i(8p*a3+c2), ca=ca.
Combining (2.13), (2.29), (2.11) with (2.1), we have

4y P1SIN(E) Hexp(E2) —exp(=82) S’ 0y 230
prcosh(&1) +Glexp(&2) +exp(—¢2) P
where
&1 =aa(px-+ (1))~ (8P +c2) / £
Cz—az(px—i—f —|—C2/f
Let p1 >0, then (2.30) can be written as follows
. sinh(&1)+sinh(&+In(E)) £/ (t)y?
= 2pcosh(§1) +cosh(&+1In(4)) + 4p @31)
Let p; <0, then (2.30) can be written as follows
sinh({7)—sinh (Cz—i—ln(—%)) f’(t)y2
s =—2p cosh(&1) —cosh (& +In(—5)) i 4p (2.32)

Then we look for a separable solution of the additive form

0=f(t)+8(y), (2.33)

where f(t), g(y) are smooth functions to be determined later. Substituting (2.33) into
(2.3), we have

ftly (2.34)

1=,

Combining (2.33), (2.34) with (2.21), we obtain

@z —6p8g’ () P pZE+ 1?8 () ezze =0. (2.35)

Let ¢’'(y) = constant, then we assume without loss of generality that g(y) =y.
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Integrating (2.35) once with respect to ¢, we obtain

9t —3ppZ +p* pecc =0. (2.36)
In a manner similar to that of above we obtain
11 = —2pas tanh <§+ %lnpz) +f/2(;)y, (2.37a)
_ 1 f'(t)y
up = —2paycoth <C+§ln(—p2)) +7, (2.37b)
where
E=a(px+y~+f(t) / f(t)
and
B sin(¢1)+cosh(&2+61) f’( )y
u3_2a1a2pa cos(Cl)—alslnh(§2+91) 2p ' (2.:382)
sin(¢1) —cosh(&+62) | f'(Hy
u4_2a1a2pa cos({1)+aysinh(&p+6;) 2p 7 (2.38b)
where
E =a1(px+y+f(t))+ay(p*al — /f (2.39a)
Co=m(px+y+f(t))+ax( 3p p az /f(t (2.39b)
B Plsinh(CT)+2\/_251nh(Cl+93) f/( )
Us=— 1P1COSh(§ik)+2\/ﬁzcosh(éi‘+93) + , (2.39¢)
B p1sinh(&;) —2./—p2cosh(&; +64) f’()
Mo = 2P AL cosh(2) —2y/~pasinh(&{ +65) | 2p (2:394)
where
&1=Ai(px+y+£(1) —4p2 A7 [ f(1)at
and
_ sinh(&1)+sinh(&+In(8))  f(t)y
U7 =— pCOSh((;‘l)—FCOSh(Cz—Hn(%))+ 2 (2.40a)
B sinh(&;) —sinh(&+In(—5))  f'(t)y
=T pcosh((;‘l)—cosh(Cz—Hn(—%))+ 2p (2.40b)
where

G=ax(pxty+£(0) - Bpad+er) [ F()d,
Ga=ax(px+y+f(t))+ca /f(f)df
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For a function u(x,y,t) of the form

u(x,y,t) =0(x,7),T=0(t+ky). (2.41)
Eq. (1.1) becomes
' Uy — AP 0 0x 0 — 22 00y KPP Ve = 0. (2.42)
Eliminating ¢/, we have
Vir — 420,037 — 220703y + K20 1007 =0, (2.43)

which, like the KdV equation, is an integrable model equation for the propagation of long
waves in a medium with nonlinear dispersion [27,28].
To solve Eq. (2.43), we make the dependent variable transformation

v=-2(Inf),, (2.44)

where f is an unknown real function which will be determined.
Substituting (2.44) into (2.43), we obtain

(I f) yxr +8K2 (INf) 1y (IN ) e +4K2 (I F) o (INf) gy +52(I0 ) yne = 0. (2.45)

Integrating (2.45) once with respect to x, we have

(I0f) xr +6K>(Inf) xx (I ) o+ (I0f) yxr
+2K20 (N f) o (I0 ) gxr — (I f) o (Inf) y1x] = C. (2.46)

