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Abstract. An adaptive multi-penalty discontinuous Galerkin method (AMPDG) for
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1. Introduction

Let Ω ⊂ R
d, d = 2, 3 be a bounded, polyhedral domain. We study the convergence of

an adaptive multi-penalty discontinuous Galerkin (AMPDG) method for the diffusion

problem

L(u) := −div(A∇u) = f in Ω, (1.1a)

lu = 0 on ∂Ω. (1.1b)

Precise conditions on A : Ω → R
d×d and f : Ω → R are specified later. We would like

to point out that, in the present work we restrict ourselves to homogeneous Dirichlet

boundary conditions to simplify the already technical presentation. Similarly, a reaction

term of the type cu with 0 ≤ c ∈ L∞(Ω) could have been added to the development as

in [10] without changing the essence.

The adaptivity has been a fundamental technique for about four decades in finite

element methods (FEM), interior penalty discontinuous Galerkin (IPDG) methods, and

many other methods to deal with various singularities. There have been many works
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52 Z.-H. Zhou and H.-J. Wu

on the convergence analysis of the adaptive FEMs (AFEM). It started with Babuška and

Vogelius [2], who gave a detailed treatment for the one-dimensional boundary value

problems. In 1996 Dörfler [14] introduced a crucial marking, from now on called

Dörfler’s marking, and proved the first convergent result for the two-dimensional case.

He proved strict energy error reduction for the Poisson’s equation provided the initial

mesh satisfies a fineness assumption. For the results after that, we refer the reader

to [10,13,17,18,20–23, etc.], and the references therein. Here we note that in [21,22],

the MARK procedure of the adaptive algorithm marks not only for the estimator, but

also for the oscillation, and the interior node property should be involved. However,

in [10, 23] the impractical ingredients, that is, the mark of oscillation and the interior

node property, were removed. This is a great improvement in a practical point of view.

Although there have been many works for the AFEM, the convergence results of the

adaptive IPDG methods (AIPDG) are rather recent. The first convergence result on the

AIPDG was given by Karakashian and Pascal [19], then Hoppe, Kanschat and Warbur-

ton [15] improved the results upon [19]. In 2010, Bonito and Nochetto [3] proved the

convergence of the AIPDG for the diffusion problem with general data on nonconform-

ing partitions. They also gave a quasi-optimal asymptotic rate of convergence for the

AIPDG, which was the first result of this type in the literature for DG methods.

The multi-penalty discontinuous Galerkin (MPDG) method considered in this paper,

which was first introduced by Arnold [1], penalizes not only the jump of discrete solu-

tion, but also the jump of the (higher) derivatives of the discrete solution at mesh inter-

faces. We point out that the latter one has successfully applied to convection-dominated

problems as a stabilization technique [5–9], and more recently, it has shown great po-

tential for simulating Helmholtz scattering problems with high wave number [25,26].

The purpose of this paper is to prove convergence and quasi-optimality for the

AMPDG based on an a posteriori error estimator of residual type and the Dörfler’s

marking strategy. The basic idea of the analysis is to mimic that of the AIPDG (cf. [3]),

but some essential difficulties caused by the additional penalty terms need to be treated

specially. Compared with [3], we introduce the extra penalty terms without any other

restrictions for the data in model problem (1.1a) or the regularity of weak solution.

Note that when the penalty parameters of the extra penalty terms equal to zero, the

AMPDG reduces to the AIPDG, our results extend those of AIPDG [3].

The rest of this paper is organized as follows. In Section 2 we introduce the MPDG

method and its adaptive algorithm, and give the preliminaries used to derive the main

results of this paper. In Section 3 we give the upper and lower error estimates for the

MPDG. Section 4 is devote to prove the contraction property of the adaptive algorithm.

The quasi-optimality of the AMPDG is proved in Section 5.

In order to simplify the notation, we write a . b whenever a ≤ Cb with a constant

C independent of parameters which a and b may depend on. We also write a h b for

a . b and b . a.
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Convergence and Quasi-Optimality of the AMPDG Method 53

2. The multi-penalty discontinuous Galerkin method

In this section, we state the AMPDG on nonconforming meshes. Notation and pre-

liminaries are also introduced. Throughout this paper, the standard space, norm and

inner product notation are adopted, their definitions can be found in [4,11]. In partic-

ular, (·, ·)ω and ‖·‖ω denote the L2-inner product and L2-norm on L2(ω) space, respec-

tively. Denote by (·, ·) := (·, ·)Ω.

2.1. Data assumptions and the weak formulation

Let p ≥ 1 be a given polynomial degree. Given an initial conforming partition M0

of Ω, we assume that f ∈ L2(Ω), and A ∈ ∏K∈M0
W p,∞(K)d×d is symmetric positive

definite with eigenvalues in 0 < am ≤ aM < ∞, i.e.,

am|y|2 ≤ Ay · y ≤ aM |y|2 ∀y ∈ R
d a.e. in Ω.

Invoking the Lax-Milgram lemma, the above assumptions ensure that the weak formu-

lation of (1.1a), namely

u ∈ H1
0 (Ω) : (A∇u,∇v) = (f, v) ∀v ∈ H1

0 (Ω), (2.1)

possesses a unique solution.

2.2. Partitions of Ω

In the theoretical analyses hereafter, nonconforming partitions made of triangles

(tetrahedrons when d = 3) or quadrilaterals (hexahedra when d = 3) are considered.

They can be generated from the initial mesh M0 by using some typical refine strate-

gies, such as quad refinement for quadrilaterals (hexahedra when d = 3) and red
refinement or bisection for triangles (tetrahedrons when d = 3), see Section 2.1.2

in [3] for more details.

From now on, we use the two dimensional denomination for elements of the parti-

tions even when discussing the three dimensional case. For example, we say an element

K is a quadrilateral, meaning K is a quadrilateral when d = 2, and K is a hexahedra

when d = 3.

We call an element K ′ is an ancestor of element K, if K is generated by a finite

number of refinements from K ′. Given a partition MH of Ω, we say that Mh is a

refinement of MH if every element in Mh is either an element in MH , or has an

ancestor element in MH . To this end, we write MH ≤ Mh or Mh ≥ MH , and denote

by RMH→Mh
the set of elements in MH refined to obtain Mh. We remark here that

every partition appearing below is a refinement of the initial partition M0.
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2.3. Definitions and Notation

Given a partition Mh ≥ M0, we define the energy space to be the broken H1 space

H1(Mh) :=
∏

K∈Mh

H1(K).

For any element K ∈ Mh, let Pp(K) denote the set of all polynomials whose degrees

in all variables (total degree) ≤ p if K is a simplex, and the set of all polynomials

whose degrees in each variable (separate degrees) ≤ p if K is a quadrilateral. Define

the discontinuous finite element space

Vh :=
{
vh : vh|K ∈ Pp(K), ∀K ∈ Mh

}
,

and define V 0
h := Vh ∩ H1

0 (Ω) to be the underlying conforming finite element space.

Note that V 0
h is defined on the nonconforming mesh. Let EI

h and ED
h be the set of all

interior and boundary edges of Mh, respectively. Write Eh = EI
h ∪ ED

h . Define the mesh

size h to be

hK = |K| 1d , ∀K ∈ Mh, he = |e|
1

d−1 , ∀e ∈ Eh.

To shorten notation, we define for any set of elements M∗
h ⊆ Mh and for any set

of edges E∗
h ⊆ Eh

(v,w)M∗

h
:=

∑

K∈M∗

h

(v,w)K ∀v,w ∈ L2(M∗
h),

〈φ,ϕ〉E∗

h
:=
∑

e∈E∗

h

〈φ,ϕ〉e ∀φ,ϕ ∈ L2(E∗
h).

The same notation is used for functions in L2(M∗
h)

d or L2(E∗
h)

d. We also define the

corresponding broken norms

‖v‖M∗

h
:= (v, v)

1
2
M∗

h
, ‖φ‖E∗

h
:= 〈φ, φ〉

1
2
E∗

h
.

Let e ∈ EI
h be an interior edge shared by the elements Ke

1 ,K
e
2 ∈ Mh, where the global

index of Ke
2 is greater than that of Ke

1 . Define n|e to be the unit normal vector associate

to edge e pointing to Ke
1 which has smaller global index. We also define the jump [v]

and average {v} of v on e to be

[v]|e := v|Ke
2
− v|Ke

1
, {v}|e :=

v|Ke
1
+ v|Ke

2

2
.

If e ∈ ED
h , that is, e = ∂Ke ∩ ∂Ω for some element Ke ∈ Mh, we define n|e to be the

unit normal vector associated to e pointing to the outer of Ω, and let

[v]|e = {v}|e = v|Ke .
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For an element K ∈ Mh, let ω(K) ⊂ Mh be a point set including K such that

diam(ω(K)) ≤ ChK , (2.2)

with C > 0 a constant depending only on the shape regularity of Mh. For precise

definition of ω(K), see Section 6.1 in [3]. This set is helpful in describing the local

properties of a Clément-type interpolation operator onto V 0
h . See Condition 2.2 in

Section 2.7 or Lemma 6.6 in [3]. Let σ(K) = ∪e∈Ehe ∩ ω(K) be the skeleton of Mh

within ω(K), and for a set of elements M∗
h ⊆ Mh, let

ω(M∗
h) :=

⋃

K∈M∗

h

ω(K), σ(M∗
h) := ∪e∈Ehe ∩ ω(M∗

h). (2.3)

Let M1 and M2 be two refinements of M0, we define M1⊕M2 to be the overlay of M1

and M2, see Section 2.1.2 in [3] for more details. Therefore, M1⊕M2 is a refinement

of both M1 and M2, and under Condition 2.1 (see Section 2.7), we have [3]

#(M1 ⊕M2) ≤ #M1 +#M2 −#M0. (2.4)

2.4. The discrete formulation

In order to simplify the notation, we write

a(v,w) := (A∇v,∇w)Mh
∀v,w ∈ H1(Mh).

Let γ0 > 0. The usual symmetric IPDG formulation reads as follows: given a triangula-

tion Mh of Ω, find uh ∈ Vh such that

aIPh (uh, vh) = (f, vh) ∀vh ∈ Vh,

where

aIPh (uh, vh) := a(uh, vh)− 〈{A∇uh · n}, [vh]〉Eh − 〈{A∇vh · n}, [uh]〉Eh + J0
h(uh, vh),

J0
h(uh, vh) := γ0

〈
h−1[uh], [vh]

〉
Eh

.