Taking C =0, therefore (2.46) can be written as
(DeDx+ kDD f-f+4k 20, (Dx(Inf)xe- (Inf)xx) =O. (2.47)

Suppose that
93 {(Dx(Inf) e+ (Inf)xx) =0, (2.48)

note that to have a correct solution for Eq. (2.43) we must consider (2.48) in our algebraic
systems of equations. Therefore, by our assumption, Eq. (2.47) reduces to

(DD, +k*D.D3)f-f=0. (2.49)
Now we suppose that the solution of Eq. (2.47) as

f=picos(1)+paexp(&a) +exp(—G2), (2.50)

where {;=a;x+0b;T, (i=1,2). a;, b; are some constants to be determined later.
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Substituting (2.50) into (2.49) and equating all coefficients of exp(&z)cos(¢1),
exp(—¢&2)cos({1), exp(&2)sin(¢y), exp(—¢&2)sin(¢7) to zero, we get a set of nonlinear alge-
bra equations for a;, b;, p;, (i=1,2),

a1b1 — azbz —k2€li’b1 —kzagbz +3k2a1a%b1 +3k2a%a2b2 = 0,
a1by +ayby — k*a3by +k*a3by 4 3k*aya3by, — 3k*a3arb1 =0, (2.51)
pia1by —4prarbr — 4k* p3a3by — 16k* ppa3br =0.

Substituting (2.50) into (2.48) and equating all coefficients of sin(&1), exp(¢2), exp(—E2)
to zero, we obtain a set of nonlinear algebra equations for a;, b;, (i=1,2),

{ a3by+aZarby —a3by —aqadb, =0, (2.52)

ai’bz%—ala%bz —a%azbl — a%bl =0.

Solving the system of Egs. (2.51) and (2.52) with the aid of Maple, one gets the following
cases:

Case 1: )

i

%/
Substituting (2.53) into (2.50) yields

a1 =0, ay= bi=b1, by=by, pi=p1, p2=0. (2.53)

f=picoshb;T+exp <— %x—l—bg) . (2.54)

From (2.54), (2.44) and (2.41), we obtain the exact solutions to the Calogero Equation (1.1)
given that ‘
g2 exp[—(gx+bayp(Ky+1))] (255)
K prcosh(byp(Ry +1)) +exp[— (1x+ bap(Ry+1))]” |
where by, by, k are arbitrary constants.
We make the dependent variable transformation in Eq. (2.55) as follows

k=iK,
where K is real. We obtain new form for Eq. (2.55) as follows

M:—E exp[_(%+b2¢(t_K2y))] (2 56)
K picosh(biyp(t—K2y)) +exp[— (£ +bayp(t—K?y))] .

Case 2: ) ,
i b i
T 2kb, TP 2K
Substituting (2.57) into (2.50) yields

f=p2exp(&2) +exp(—E2). (2.58)

a bi=b1, by=b;, p1=0, pr=p>. (2.57)
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From (2.58), (2.44) and (2.41), one obtains

_ i paexp(G2) —exp(—¢2)
"k paexp(@2) Texp(—6a)’ 25
where '
1

2
) 2kx+b21./J(k y+t),

by, k are arbitrary constants.
We make the dependent variable transformation in Eq. (2.59) as follows

k=iK,

where K is real. We obtain new form for Eq. (2.59) as follows

_ 1 paexp(&3) —exp(—¢5)
"SR paexp(E) Texp(—55) (2.60)

where N
&= 2K +bap(t—K?y),

by, K are arbitrary constants.
If p> >0, taking 6; = 3 Inp,, then we obtain

u:—%tanh(ﬁ—f-(ﬂ). (2.61)

If p» <0, taking 6, =In(,/—p2), then we obtain

u= —%coth((f;—%z). (2.62)
Case 3: .
a1 =iap, ar=ay, bi=—iby, by=by, p2= ZP%’ p1=p1. (2.63)

Substituting (2.63) into (2.50) yields

f=prcosh(@)+ 7 pRexp(E2) +exp(~2), (264

where ¢ =ayx —byp(kK2y+t), o =axx+byp(k*y+t), k, a, by are arbitrary constants.
Combining (2.64),(2.44) with (2.41), one gets

pisinh(&1) + ;piexp(82) —exp(—&2)
p1cosh(Zy)+Fplexp(Z) +exp(—&2)

u=-2a (2.65)
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If p1 >0, taking 63 =In %}, then we obtain

sinh(&7)+sinh(&+63)
2cosh(§1) +cosh(&+63)°

U= —2z0

If p1 <0, taking 6, =In(—%5"), then we obtain

sinh(&;) —sinh(&+64)

U= —2612 COSh(Cl) —COSh(CZ+94) .