We note that aIPh (·, ·) is not well defined on H1(Mh)×H1(Mh). However, this can be

remedied by means of the lifting operator.

Definition 2.1 (Lifting operator). Let Lh : H1(Mh) → V d
h be defined by [3,16]

(
Lh(v), Aw

d
h

)
Mh

:=
〈
[v], {Awd

h · n}
〉
Eh

∀wd
h ∈ V d

h . (2.5)

Remark 2.1. By invoking the Lax-Milgram lemma, the lifting operator Lh is well de-

fined on the whole broken energy space H1(Mh) and Lh(v) = 0 for all v ∈ H1
0 (Ω). In

addition, as has been shown in [3, Lemma 2.1], the lifting operator is stable in the sense

that there exists a constant CL > 0 depending only on A, p and the shape regularity of

Mh such that

‖Lh(v)‖Mh
≤ CL

∥∥∥h− 1
2 [v]
∥∥∥
Eh

∀v ∈ H1(Mh). (2.6)
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Using the lifting operator mentioned above, let aLh(·, ·) : H1(Mh) ×H1(Mh) → R

be defined by [3]

aLh(v,w) := a(v,w) − (Lh(w), A∇v)Mh
− (Lh(v), A∇w)Mh

+ J0
h(v,w). (2.7)

Note that the definition of the lifting operator (2.5) directly implies

aLh(vh, wh) = aIPh (vh, wh) ∀vh, wh ∈ Vh.

Since Lh(v) = 0 for all v ∈ H1
0 (Ω), the solution u ∈ H1

0 (Ω) of (2.1) satisfies

aLh(u, v) = (f, v) ∀v ∈ H1
0 (Ω).

Let 0 ≤ γ1, · · · , γp . 1 be the penalty parameters. The MPDG considered in this

paper reads: find uh ∈ Vh such that

ah(uh, vh) := aLh(uh, vh) +

p∑

j=1

J j
h(uh, vh) = (f, vh) ∀vh ∈ Vh, (2.8)

where

J j
h(uh, vh) :=

∑

e∈EI
h

γjh
2j−1
e

〈[
∂j−1(A∇uh · n)

∂nj−1

]
,

[
∂j−1(A∇vh · n)

∂nj−1

]〉

e

, 1 ≤ j ≤ p.

For any vh, wh ∈ Vh, M∗
h ⊆ Mh, E∗

h ⊆ EI
h, and 1 ≤ j ≤ p, we write

J j
h(vh, wh)e := γjh

2j−1
e

〈[
∂j−1(A∇vh · n)

∂nj−1

]
,

[
∂j−1(A∇wh · n)

∂nj−1

]〉

e

,

J̃ j
h(vh, wh)K := γjh

2j−1
K

〈[
∂j−1(A∇vh · n)

∂nj−1

]
,

[
∂j−1(A∇wh · n)

∂nj−1

]〉

∂K∩Ω

,

J j
h(vh, wh)E∗

h
:=
∑

e∈E∗

h

J j
h(vh, wh)e, J̃ j

h(vh, wh)M∗

h
:=

∑

K∈M∗

h

J̃ j
h(vh, wh)K ,

and write J̃ j
h(vh, wh) = J̃ j

h(vh, wh)Mh
for simplicity. We introduce the following mesh

dependent norms:

‖|v‖| := a(v, v)
1
2 and ‖|v‖|0,h :=

{
‖|v‖|2 + J0

h(v, v)
} 1

2 ∀v ∈ H1(Mh),

‖|vh‖|p,h :=
{
‖|vh‖|20,h +

p∑

j=1

J j
h(vh, vh)

} 1
2 ∀vh ∈ Vh.

The bilinear forms aLh(·, ·) and ah(·, ·) satisfy the following properties.

Lemma 2.1 (Continuity and coercivity). Let Mh ≥ M0 and γj ≥ 0, j = 1, · · · , p. There

exist positive constants γ
(c)
0 , Cn and Ce such that for γ0 ≥ γ

(c)
0 there holds

aLh(v,w) ≤Cn‖|v‖|0,h‖|w‖|0,h and aLh(v, v)≥Ce‖|v‖|20,h ∀v,w ∈ H1(Mh),

ah(vh, wh)≤Cn‖|vh‖|p,h‖|wh‖|p,h and ah(vh, vh)≥Ce‖|vh‖|2p,h ∀vh, wh ∈ Vh.
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Proof. We prove only for ah(·, ·); the properties for aLh(·, ·) can be found in [3,

Lemma 2.2].

By using the Cauchy-Schwarz inequality for each term in ah(·, ·) and the stability of

lifting operator (2.6), we have

ah(vh, wh)

≤
{
(1 + CLa

1
2
M )‖|vh‖|2 + (γ0 + CLa

1
2
M )
∥∥∥h− 1

2 [vh]
∥∥∥
2

Eh
+

p∑

j=1

J j
h(vh, vh)

} 1
2

×
{
(1 + CLa

1
2
M )‖|wh‖|2 + (γ0 + CLa

1
2
M )
∥∥∥h− 1

2 [wh]
∥∥∥
2

Eh
+

p∑

j=1

J j
h(wh, wh)

} 1
2

.

Then the continuity of ah(·, ·) follows by setting Cn = 1 + CLa
1
2
M and γ0 ≥ 1.

Using (2.6) again, together with Young’s inequality with parameter ε > 0, yields

ah(vh, vh) ≥ (1− ε

2
)‖|vh‖|2 + (γ0 −

2

ε
C2
LaM )

∥∥∥h− 1
2 [vh]

∥∥∥
2

Eh
+

p∑

j=1

J j
h(vh, vh).

Let ε = 1, γ0 ≥ 4C2
LaM , we obtain the coercivity of ah(·, ·) with Ce = 1

2 . The lemma

follows by setting γ
(c)
0 := max{1, 4C2

LaM}. �

2.5. Estimator and oscillation

Let vh ∈ Vh, we define the element residual on K ∈ Mh and jump residual on

e ∈ EI
h of vh by

R(vh)|K :=
(
f − L(vh)

)
|K and J(vh)|e :=

(
[A∇vh · n]

)
|e.

Let m ∈ N0, we denote by P q
m, q ∈ [2,∞], the Lq-best approximation operator onto

the set of piecewise polynomials of total degree ≤ m on d or (d − 1)-simplices, or

piecewise polynomials of separate degrees ≤ m on d or (d− 1)-quadrilaterals. That is,

for any K ∈ Mh or e ∈ EI
h, P q

mv satisfies

‖v − P q
mv‖Lq(ω) = inf

z∈Pm(ω)
‖v − z‖Lq(ω) , ω = K or ω = e.

Let Qq
m = I − P q

m, where I stands for the identity operator. Define the error indicators

Eh(vh,K), ηh(vh,K) and oscillation osch(vh,K) by

E2
h(vh,K) := η2h(vh,K) +

p∑

j=2

J̃ j
h(vh, vh)K , (2.9)

η2h(vh,K) := h2K ‖R(vh)‖2K + hK ‖J(vh)‖2∂K∩Ω , (2.10)

osc2h(vh,K) := h2K
∥∥Q2

mR(vh)
∥∥2
K
+ hK

∥∥Q2
m′J(vh)

∥∥2
∂K∩Ω

. (2.11)
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The specific choice of m and m′ depends on the element type:

m = 2p− 2,m′ = 2p − 1 for simplices;

m = 2p, m′ = 2p for quadrilaterals.

Remark 2.2. If A ∈ ∏K∈M0
Pp(K)d×d, the choice of m and m′ directly implies that

osch(vh,K) = hK
∥∥Q2

mf
∥∥
K

, which is independent of vh. This is because ∇Pp(K) ⊂
Pp(K)d for quadrilaterals while ∇Pp(K) ⊂ Pp−1(K)d for simplices. Moreover, both

choices yield Lemma 2.3 and Lemma 2.4 (below).

Finally, for any subset M∗
h ⊆ Mh we set

E2
h(vh,M∗

h) :=
∑

K∈M∗

h

E2
h(vh,K),

η2h(vh,M∗
h) :=

∑

K∈M∗

h

η2h(vh,K),

osc2h(vh,M∗
h) :=

∑

K∈M∗

h

osc2h(vh,K).

We also define the similar notions for the matrix A:

Eh(A,K) := max
0≤j≤p

{
hjK |A|W j,∞(K)

}
,

osch(A,K) := max
{
hK ‖Q∞

m′′divA‖L∞(K) ,
∥∥Q∞

p A
∥∥
L∞(K)

}
,

where |A|W j,∞(K) := max1≤s,t≤d |Ast|W j,∞(K), and m′′ = p−1 if K is a simplex, m′′ = p
if K is a quadrilateral. For any subset M∗

h ⊆ Mh we set

Eh(A,M∗
h) := max

K∈M∗

h

Eh(A,K) and osch(A,M∗
h) := max

K∈M∗

h

osch(A,K).

Remark 2.3 (Monotonicity). The definitions above imply the following monotonicity

property: let M0 ≤ MH ≤ Mh, for any K ′ ∈ MH and vH ∈ VH , there holds

ηh(vH ,Mh) ≤ ηH(vH ,MH), osch(vH ,Mh) ≤ oscH(vH ,MH),

oscH(vH ,K ′) ≤ ηH(vH ,K ′),

Eh(A,Mh) ≤ EH(A,MH ) ≤ E0(A,M0),

osch(A,Mh) ≤ oscH(A,MH) ≤ osc0(A,M0).

From now on, we shall not specify the dependency on Eh(A,Mh) and osch(A,Mh)
for a mesh Mh ≥ M0, since they can be bounded by E0(A,M0) and osc0(A,M0),
which are fixed constants depending on A and the initial mesh M0.

Lemma 2.2. For any vh ∈ Vh and 1 ≤ j ≤ p, we have

J j
h(vh, vh) h J̃ j

h(vh, vh) . γj ‖∇vh‖2Mh
,

the constant hiding in “ . ” depends on A, p and the shape regularity of Mh.
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Proof. For any v ∈ W k,∞(K), if n = (n1, · · · , nd) is a fixed unit vector, then

∥∥∥∥
∂kv

∂nk

∥∥∥∥
L∞(K)

=

∥∥∥∥∥∥
∑

1≤i1,··· ,ik≤d

ni1 · · · nik

∂kv

∂xi1 · · · ∂xik

∥∥∥∥∥∥
L∞(K)

≤ |v|W k,∞(K)

(
d∑

i=1

|ni|
)k

≤ d
k
2 |v|W k,∞(K) .

For any wh ∈ Vh, the inverse inequality says that ‖∇wh‖K ≤ Ch−1
K ‖wh‖K , where C is

a constant depending only on p and the shape regularity of K. Therefore,
∥∥∥∥
∂j−1(A∇vh · n)

∂nj−1

∥∥∥∥
K

=

∥∥∥∥∥

j−1∑

i=0

Ci
j−1

d∑

s=1

d∑

t=1

ns
∂j−1−iAst

∂nj−1−i
· ∂i

∂ni

(∂vh
∂xt

)
∥∥∥∥∥
K

≤
j−1∑

i=0

Ci
j−1

d∑

s=1

d∑

t=1

ns

∥∥∥∥
∂j−1−iAst

∂nj−1−i

∥∥∥∥
L∞(K)

∥∥∥∥
∂i

∂ni

(∂vh
∂xt

)∥∥∥∥
K

≤
j−1∑

i=0

Ci
j−1

√
d
j−1−i|A|W j−1−i,∞(K)

( C

hK

)i d∑

s=1

d∑

t=1

ns

∥∥∥∥
∂vh
∂xt

∥∥∥∥
K

≤ d(C +
√
d)j−1 max

0≤i≤j−1

{
hiK |A|W i,∞(K)

}
· h−j+1

K ‖∇vh‖K

. Eh(A,K)h−j+1
K ‖∇vh‖K .

Similarity, we have
∥∥∥∥∇
(
∂j−1(A∇vh · n)

∂nj−1

)∥∥∥∥
K

. Eh(A,K)h−j
K ‖∇vh‖K .

Since the mesh Mh is local quasi-uniformly, the trace inequality yields

J̃ j
h(vh, vh)K .

∑

T∈ωK

γjh
2j−1
T

∑

e⊂∂T∩Ω

∥∥∥∥
∂j−1(A∇vh · n)

∂nj−1

∥∥∥∥
2

e

.
∑

T∈ωK

γjh
2j−1
T

∑

e⊂∂T∩Ω

{
h−1
T

∥∥∥∥
∂j−1(A∇vh · n)

∂nj−1

∥∥∥∥
2

T

+

∥∥∥∥
∂j−1(A∇vh · n)

∂nj−1

∥∥∥∥
T

∥∥∥∥∇
(
∂j−1(A∇vh · n)

∂nj−1

)∥∥∥∥
T

}

. γjE
2
h(A,ωK) ‖∇vh‖2ωK

.
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Then

J̃ j
h(vh, vh) =

∑

K∈Mh

J̃ j
h(vh, vh)K

. γjE
2
h(A,Mh) ‖∇vh‖2Mh

. γjE
2
0(A,M0) ‖∇vh‖2Mh

.

This completes the proof of the lemma. �

We have the following two lemmas for the error indicator and the oscillation (cf.

Lemma 2.4 and Lemma 2.5 in [3]). These two lemmas are instrumental in deriving the

main results of this paper.

Lemma 2.3 (Estimator reduction). Assume that the refinement strategy satisfies Condi-

tion 2.1 (below). Let M0 ≤ MH ≤ Mh, and let M̂H ⊂ MH be the set of elements

marked for refinement to obtain Mh. Write λ = 1 − βM , where 0 < βM < 1 is the

constant appearing in Condition 2.1. Then there exists a constant CE depending on A, p
and the shape regularity of M0 such that, for any vH ∈ VH , vh ∈ Vh, and any δ > 0,

there holds that

E2
h(vh,Mh) ≤ (1 + δ)

(
E2

H(vH ,MH)− λE2
H(vH ,M̂H)

)

+ (1 + δ−1)CE‖|vh − vH‖|2.
Proof. Let zh = vh − vH . The triangle inequality and Young’s inequality imply

E2
h(vh,Mh) ≤ (1 + δ)E2

h(vH ,Mh) + (1 + δ−1)
∑

K∈Mh

{
h2K ‖div(A∇zh)‖2K

+ hK ‖J(zh)‖2∂K∩Ω +

p∑

j=2

J̃ j
h(zh, zh)K

}
. (2.12)

Since
[∂j−1(A∇vH ·n)

∂nj−1

]∣∣
e
= 0 for any side e ∈ EI

h in the interior of some element K ′ ∈
MH , and hK ≤ βMHK ′ if K, K ′ satisfies K ⊂ K ′ ∈ M̂H , we have

E2
h(vH ,Mh) =

∑

K⊂K ′∈MH\M̂H

(
η2h(vH ,K) +

p∑

j=2

J̃ j
h(vH , vH)K

)

+
∑

K⊂K ′∈M̂H

(
η2h(vH ,K) +

p∑

j=2

J̃ j
h(vH , vH)K

)

≤
∑

K ′∈MH\M̂H

(
η2H(vH ,K ′) +

p∑

j=2

J̃ j
H(vH , vH)K ′

)

+ βM
∑

K ′∈M̂H

(
η2H(vH ,K ′) +

p∑

j=2

J̃ j
H(vH , vH)K ′

)

=E2
H(vH ,MH)− λE2

H(vH ,M̂H).
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Using the similar tricks as in Lemma 2.2, we have

‖div(A∇zh)‖K =

∥∥∥∥∥∥

d∑

i=1

d∑

j=1

(∂Aij

∂xi
· ∂zh
∂xj

+Aij ·
∂2zh

∂xi∂xj

)
∥∥∥∥∥∥
K

≤ |A|W 1,∞(K)

d∑

i=1

√
d ‖∇zh‖K + |A|L∞(K)

d∑

i=1

√
d

∥∥∥∥∇
(∂zh
∂xi

)∥∥∥∥
K

. Eh(A,K) · h−1
K ‖∇zh‖K .

Noting that 0 ≤ γj . 1, j = 1, · · · , p, and the minimal eigenvalue of A is ≥ am, using

Lemma 2.2 for the other terms in (2.12), and combining the above estimates, we can

get the desired conclusion. �

Lemma 2.4 (Perturbation of oscillation). Let M0 ≤ MH ≤ Mh. Then there exists

a constant Cosc depending on A, p and the shape regularity of M0 such that, for all

vH ∈ VH , vh ∈ Vh, and any M∗ ⊆ MH ∩Mh, there holds

osc2H(vH ,M∗) ≤ 2osc2h(vh,M∗) + Cosc‖|vh − vH‖|2.

Remark 2.4. Lemma 2.4 is a little different from [3, Lemma 2.5], their proofs are

almost the same (see e.g., [10, Corollary 3.5]). We only need to sum the local pertur-

bation of oscillation (see [10, Proposition 3.3]) over elements only in M∗ instead of all

elements in MH ∩Mh. Moreover, if MH = Mh, Lemma 2.4 is still valid.

2.6. The adaptive algorithm

As usual, the AMPDG may be described as loops of the form with counter k ≥ 0:

SOLVE → ESTIMATE → MARK → REFINE.

Let {Mk}k≥0, {Vk}k≥0, {uk}k≥0 etc. be the sequence of meshes, discontinuous finite

element spaces, discrete solutions etc. generated by the above iteration.

In the MARK procedure we use the Dörfler strategy [14]: given θ ∈ (0, 1], mark

elements in a subset M̂k of Mk such that

Ehk
(uk,M̂k) ≥ θ Ehk

(uk,Mk). (2.13)

The pseudocode of the AMPDG is then given by the following iteration which is almost

the same as that of AFEM (cf. [10, Subsection 2.7]):
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AMPDG

Given the initial mesh M0 and marking parameter 0 < θ ≤ 1

set k := 0 and iterate

1: Solve (2.8) on Mk for uk;

2: Compute estimators Ehk
(uk,K),K ∈ Mk via (2.9);

3: Find the set of marked elements M̂k via (2.13);

4: Refine M̂k in Mk to obtain the mesh Mk+1, set k = k + 1.

2.7. Some conditions

To unify the treatment of the various refinement strategies, we impose some con-

ditions below, as have been shown in [3]. They are important in deriving the main

results of this paper. Their correctness are verified in [3, Section 6] for quad refine-

ment of quadrilateral meshes and bisection of triangle meshes, while red refinement of

triangle meshes, which is somewhat in between the two, is not discussed in detail.

Condition 2.1 (Atomic refinement). The subdivision of an element into children is called

atomic refinement and is dictated exclusively by the initial partition M0 and the refine-

ment rules. If K is a child of K ′ ∈ MH and hK = |K| 1d , HK ′ = |K ′| 1d are the mesh sizes,

then there exists a constant βM < 1 depending only on the dimension d such that

hK ≤ βMHK ′.

Moreover, the shape regularity of any mesh MH ≥ M0 is determined by that of M0.

Condition 2.2 (Interpolation operator onto V 0
h ). There exists an interpolation operator

Ih : H1(Mh) → V 0
h and a constant CI depending only on the shape regularity of Mh

such that for all K ∈ Mh the following inequalities hold:

‖v − Ihv‖K ≤ CI ‖h∇v‖ω(K) ∀v ∈ H1
0 (Ω), (2.14)

and for m = 0, 1,

‖∇m(vh − Ihvh)‖K ≤ CI

∥∥∥h 1−2m
2 [vh]

∥∥∥
σ(K)

∀vh ∈ Vh. (2.15)

Here ω(K) satisfying (2.2) is defined in Section 6.1 of [3] and σ(K) = ∪e∈Ehe ∩ ω(K).
The operator Ih is defined locally and preserves V 0

h locally.

Remark 2.5. Ih is a Clément-type interpolation operator, see [3, Lemma 6.6] for more

details. Moreover, Ih is H1-stable: ∀v ∈ H1
0 (Ω), let vK = 1

|K|

∫
K v dx, then the inverse

inequality, triangle inequality, (2.14) and Poincaré inequality yield

‖∇Ihv‖K = ‖∇(Ihv − vK)‖K
.h−1

K

(
‖Ihv − v‖K + ‖v − vK‖K

)
. ‖∇v‖ω(K) .
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Condition 2.3 (Properties of REFINE). Mk+1 is generated from Mk by successive appli-

cation of atomic refinements such that the following hold:

(a) the atomic refinements satisfy Condition 2.1;

(b) all elements of M̂k are refined at least b times, with b ≥ 1 a given integer;

(c) no element of Mk can undergo more than B atomic refinements, with B ≥ 1 a

universal integer, to give rise to elements of Mk+1;

(d) Condition 2.2 is valid on Vk+1.