Case 4: ,
1 i

K ax= P
Substituting (2.68) into (2.50) yields

a =

f=p1c0s(C1)+p2exp(G2) +exp(—E2).
Combining (2.69), (2.44) with (2.41), we obtain

_ 1 —pisin(G1) +ipaexp(&2) —iexp(—02)
k  picos(G1)+paexp(G2) +exp(—G2)

u—=

where . _
1
&= ﬂx+b1¢(k2y+t), &= ﬂx+b2¢(k2y+t),

k, ay, by are arbitrary constants.

We make the dependent variable transformation in Eq. (2.70) as follows

k=iK, bi=iBy,
where K, B; are real. We obtain new form for Eq. (2.70) as follows

L 1 —pisinh(&]) ~ prexp(e3) +exp(~5)
K p1cosh(Z;)+p2exp(E3) +exp(—33) |

where
«_ X 2
¢1= K —Biy(t—K7y),
. X
) :ﬁ‘i‘bzlp(t_sz)-
If p >0, taking 65 =In /p2, then we obtain

_ _l plsmh(Ci*) +2\/ﬁsinh(§‘§ +95)
K pycosh(Zy)+2,/pacosh(Gs+65)

bi=bi, by=by, pi=p1, p2=p2.

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)
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If pp <0, taking 65 =In/—p7, then we obtain

_ 1 —pisinh(¢}) +2/=pacosh(Z3 +66)
K picosh(&})—2,/—pasinh (&3 +66)

Case 5: . )
i
% L= bi=b1, by=by, pi=p1, p2=p2.

Combining (2.74) with (2.50), one gets
f=p1cos(81)+paexp(G2) +exp(—G2),

a|1=—

where

1
Clz—ﬂx%—blr, Cz x+b2T

ay, by are arbitrary constants.
Combining (2.75), (2.44) with (2.41) yields

_ 1pysin(G1) +ipaexp(G2) —iexp(—¢2)
k picos(G1)+p2exp(G2) +exp(—E&a)

where

G1=— 21kx+b1¢(k2y+t) Ga=15p x+b2¢(kzy+t>

ay, b are arbitrary constants.

We make the dependent variable transformation in Eq. (2.76) as follows

k=iK, bi=iBs,
where K, B; are real. We obtain new form for Eq. (2.76) as follows

_ 1 —pisinh(&7) — paexp(G;) +exp(=G;)
K prcosh(¢T) +paexp(&3) +exp(=G3)

where
&= +B1¢(f K?y),

&= 2K +b21/’(t—K2 )-

If p» >0, taking 67 =In/p>, then we obtain
o l pP1 smh(@"l*) —|—2\/ﬁsinh(§‘§ +97)
K pycosh(Z;y)+2,/pacosh(Zs+67)
If p» <0, taking 6g =1In/—p», then we obtain

_1-p sinh(¢})+2,/—p2cosh(; +6s)
K picosh(Z})—2y/=pzsinh(¢; +0s) °

1047

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)
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3 Discussion

It is obvious to see that the solutions above recover the solutions u;—us in [21]. And
the solutions (2.38a), (2.38b), (2.40a), (2.40b), (2.56), (2.66), (2.67), (2.72), (2.78) cannot be
obtained in [21]. When taking the arbitrary function f(t), i as special constants or func-
tions, we can derive rich exact solutions for Eq. (1.1).

4 Conclusions

In this paper, the idea of a combination of variable separation approach and the extended
homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero
equation. The equation is reduced to some (1+41)-dimensional nonlinear equations by
applying the variable separation approach and solves reduced equations with the ex-
tended homoclinic test technique. Based on this idea and with the aid of symbolic com-
putation, some new explicit solutions can be obtained.
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