Condition 2.4 (Complexity of REFINE). Let M0 be an initial conforming subdivision.

The REFINE procedure produces the sequence of subdivisions {Mk}k≥0 such that

#Mk −#M0 ≤ C0

k−1∑

j=0

#M̂j ,

where C0 > 0 is a universal constant depending on M0, the dimension d, and the number

of refinements b ≥ 1.

Condition 2.5 (Assumptions about MARK). The set of marked elements M̂k and mark-

ing parameter θ satisfy

M̂k has minimal cardinality and θ ∈ (0, θ∗),

where θ∗ is defined by (5.10).

Condition 2.6 (Mesh overlay). Let M1 and M2 be such that Condition 2.2 holds. Then,

Condition 2.2 holds on M1 ⊕M2.

3. The a posteriori error estimates

In this part, we derive the a posteriori error estimates of the MPDG, which are

crucial ingredients leading to the convergence and quasi-optimality of the AMPDG.

3.1. Space decomposition and continuous approximation

It has been shown in [3] that the decomposition of Vh into its continuous and

discontinuous components is useful. We introduce the following orthogonal decompo-

sition of Vh:

Vh := V 0
h ⊕ V ⊥

h , (3.1)

where V ⊥
h is the orthogonal complement of V 0

h in Vh with respect to the discrete scalar

product ah(·, ·).
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Remark 3.1 (CG solution). Let uh ∈ Vh be the DG solution of (2.8). Write uh = u0h+u⊥h ,

where u0h ∈ V 0
h , u⊥h ∈ V ⊥

h . Since V 0
h and V ⊥

h are orthogonal with respect to ah(·, ·), we

obtain for all v0h ∈ V 0
h ,

(f, v0h) = ah(uh, v
0
h) = ah(u

0
h, v

0
h), (3.2)

that is, u0h is the corresponding CG solution of (2.8).

Lemma 3.1 (Estimate on the nonconforming component). Let γ0 ≥ γ
(c)
0 , 0 ≤ γ1, · · · , γp .

1. If vh = v0h + v⊥h ∈ Vh according to (3.1), and if Condition 2.2 holds, then

‖|v⊥h ‖|p,h . γ
1
2
0

∥∥∥h− 1
2 [vh]

∥∥∥
Eh

. (3.3)

The constant hiding in “.” depends on A, p and the shape regularity of Mh.

Proof. This proof is similar to that of [3, Lemma 2.9], we write down below for

completeness.

From the definition (3.1) of V ⊥
h , we obtain

ah(v
⊥
h , v

⊥
h ) = inf

w0
h
∈V 0

h

ah(vh − w0
h, vh − w0

h). (3.4)

If γ0 ≥ γ
(c)
0 , by invoking Lemma 2.1, we have

‖|v⊥h ‖|2p,h . ah(v
⊥
h , v

⊥
h ) ≤ ah(vh − Ihvh, vh − Ihvh) . ‖|vh − Ihvh‖|2p,h.

We will estimate each term in the right-most side of the above inequality. From (2.15),

‖|vh − Ihvh‖|2 .
∑

K∈Mh

∥∥∥h− 1
2 [vh]

∥∥∥
2

σ(K)
.
∥∥∥h− 1

2 [vh]
∥∥∥
2

Eh
.

Since Ihvh ∈ H1
0 (Ω), we can easily see that

J0
h(vh − Ihvh, vh − Ihvh) = γ0

∥∥∥h− 1
2 [vh]

∥∥∥
2

Eh
.

When 0 ≤ γ1, · · · , γp . 1, Lemma 2.2 and (2.15) yield

p∑

j=1

J j
h(vh − Ihvh, vh − Ihvh) .

∑

K∈Mh

‖∇(vh − Ihvh)‖2K .
∥∥∥h− 1

2 [vh]
∥∥∥
2

Eh
.

The conclusion follows by collecting all above estimates. �
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3.2. The a posteriori error estimates

Given a discrete function vh ∈ Vh, we define its discrete energy error to the exact

solution u as follows:

eh(vh) :=

{
‖|u − vh‖|20,h +

p∑

j=1

J j
h(vh, vh)

} 1
2

.

Remark 3.2. Lemma 4.1 (below), which compares the errors of two approximate so-

lutions on two successive meshes, may suggest using the discrete energy error eh(vh)
to measure the error u− vh for non-smooth solution u ∈ H1(Ω).

The crucial ingredient of any adaptive algorithm is the control of the error by the

estimator. The following lemma is similar to [3, Lemma 3.1], but contains something

different. Our goal is to control the error eh(uh).

Lemma 3.2 (First upper bound). Let Mh ≥ M0, and let Condition 2.2 be valid. Let

u ∈ H1
0 (Ω), uh ∈ Vh be the corresponding solutions of (2.1), (2.8), respectively. Then for

γ0 ≥ γ
(c)
0 and 0 ≤ γ1, · · · , γp . 1, there holds that

e2h(uh) . E2
h(uh,Mh) + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
. (3.5)

Proof. From (2.1) and (2.8), we have

a(u− uh, v
0
h) = −

(
Lh(uh), A∇v0h

)
Mh

+

p∑

j=1

J j
h(uh, v

0
h) ∀v0h ∈ V 0

h . (3.6)

Write uh = u0h + u⊥h according to (3.1). Denote by ξ = u − uh = v − u⊥h , where

v = u− u0h ∈ H1
0 (Ω), then

a(ξ, ξ) = a(ξ, v − Ihv)− a(ξ, u⊥h ) + a(ξ, Ihv)

= a(ξ, v − Ihv)− a(ξ, u⊥h )− (Lh(uh), A∇Ihv)Mh
+

p∑

j=1

J j
h(uh, Ihv). (3.7)

Using the Cauchy-Schwarz inequality, (2.14) and Remark 2.5, we get

a(ξ, v − Ihv) =
(
R(uh), v − Ihv

)
Mh

− 〈J(uh), v − Ihv〉EI
h

≤
(
‖hR(uh)‖Mh

+
∥∥∥h 1

2J(uh)
∥∥∥
EI
h

)

×
(∥∥h−1(v − Ihv)

∥∥
Mh

+
∥∥∥h− 1

2 (v − Ihv)
∥∥∥
EI
h

)

. ηh(uh,Mh) ‖∇v‖Mh
.
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Concerning the last term of (3.7), if γ1, · · · , γp . 1, then Lemma 2.2 and Remark 2.5

yield

p∑

j=1

J j
h(uh, Ihv) ≤

(
p∑

j=1

J j
h(uh, uh)

) 1
2
(

p∑

j=1

J j
h(Ihv, Ihv)

) 1
2

. Eh(uh,Mh) ‖∇v‖Mh
.

Insert the above two estimates into (3.7), using (2.6), the triangle inequality, and

Young’s inequality, we obtain

a(ξ, ξ) .

(
Eh(uh,Mh) +

∥∥∥h− 1
2 [uh]

∥∥∥
Eh

)(
‖|ξ‖| + ‖|u⊥h ‖|

)
+ ‖|ξ‖| · ‖|u⊥h ‖|

≤ 1

2
‖|ξ‖|2 + C

(
E2

h(uh,Mh) +
∥∥∥h− 1

2 [uh]
∥∥∥
2

Eh
+ ‖|u⊥h ‖|2

)
,

which implies

‖|ξ‖|2 . E2
h(uh,Mh) +

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
+ ‖|u⊥h ‖|2.

Therefore

e2h(uh) = ‖|ξ‖|2 + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
+

p∑

j=1

J j
h(uh, uh)

. E2
h(uh,Mh) + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
+ ‖|u⊥h ‖|2.

The assertion follows from (3.3) and the above inequality. �

The upper bound we obtained is almost the same as the AIPDG [3]. The residual

estimator Eh(uh,Mh) is just what we want, while the jump term γ
1
2
0

∥∥∥h− 1
2 [uh]

∥∥∥
Eh

is

not. This is because adding the latter to Eh(uh,Mh) would destroy the monotonicity

property of the estimator (see Remark 2.3) with respect to the mesh size, which is

instrumental for Lemma 2.3 and Lemma 2.4 and thus for the proof of the main result.

However, we can control this jump term in terms of Eh(uh,Mh) provided γ0 sufficiently

large, as stated in the following lemma. See [3, Lemma 3.3] for a similar result of the

AIPDG.

Lemma 3.3 (Jump control). Let Condition 2.2 be valid on any partition Mh of Ω. Let

uh ∈ Vh be the solution of (2.8). There exists a constant γ
(E)
0 ≥ γ

(c)
0 such that for

γ0 ≥ γ
(E)
0 and 0 ≤ γ1, · · · , γp . 1 there holds that

γ0

∥∥∥h− 1
2 [uh]

∥∥∥
Eh

. Eh(uh,Mh). (3.8)
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Proof. This proof is similar to that of [3, Lemma 3.3], we write down below for

completeness.

Let γ0 ≥ γ
(c)
0 . From Lemma 2.1 and (2.8), for any v0h ∈ V 0

h ,

γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
= J0

h(uh − v0h, uh − v0h)

. ah(uh − v0h, uh − v0h) = (f, uh − v0h)− ah(v
0
h, uh − v0h). (3.9)

Moreover, (2.8), (2.7), (2.5), and integration by parts yield

ah(v
0
h, uh − v0h)

= a(uh, uh − v0h)− ‖|uh − v0h‖|2 −
(
Lh(uh), A∇v0h

)
Mh

+

p∑

j=1

J j
h(v

0
h, uh − v0h)

=
(
− div(A∇uh), uh − v0h

)
Mh

+
〈
J(uh), {uh − v0h}

〉
EI
h

+
(
Lh(uh), A∇(uh − v0h)

)
Mh

− ‖|uh − v0h‖|2 +
p∑

j=1

J j
h(uh, uh − v0h)−

p∑

j=1

J j
h(uh − v0h, uh − v0h).

Insert the above equality into (3.9), using the Cauchy-Schwarz inequality, (2.6), and

Lemma 2.2, we have

γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
.
(
R(uh), uh − v0h

)
Mh

−
〈
J(uh), {uh − v0h}

〉
EI
h

−
(
Lh(uh), A∇(uh − v0h)

)
Mh

+ ‖|uh − v0h‖|2

−
p∑

j=1

J j
h(uh, uh − v0h) +

p∑

j=1

J j
h(uh − v0h, uh − v0h)

. ηh(uh,Mh)

(∥∥h−1(uh − v0h)
∥∥
Mh

+
∥∥∥h− 1

2 {uh − v0h}
∥∥∥
EI
h

)

+
∥∥∥h− 1

2 [uh]
∥∥∥
Eh

‖|uh − v0h‖|+ ‖|uh − v0h‖|2

+ Eh(uh,Mh)
∥∥∇(uh − v0h)

∥∥
Mh

+
∥∥∇(uh − v0h)

∥∥2
Mh

.

Let v0h = Ihuh, and denote C a constant independent of γ0. From Condition 2.2 and

the trace and inverse inequalities, we obtain

γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
≤ CEh(uh,Mh)

∥∥∥h− 1
2 [uh]

∥∥∥
Eh

+ C
∥∥∥h− 1

2 [uh]
∥∥∥
2

Eh
.

The proof finishes by setting γ0 ≥ γ
(E)
0 := max(γ

(c)
0 , 2C). �
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As a direct consequence of the previous lemma, we obtain the following upper

bound.

Theorem 3.1 (Second upper bound). Let Condition 2.2 be valid on any partition Mh

of Ω. Let u ∈ H1
0 (Ω), uh ∈ Vh be the corresponding solutions of (2.1), (2.8), respectively.

For γ0 ≥ γ
(E)
0 , and 0 ≤ γ1, · · · , γp . 1, there exists a constant CGU > 0 depending on A,

p and the shape regularity of Mh such that

e2h(uh) ≤ CGUE
2
h(uh,Mh). (3.10)

Proof. This is a directly consequence of (3.5) and (3.8). �

Lemma 3.4 (Global lower bound). Let Mh ≥ M0, and let u ∈ H1
0 (Ω), uh ∈ Vh be the

solutions of (2.1), (2.8), respectively. Then there exists a constant CGL depending on A,

p and the shape regularity of Mh such that

CGLE
2
h(uh,Mh) ≤ e2h(uh) + osc2h(uh,Mh). (3.11)

Proof. From [3, Lemma 3.6],

η2h(uh,Mh) . osc2h(uh,Mh) + ‖|u − uh‖|2.

The proof completes by combing the above inequality and the truth that J̃ j
h(uh, uh) h

J j
h(uh, uh), j = 1, · · · , p. �

4. Convergence of the adaptive algorithm

In this part, we prove the convergence of the AMPDG method by showing that the

AMPDG is a contraction with respect to the sum of the discrete energy error and a

scaled error estimator. We first state the following lemma which compares the errors

of two approximate solutions.

Lemma 4.1 (Quasi orthogonality). Let MH ≤ Mh be two successive refinements created

by REFINE, and let uH ∈ VH , uh ∈ Vh be the corresponding solutions of (2.8). Let

u ∈ H1
0 (Ω) be the solution of (2.1). If Condition 2.3 holds, then there exists a constant

Cm, independent of γ0, γ1, · · · , γp and the mesh size, such that for all γ0 ≥ γ
(E)
0 (γ

(E)
0 is

from Lemma 3.3) and 0 < ε ≤ 1 there holds that

e2h(uh) ≤ (1 + ε)e2H (uH)− 1

4
‖|uh − uH‖|2 + Cm

εγ0

(
E2

h(uh,Mh) + E2
H(uH ,MH)

)
.
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Proof. Write uH = u0H + u⊥H and uh = u0h + u⊥h according to (3.1). Notice that

u− uh + u0h − u0H = u− uH + u⊥H − u⊥h , and u0h − u0H ∈ V 0
h , by invoking (3.6) we have

a(u− uh, u− uh) = a(u− uh + u0h − u0H , u− uh + u0h − u0H)

− a(u0h − u0H , u0h − u0H)− 2a(u− uh, u
0
h − u0H)

= a(u− uH + u⊥H − u⊥h , u− uH + u⊥H − u⊥h )

− a(u0h − u0H , u0h − u0H) + 2
(
Lh(uh), A∇(u0h − u0H)

)
Mh

− 2

p∑

j=1

J j
h(u

⊥
h , u

0
h − u0H)− 2

p∑

j=1

J j
h(u

0
h, u

0
h − u0H).

The definition (3.1) of V ⊥
h implies ah(u

⊥
h , u

0
h − u0H) = 0, that is

a(u⊥h , u
0
h − u0H) =

(
Lh(u

⊥
h ), A∇(u0h − u0H)

)
Mh

−
p∑

j=1

J j
h(u

⊥
h , u

0
h − u0H).

Since Lh(uh) = Lh(u
⊥
h ), we obtain

‖|u − uh‖|2 = ‖|u− uH + u⊥H − u⊥h ‖|2 − ‖|u0h − u0H‖|2

+ 2a(u⊥h , u
0
h − u0H)− 2

p∑

j=1

J j
h(u

0
h, u

0
h) + 2

p∑

j=1

J j
h(u

0
h, u

0
H). (4.1)

Noting that [A∇u0H · n]|e = 0 for any e ∈ EI
h in the interior of some element K ′ ∈ MH ,

therefore

2

p∑

j=1

J j
h(u

0
h, u

0
H) ≤

p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
h(u

0
H , u0H)

≤
p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
H(u0H , u0H).

Inserting the above inequality into (4.1), and using Young’s inequality lead to

‖|u − uh‖|2 ≤ ‖|u− uH + u⊥H − u⊥h ‖|2 − ‖|u0h − u0H‖|2

+ 2‖|u⊥h ‖| · ‖|u0h − u0H‖| −
p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
H(u0H , u0H)

≤
(
1 +

ε

3

)
‖|u− uH‖|2 +

(
1 +

3

ε

)
‖|u⊥h − u⊥H‖|2 − 1

2
‖|u0h − u0H‖|2

+ 2‖|u⊥h ‖|2 −
p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
H(u0H , u0H).
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70 Z.-H. Zhou and H.-J. Wu

The triangle inequality implies

−‖|u0h − u0H‖|2 ≤ ‖|u⊥h − u⊥H‖|2 − 1

2
‖|uh − uH‖|2.

Let γ0 ≥ γ
(E)
0 , then (3.3) and (3.8) yield

‖|u⊥h − u⊥H‖|2 . γ−1
0

(
E2

h(uh,Mh) +E2
H(uH ,MH)

)
, ‖|u⊥h ‖|2 . γ−1

0 E2
h(uh,Mh).

Collecting the above estimates, setting ε ≤ 1, and denoting C a general constant inde-

pendent of γ0 and ε, we obtain

‖|u− uh‖|2 +
p∑

j=1

J j
h(u

0
h, u

0
h) ≤

(
1 +

ε

3

)
‖|u− uH‖|2 +

p∑

j=1

J j
H(u0H , u0H)

−1

4
‖|uh − uH‖|2 + C

εγ0

(
E2

h(uh,Mh) + E2
H(uH ,MH)

)
.

Therefore, from Young’s inequality, Lemma 2.2, (3.3) and (3.8), we have

e2h(uh) = ‖|u − uh‖|2 + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
+

p∑

j=1

J j
h(uh, uh)

≤
(
1 +

ε

3

)(
‖|u − uh‖|2 +

p∑

j=1

J j
h(u

0
h, u

0
h)
)

+ γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh
+
(
1 +

3

ε

) p∑

j=1

J j
h(u

⊥
h , u

⊥
h )

≤
(
1 +

ε

3

)2
‖|u − uH‖|2 +

(
1 +

ε

3

)((
1 +

ε

3

) p∑

j=1

J j
H(uH , uH)

+

(
1 +

3

ε

) p∑

j=1

J j
H(u⊥H , u⊥H)

)
− 1

4
‖|uh − uH‖|2

+
C

εγ0

(
E2

h(uh,Mh) + E2
H(uH ,MH)

)

≤ (1 + ε)
(
‖|u − uH‖|2 +

p∑

j=1

J j
H(uH , uH)

)
− 1

4
‖|uh − uH‖|2

+
C

εγ0

(
E2

h(uh,Mh) + E2
H(uH ,MH)

)
,

which completes the proof of this lemma. �

Finally we prove the following contraction property of AMPDG method.
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Theorem 4.1 (Contraction property). Let Condition 2.3 be valid. Let M0 be the initial

conforming partition of Ω and Mk ≤ Mk+1 be two consecutive meshes obtained from M0

by the adaptive algorithm. Let θ ∈ (0, 1] be the Dörfler marking parameter. Let u ∈ H1
0 (Ω)

be the solution of (2.1), and let uk, uk+1 be the corresponding DG solutions of (2.8),

respectively. Then there exist constants γ
(m)
0 ≥ γ

(E)
0 (γ

(E)
0 is from Lemma 3.3), β > 0 and

0 < α < 1, depending only on the shape regularity of M0, the matrix A, the polynomial

degree p and the marking parameter θ, such that for γ0 ≥ γ
(m)
0 and 0 ≤ γ1, · · · , γp . 1,

there holds that

e2hk+1
(uk+1) + βE2

hk+1
(uk+1,Mk+1) ≤ α2

(
e2hk

(uk) + βE2
hk
(uk,Mk)

)
.

Proof. For brevity, denote by

ek := ehk
(uk), Ek := Ehk

(uk,Mk), Êk := Ehk
(uk,M̂k).

Let β′ > 0, Lemma 2.3 and Lemma 4.1 lead to

e2k+1 +

(
β′ − Cm

εγ0

)
E2

k+1 ≤ (1 + ε)e2k −
1

4
‖|uk+1 − uk‖|2 + β′(1 + δ)(E2

k − λÊ2
k)

+ β′(1 + δ−1)CE‖|uk+1 − uk‖|2 +
Cm

εγ0
E2

k .

Choose β′ dependent on δ to eliminate the term ‖|uk+1 − uk‖|, that is

β′ =
1

4(1 + δ−1)CE
⇐⇒ (1 + δ)β′ =

δ

4CE
,

to obtain

e2k+1 +

(
β′ − Cm

εγ0

)
E2

k+1 ≤ (1 + ε)e2k + β′(1 + δ)
(
E2

k − λÊ2
k

)
+

Cm

εγ0
E2

k.

From the Dörfler marking strategy (2.13), we have

e2k+1 +

(
β′ − Cm

εγ0

)
E2

k+1 ≤ (1 + ε)e2k +

(
β′(1 + δ)(1 − λθ2) +

Cm

εγ0

)
E2

k .

Let β = β′ − Cm

εγ0
. In order to prove

e2k+1 + βE2
k+1 ≤ α2

(
e2k + βE2

k

)
for some β > 0, 0 < α < 1,

we only need to prove that

(1 + ε)e2k +

(
β′(1 + δ)(1 − λθ2) +

Cm

εγ0

)
E2

k ≤ α2
(
e2k + βE2

k

)
,
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or, equivalently,

(1− α2 + ε)e2k ≤
(
α2
(
β′ − Cm

εγ0

)
− β′(1 + δ)(1 − λθ2)− Cm

εγ0

)
E2

k .

Noting form (3.10) that e2k ≤ CGUE
2
k , we set

α2 = 1−
β′
(
1− (1 + δ)(1 − λθ2)

)
− εCGU − 2Cm

εγ0

CGU + β′ − Cm

εγ0

.

Choose δ such that (1 + δ)(1 − λθ2) = 1− 1
2λθ

2, that is, δ =
1
2
λθ2

1−λθ2
, then

α2 = 1−
1
2λθ

2β′ − εCGU − 2Cm

εγ0

CGU + β′ − Cm

εγ0

.

Let ε = λθ2β′

8CGU
and choose γ

(m)
0 ≥ γ

(E)
0 such that 2Cm

εγ
(m)
0

≤ 1
8λθ

2β′, then for γ0 ≥ γ
(m)
0 ,

α2 ≤ 1−
1
2λθ

2β′ − εCGU − 2Cm

εγ
(m)
0

CGU + β′
≤ 1−

1
4λθ

2β′

CGU + β′
< 1,

β = β′ − Cm

εγ0
≥ β′ − Cm

εγ
(m)
0

≥
(
1− 1

16
λθ2
)
β′ > 0,

which finishes the proof of this theorem. �

Remark 4.1. (i) As a direct consequence of the theorem we obtain

‖|u − uk‖| . αk, k = 0, 1, 2, · · · ,

which implies the convergence of the adaptive algorithm.

(ii) This proof and the resulting conclusion are similar as those of the FEM (cf. [10,

Theorem 4.1]) and the IPDG (cf. [3, Theorem 4.4]), where different measure of errors

and different orthogonality relation are employed.

(iii) The choice of δ implies that

β′ =
1

4(1 + δ−1)CE
=

λθ2

8CE(1− 1
2λθ

2)
=⇒ λθ2

8CE
≤ β′ ≤ λθ2

8CE(1− 1
2λ)

.

Since (1− 1
16λ)β

′ ≤ (1− 1
16λθ

2)β′ ≤ β < β′, we have β h θ2. Then we estimate α2,

α2 ≤ 1−
1
4λθ

2β′

CGU + β′
= 1− λ2θ4

32CECGU (1− 1
2λθ

2) + 4λθ2

≤ 1− λ2θ4

32CECGU + 4
,

that is, α2 ≤ 1− Cθ4 for some constant C ∈ (0, 1) independent of θ.
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5. Quasi optimality of the AMPDG

The purpose of this section is to prove the following asymptotic estimate for the

quasi-error

(
e2hk

(uk) + βE2
hk
(uk,Mk)

) 1
2 .

(
#Mk −#M0

)−s
, (5.1)

provided that (u, f,D) ∈ Ãs, while Ãs is an approximation class defined in Section 5.3.

Noting that when the penalty parameter γ1, · · · , γp = 0, the AMPDG reduces to the

AIPDG [3], our results extend those of AIPDG.

5.1. Quasi-localized upper bound

To prove the optimality of the AMPDG, we need a localized upper bound for the

distance between two nested solutions as stated in the next lemma, which is similar as

the one in [3], but in a sense weaker than [10,24].

Lemma 5.1 (Quasi-localized upper bound). Let Condition 2.2 hold. Let M0 ≤ MH ≤
Mh and write RH = RMH→Mh

. Let uH ∈ VH , uh ∈ Vh be the corresponding solutions

of (2.8). Then there exists a constant CLU depending on A, p and the shape regularity of

MH such that for γ0 ≥ γ
(E)
0 and γ1, · · · , γp . 1, there holds

‖|u0h − uH‖|20,H ≤ CLU

(
E2

H

(
uH , ω(RH)

)
+ γ−1

0 E2
H(uH ,MH)

)
,

where uh = u0h + u⊥h is the orthogonal decomposition according to (3.1), and γ
(E)
0 is from

Lemma 3.3.

Proof. Write uH = u0H + u⊥H with u0H ∈ V 0
H , u⊥H ∈ V ⊥

H according to (3.1). From

(2.7), (2.8) and (3.2), for any v0H ∈ V 0
H , we have

aH(u0h, v
0
H) = ah(u

0
h, v

0
H)−

p∑

j=1

J j
h(u

0
h, v

0
H) +

p∑

j=1

J j
H(u0h, v

0
H)

= aH(uH , v0H)−
p∑

j=1

J j
h(u

0
h, v

0
H) +

p∑

j=1

J j
H(u0h, v

0
H).

Therefore,

aLH(u0h − uH , v0H) = aH(u0h − uH , v0H)−
p∑

j=1

J j
H(u0h − uH , v0H)

=

p∑

j=1

J j
H(uH , v0H)−

p∑

j=1

J j
h(u

0
h, v

0
H).
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Write u0h − uH = z0h − u⊥H + v0H where z0h = u0h − u0H − v0H ∈ V 0
h . Using (2.8) and (3.2)

yield

aLH(u0h − uH , u0h − uH)

= aLH(u0h − uH , z0h)− aLH(u0h − uH , u⊥H) + aLH(u0h − uH , v0H)

=


ah(u

0
h, z

0
h)−

p∑

j=1

J j
h(u

0
h, z

0
h)− aLH(uH , z0h)




− aLH(u0h − uH , u⊥H) +




p∑

j=1

J j
H(uH , v0H)−

p∑

j=1

J j
h(u

0
h, v

0
H)




= (f, z0h)− aLH(uH , z0h)− aLH(u0h − uH , u⊥H) +

p∑

j=1

J j
H(uH , v0H)

−
p∑

j=1

J j
h(u

0
H , u0h − u0H)−

p∑

j=1

J j
h(u

0
h − u0H , u0h − u0H). (5.2)

Let v0H = IH(u0h − u0H), where IH is given in Condition 2.2. Since IH is locally a

projection [3, Lemma 6.6], the error z0h vanishes outside the set ω(RH) (see (2.3)),

then (2.6) and the Cauchy-Schwarz inequalities imply

(f, z0h)− aLH(uH , z0h)

= (f, z0h)− a(uH , z0h) +
(
LH(uH), A∇z0h

)
MH

=
(
R(uH), z0h

)
ω(RH )

−
〈
J(uH), z0h

〉
σ(RH )

+
(
LH(uH), A∇z0h

)
MH

.

(
‖HR(uH)‖ω(RH ) +

∥∥∥H 1
2J(uH)

∥∥∥
σ(RH )

+
∥∥∥H− 1

2 [uH ]
∥∥∥
EH

)

×
(∥∥H−1z0h

∥∥
ω(RH )

+
∥∥∥H− 1

2 z0h

∥∥∥
σ(RH )

+
∥∥∇z0h

∥∥
MH

)
.

By using the trace and inverse inequalities, (2.14) and Remark 2.5, we have

∥∥H−1z0h
∥∥
ω(RH )

+
∥∥∥H− 1

2 z0h

∥∥∥
σ(RH )

+
∥∥∇z0h

∥∥
MH

.
∥∥∇(u0h − u0H)

∥∥
Mh

.

The triangle inequality and (3.3) yield

∥∥∇(u0h − u0H)
∥∥
Mh

. ‖|u0h − uH‖|+ γ
1
2
0

∥∥∥H− 1
2 [u0h − uH ]

∥∥∥
EH

. ‖|u0h − uH‖|0,H .

Collecting the above three estimates, together with (3.8) leads to

(f, z0h)− aLH(uH , z0h) .
(
ηH(uH , ω(RH)) + γ−1

0 EH(uH ,MH)
)
‖|u0h − uH‖|0,H . (5.3)
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By invoking Lemma 2.1, (3.3) and (3.8), the third term in (5.2) can be estimated as

follows:
∣∣aLH(u0h − uH , u⊥H)

∣∣ . ‖|u⊥H‖|0,H · ‖|u0h − uH‖|0,H

. γ
1
2
0

∥∥∥H− 1
2 [uH ]

∥∥∥
EH

‖|u0h − uH‖|0,H

. γ
− 1

2
0 EH(uH ,MH)‖|u0h − uH‖|0,H . (5.4)

It remains to estimate the fourth and fifth terms in (5.2). Noting that v0H = u0h − u0H
outside the set ω(RH), let EI

h(ω(RH)) be the restriction of EI
h in ω(RH), then we can

easily see that EI
H \ EI

h(σ(RH)) = EI
h \ EI

h(ω(RH)). From Lemma 2.2, (3.3), and (3.8),

we have

p∑

j=1

J j
H(uH , v0H)−

p∑

j=1

J j
h(u

0
H , u0h − u0H)

=

p∑

j=1

J j
H(uH , v0H)−

p∑

j=1

J j
h(uH , u0h − u0H) +

p∑

j=1

J j
h(u

⊥
H , u0h − u0H)

=

p∑

j=1

J j
H(uH , v0H)EI

h
(σ(RH )) −

p∑

j=1

J j
h(uH , u0h − u0H)EI

h
(ω(RH )) +

p∑

j=1

J j
h(u

⊥
H , u0h − u0H)

. EH(uH , ω(RH))
∥∥∇v0H

∥∥
Mh

+ EH(uH , ω(RH))
∥∥∇(u0h − u0H)

∥∥
Mh

+ ‖|u⊥H‖| ·
∥∥∇(u0h − u0H)

∥∥
Mh

.
(
EH(uH , ω(RH)) + γ

− 1
2

0 EH(uH ,MH)
)
‖|u0h − uH‖|0,H . (5.5)

Insert (5.3), (5.4) and (5.5) into (5.2), and using Lemma 2.1 for aLH(u0h−uH , u0h−uH),
we get the desired conclusion. �

Remark 5.1. Here we have estimated the jump terms (see (5.5)) carefully and obtained

the quasi-localized upper bound for the AMPDG, which is almost the same as that for

the AIPDG (cf. [3, Lemma 3.5]).

5.2. Céa’s lemma on discrete total error

According to the upper bound (3.10) and the truth that osc2h(uh,Mh) ≤ η2h(uh,Mh),
we have

e2h(uh) + osc2h(uh,Mh) . E2
h(uh,Mh).

Combine the above inequality with the global lower bound (3.11) we realize that

Eh(uh,Mh) h
(
e2h(uh) + osc2h(uh,Mh)

) 1
2 , (5.6)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1412
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:06:03, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1412
https://www.cambridge.org/core


76 Z.-H. Zhou and H.-J. Wu

and we call the right-hand side the discrete total error. We can also see that the

discrete total error is equivalent to the discrete quasi-error

(
e2h(uh) + osc2h(uh,Mh)

) 1
2 h

(
e2h(uh) + βE2

h(uh,Mh)
) 1

2 , (5.7)

which is strictly reduced by the AMPDG method (see Theorem 4.1). Finally, the discrete

total error satisfies the following Céa’s lemma.

Lemma 5.2 (Quasi optimality of the discrete total error). Let Mh ≥ M0 and Condition

2.2 hold. Let u ∈ H1
0 (Ω), uh ∈ Vh be the solutions of (2.1), (2.8), respectively. Then there

exist constants Copt and γ
(opt)
0 ≥ γ

(E)
0 depending on A, p and the shape regularity of M0,

such that for γ0 ≥ γ
(opt)
0 there holds

e2h(uh) + osc2h(uh,Mh) ≤ Copt inf
vh∈Vh

(
e2h(vh) + osc2h(vh,Mh)

)
,

where γ
(E)
0 is from Lemma 3.3.

Proof. Write uh = u0h + u⊥h , vh = v0h + v⊥h according to (3.1). Following the proof of

Lemma 4.1, we have

‖|u− uh‖|2 = ‖|u− vh + v⊥h − u⊥h ‖|2 − ‖|u0h − v0h‖|2

+ 2a(u⊥h , u
0
h − v0h)− 2

p∑

j=1

J j
h(u

0
h, u

0
h) + 2

p∑

j=1

J j
h(u

0
h, v

0
h)

≤ 2‖|u − vh‖|2 + 2‖|u⊥h − v⊥h ‖|2 −
1

2
‖|u0h − v0h‖|2

+ 2‖|u⊥h ‖|2 −
p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
h(v

0
h, v

0
h)

≤ 2‖|u − vh‖|2 +
5

2
‖|u⊥h − v⊥h ‖|2 −

1

4
‖|uh − vh‖|2

+ 2‖|u⊥h ‖|2 −
p∑

j=1

J j
h(u

0
h, u

0
h) +

p∑

j=1

J j
h(v

0
h, v

0
h). (5.8)

Let γ0 ≥ γ
(E)
0 . Using Young’s inequality, Lemma 2.2, (3.3), (3.8) and (3.11) yield

e2h(uh) ≤ 2
(
‖|u− uh‖|2 +

p∑

j=1

J j
h(u

0
h, u

0
h)
)
+ 2

p∑

j=1

J j
h(u

⊥
h , u

⊥
h ) + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh

≤ 4‖|u − vh‖|2 + 5‖|u⊥h − v⊥h ‖|2 −
1

2
‖|uh − vh‖|2 + 4‖|u⊥h ‖|2

+ 4

p∑

j=1

J j
h(vh, vh) + 4

p∑

j=1

J j
h(v

⊥
h , v

⊥
h ) + 2

p∑

j=1

J j
h(u

⊥
h , u

⊥
h ) + γ0

∥∥∥h− 1
2 [uh]

∥∥∥
2

Eh

≤ Ce2h(vh)−
1

2
‖|uh − vh‖|2 + Cγ−1

0

(
e2h(uh) + osc2h(uh,Mh)

)
. (5.9)
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Here C ≥ 4 is a constant independent of γ0. Let M∗ = MH = Mh and vH = uh in

Lemma 2.4, we get

osc2h(uh,Mh) ≤ 2osc2h(vh,Mh) + Cosc‖|uh − vh‖|2,

which combined with (5.9) leads to

e2h(uh) + osc2h(uh,Mh)

≤ 2osc2h(vh,Mh) + Cosc‖|uh − vh‖|2 + Ce2h(vh) + Cγ−1
0

(
e2h(uh) + osc2h(uh,Mh)

)

≤ 2osc2h(vh,Mh) + Cmax(2Cosc, 1)
(
e2h(vh) + γ−1

0

(
e2h(uh) + osc2h(uh,Mh)

))
.

Therefore

(
1− Cmax(2Cosc, 1)γ

−1
0

)(
e2h(uh) + osc2h(uh,Mh)

)

≤ Cmax(2Cosc, 1)
(
e2h(vh) + osc2h(vh,Mh)

)
.

Let

γ
(opt)
0 := max

(
γ
(E)
0 , 2Cmax(2Cosc, 1)

)
and Copt := 2Cmax(2Cosc, 1),

which completes the proof of this lemma. �

5.3. Approximation class

Now we are going to define the nonlinear approximation class Ãs which is suitable

for the AMPDG. The analysis leading to the definition of Ãs is similar as those of AFEM

(see [10, Section 5.1]) and AIPDG (see [3, Section 5.2]), excepting that we employ the

discrete energy error instead of the energy norm, so we only keep the important points.

Let N be an integer and MN be the set of all possible subdivisions generated from

M0 with at most N elements more than that of M0, that is,

MN :=
{
Mh |#Mh −#M0 ≤ N

}
.

The quality of the best approximation to the discrete total error in the set MN is given

by

σ̃(N ;u, f,A) := inf
Mh∈MN

inf
vh∈Vh

(
e2h(vh) + osc2h(vh,Mh)

) 1
2
,

and for s > 0 we define the nonlinear approximation class Ãs to be

Ãs :=
{
(u, f,A)

∣∣ |u, f,A|s := sup
N>0

(
N sσ̃(N ;u, f,A)

)
< ∞

}
.
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We also define the counterparts for continuous finite element approximations

σ̃0(N ;u, f,A) := inf
Mh∈MN

inf
v0
h
∈V 0

h

(
e2h(v

0
h) + osc2h(v

0
h,Mh)

) 1
2
,

and

Ã
0
s :=

{
(u, f,A)

∣∣ |u, f,A|0s := sup
N>0

(
N sσ̃0(N ;u, f,A)

)
< ∞

}
.

Remark 5.2. The approximation classes Ãs and Ã
0
s defined here are different from

those for IPDG in [3], which are defined as follows:

As :=
{
(u, f,A)

∣∣ sup
N>0

(
N s inf

Mh∈MN

inf
vh∈Vh

(
‖|u− vh‖|20,h + osc2h(vh,Mh)

) 1
2

)
< ∞

}
,

A
0
s :=

{
(u, f,A)

∣∣ sup
N>0

(
N s inf

Mh∈MN

inf
v0
h
∈V 0

h

(
‖|u− v0h‖|20,h + osc2h(v

0
h,Mh)

) 1
2

)
< ∞

}
.

We remark that A0
s ≡ As if Condition 2.2 holds and 0 < s ≤ p

d [3, Proposition 5.2].

It is obviously that Ãs ⊂ As and Ã
0
s ⊂ A

0
s. But we will show in Lemma 5.4 more

relations among these approximation classes. To do so, we first state a perturbation

result on the error estimator η.

Lemma 5.3 (Perturbation of estimator). Let Mh be a refinement of M0. For any pair of

discrete functions vh, wh ∈ Vh, we have

ηh(vh,Mh) . ηh(wh,Mh) + ‖|vh − wh‖|,

the constant hiding in “.” depends on A, p and the shape regularity of M0.

Proof. Although this lemma is stated for general mesh made of triangles or quadri-

laterals, its original proof for conforming simplices (see [10]) is still valid, so we omit

the details.

Lemma 5.4 (Equivalence classes). Let Condition 2.2 be valid. Suppose that u, f and A
satisfy (2.1). Then Ãs ≡ Ã

0
s. Moreover, if γ2 = · · · = γp = 0 and (u, f,A) ∈ As, then

(u, f,A) ∈ Ãs and (u, f,A) ∈ Ã
0
s.

Proof. If (u, f,A) ∈ Ã
0
s, then the relation |u, f,A|s ≤ |u, f,A|0s directly implies that

(u, f,A) ∈ Ãs, which leads to Ã
0
s ⊆ Ãs.

Next we prove Ãs ⊆ Ã
0
s. Let (u, f,A) ∈ Ãs, for N > 0, let Mh∗

∈ MN , vh∗
∈ Vh∗

be

such that

e2h∗
(vh∗

) + osc2h∗
(vh∗

,Mh∗
) = inf

Mh∈MN

inf
vh∈Vh

(
e2h(vh) + osc2h(vh,Mh)

)
.
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Let Ih∗
be given by Condition 2.2. The triangle inequality, Lemma 2.2, (3.3) and the

error estimates for Ih∗
show that

e2h∗
(Ih∗

vh∗
) = ‖|u − Ih∗

vh∗
‖|2 +

p∑

j=1

J j
h∗

(Ih∗
vh∗

, Ih∗
vh∗

)

≤ 2‖|u − vh∗
‖|2 + 2

p∑

j=1

J j
h∗

(vh∗
, vh∗

) + 2‖|vh∗
− Ih∗

vh∗
‖|2

+ 2

p∑

j=1

J j
h∗

(vh∗
− Ih∗

vh∗
, vh∗

− Ih∗
vh∗

)

. e2h∗
(vh∗

).

On the other hand, from Lemma 2.4,

osc2h∗
(Ih∗

vh∗
,Mh∗

) . osc2h∗
(vh∗

,Mh∗
) +

∥∥∥h− 1
2 [vh∗

]
∥∥∥
2

Eh∗
.

Therefore

e2h∗
(Ih∗

vh∗
) + osc2h∗

(Ih∗
vh∗

,Mh∗
) . e2h∗

(vh∗
) + osc2h∗

(vh∗
,Mh∗

) . N−s,

which implies (u, f,A) ∈ Ã
0
s, therefore Ãs ⊆ Ã

0
s. Thus Ãs ≡ Ã

0
s.

Suppose that γ2 = · · · = γp = 0, for any MH ≥ M0 and vH ∈ VH , we have

EH(vH ,MH) = ηH(vH ,MH). If (u, f,A) ∈ As, then for any N > 0 there exists a

subdivision Mh ≥ M0 such that

#Mh −#M0 ≤ N and inf
vh∈Vh

(
‖|u− vh‖|20,h + osc2h(vh,Mh)

) 1
2 . N−s.

Let uLh ∈ Vh be the discrete solution of IPDG method, that is, uLh satisfies

aLh(u
L
h , vh) = (f, vh) ∀vh ∈ Vh.

From (5.6) and Lemma 5.2 with γ1 = 0, we know that

ηh(u
L
h ,Mh) h

(
‖|u− uLh‖|20,h + osc2h(u

L
h ,Mh)

) 1
2

. inf
vh∈Vh

(
‖|u − vh‖|20,h + osc2h(vh,Mh)

) 1
2 . N−s.

By setting vh = uh and wh = uLh in Lemma 5.3 we deduce that

ηh(uh,Mh) . ηh(u
L
h ,Mh) + ‖|uh − uLh‖|,

where ‖|uh − uLh‖| can be estimated as follows:

‖|uh − uLh‖|2 . aLh(u
L
h − uh, u

L
h − uh) + J1

h(u
L
h − uh, u

L
h − uh)

= aLh(u
L
h, u

L
h − uh)− ah(uh, u

L
h − uh) + J1

h(u
L
h , u

L
h − uh)

= J1
h(u

L
h , u

L
h − uh) . ηh(u

L
h,Mh)‖|uLh − uh‖|.
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By invoking (5.6) and Lemma 5.2 we have

σ̃(N ;u, f,A) h inf
MH∈MN

ηH(uH ,MH)

. ηh(uh,Mh) . ηh(u
L
h ,Mh) . N−s,

which implies (u, f,A) ∈ Ãs. Since Ãs ≡ Ã
0
s, we have (u, f,A) ∈ Ã

0
s. This completes

the proof of the lemma. �

Remark 5.3. (i) The characterization of Ãs (or As) and Ã
0
s (or A0

s) is a pending issue.

When the matrix A is piecewise polynomial of degree at most p over M0, some analysis

is given in [10], while we won’t talk about it in this paper.

(ii) We would like to point out that if s ≥ p/d, then As (or A0
s) contains only trivial

functions, see [10,12].

5.4. Cardinality of M̂k

Assume that (u, f,A) ∈ Ãs for some s > 0. Similar as in [3], we are now going to

prove that the approximation uk generated by AMPDG converges to u with the same

rate (#Mk − #M0)
−s as the best approximation described by Ãs. We assume the

following conditions regarding the parameters (θ, γ) and the marking procedure MARK.

γ0 > γ∗0 := max

(
Com + CLU (2 + Cosc +Com)

CGL
, γ

(m)
0 , γ

(opt)
0 , γ

(µ)
0

)
,

0 < θ < θ∗ :=

(
CGL −

(
Com + CLU(2 + Cosc + Com)

)
γ−1
0

1 + Com + CLU (2 + Cosc + Com)

)1/2

. (5.10)

Here γ
(m)
0 , γ

(opt)
0 , γ

(µ)
0 , Cosc, CGL, CLU , Com are constants from Theorem 4.1, Lemma

5.2, Lemma 5.5 (below), (2.4), (3.11), Lemma 5.1 and (5.15) (below). We remark

that θ∗ > 0 if γ0 > γ∗0 .

In order to simplify the notation, let 0 < µ < 1
2 be defined by

µ :=
CGL −

(
Com + CLU (2 + Cosc + Com)

)
γ−1
0

2CGL

(
1− θ2

θ2∗

)
, ∀γ0 > γ∗0 , 0 < θ < θ∗.

Lemma 5.5 (Optimal marking). Let condition 2.3 hold. Let MH be a refinement of M0

and let Mh be an admissible refinement of MH such that

e2h(u
0
h) + osc2h(u

0
h,Mh) ≤ µ

(
e2H(uH) + osc2H(uH ,MH)

)
, (5.11)

where uH ∈ VH , uh ∈ Vh are the corresponding solutions of (2.8), respectively, and

uh = u0h + u⊥h is the orthogonal decomposition according to (3.1). Then for γ0 > γ∗0
and θ ∈ (0, θ∗), the set of elements RH := RMH→Mh

(see Section 2.2) satisfies a Dörfler

marking property

EH(uH , ω(RH)) ≥ θEH(uH ,MH).
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Proof. From the global lower bound (3.11) and (5.11) we have

(1− 2µ)CGLE
2
H(uH ,MH)

≤ (1− 2µ)
(
osc2H(uH ,MH) + e2H(uH)

)

≤ osc2H(uH ,MH) + e2H(uH)− 2
(
osc2h(u

0
h,Mh) + e2h(u

0
h)
)
. (5.12)

Noting that osc2H(uH ,K ′) ≤ η2H(uH ,K ′) for K ′ ∈ MH , and MH \ω(RH) ⊆ MH ∩Mh,

then Lemma 2.4 with M∗ = MH \ ω(RH) imply

osc2H(uH ,MH)− 2osc2h(u
0
h,Mh)

≤ η2H(uH , ω(RH)) + osc2H(uH ,MH \ ω(RH))− 2osc2h(u
0
h,MH \ ω(RH))

≤ η2H(uH , ω(RH)) + Cosc‖|u0h − uH‖|20,H . (5.13)

Next we estimate

e2H(uH)− 2e2h(u
0
h) = ‖|u− uH‖|20,H − 2‖|u− u0h‖|20,h

+

p∑

j=1

J j
H(uH , uH)− 2

p∑

j=1

J j
h(uh, uh).

Since u− u0h ∈ H1
0 (Ω), the triangle inequality yields

‖|u − uH‖|20,H − 2‖|u − u0h‖|20,h ≤ 2‖|u0h − uH‖|20,H . (5.14)

Again using the triangle inequality, together with (3.3), (3.8) and Lemma 2.3 with

δ = 1, leads to

‖|uh − uH‖|2 ≤ 2‖|u0h − uH‖|2 + 2‖|u⊥h ‖|2

≤ 2‖|u0h − uH‖|2 + Cγ−1
0

(
E2

H(uH ,MH) + CE‖|uh − uH‖|2
)
.

Let γ
(µ)
0 = max(γ

(E)
0 , 2CCE). If γ0 ≥ γ

(µ)
0 , then

‖|uh − uH‖|2 ≤ 4‖|u0h − uH‖|2 + 2Cγ−1
0 E2

H(uH ,MH).

Considering the fact that any edge in EI
H \σ(RH) is also an edge in EI

h, by using Lemma

2.2, together with the above inequality, we obtain

p∑

j=1

J j
H(uH , uH)− 2

p∑

j=1

J j
h(uh, uh)

≤
p∑

j=1

J j
H(uH , uH)σ(RH ) +

p∑

j=1

J j
H(uH , uH)EI

H
\σ(RH ) − 2

p∑

j=1

J j
h(uh, uh)EI

H
\σ(RH )

≤
p∑

j=1

J j
H(uH , uH)σ(RH ) + 2

p∑

j=1

J j
h(uh − uH , uh − uH)EI

H
\σ(RH )

≤ Com

(
E2

H(uH , ω(RH)) + γ−1
0 E2

H(uH ,MH) + ‖|u0h − uH‖|20,H
)
, (5.15)
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where Com is a constant depending on A, p and the shape regularity of M0. Insert

(5.14), (5.13) and (5.15) into (5.12), we arrive at

(1− 2µ)CGLE
2
H(uH ,MH)

≤ (1 + Com)E2
H(uH , ω(RH)) + Comγ−1

0 E2
H(uH ,MH)

+ (2 + Cosc + Com)‖|u0h − uH‖|20,H ,

which together with the quasi localized upper bound Lemma 5.1 yield

(1− 2µ)CGLE
2
H(uH ,MH)

≤
(
1 + Com + CLU (2 + Cosc + Com)

)
E2

H(uH , ω(RH))

+
(
Com +CLU (2 + Cosc + Com)

)
γ−1
0 E2

H(uH ,MH).

If γ0 > γ∗0 , then, employing the definitions of θ∗ and u results in

E2
H(uH , ω(RH))

≥ (1− 2µ)CGL −
(
Com + CLU (2 + Cosc +Com)

)
γ−1
0

1 +Com + CLU (2 + Cosc + Com)
E2

H(uH ,MH)

= θ2E2
H(uH ,MH).

This completes the proof of the lemma.

Lemma 5.6 (Cardinality of M̂k). Let Condition 2.3, 2.4, 2.5, 2.6 be valid. Let u ∈ H1
0 (Ω)

be the solution of (2.1), and uk ∈ Vk be the kth solution of (2.8) generated by the adaptive

algorithm. If (u, f,A) ∈ Ãs, then, for γ0 > γ∗0 and 0 < θ < θ∗, the following estimate

holds:

#M̂k . |u, f,A|
1
s
s µ

− 1
2sC

1
2s
opt

(
e2hk

(uk) + osc2k(uk,Mk)
)− 1

2s
.

The constant hiding in “.” is independent of k.

Proof. This proof is similar to that of [3, Lemma 5.5], we write down below for

completeness. Let

ε2 := µC−1
opt

(
e2hk

(uk) + osc2hk
(uk,Mk)

)
.

Since (u, f,A) ∈ Ãs, from Lemma 5.4 we have (u, f,A) ∈ Ã
0
s, then from the definition

of Ã0
s with N h |u, f,A|

1
s
s ε

− 1
s , there exists (M

ĥ
, v0

ĥ
) with M

ĥ
≥ M0, v

0
ĥ
∈ V 0

ĥ
such that

#M
ĥ
−#M0 . |u, f,A|

1
s
s ε

− 1
s and e2

ĥ
(v0

ĥ
) + osc2

ĥ
(v0

ĥ
,M

ĥ
) ≤ ε2. (5.16)
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Let M
k̂
= Mk ⊕M

ĥ
be the overlay of Mk and M

ĥ
, and let u

k̂
be the corresponding

solution of (2.8). Write u
k̂
= u0

k̂
+ u⊥

k̂
according to (3.1). Then from Lemma 5.2,

Remark 2.3, and noting that e2h
k̂
(v0

ĥ
) ≤ e2

ĥ
(v0

ĥ
), we have

e2h
k̂
(u0

k̂
) + osc2h

k̂
(u0

k̂
,M

k̂
) ≤ Copt

(
e2h

k̂
(v0

ĥ
) + osc2h

k̂
(v0

ĥ
,M

k̂
)
)

≤ Copt

(
e2
ĥ
(v0

ĥ
) + osc2

ĥ
(v0

ĥ
,M

ĥ
)
)

≤ Coptε
2 = µ

(
e2hk

(uk) + osc2hk
(uk,Mk)

)
.

By using Lemma 5.5, we deduce that the subset Rk := RMk→Mkε
verifies the following

Dörfler marking property for θ < θ∗:

Ehk
(uk, ω(Rk)) ≥ θEhk

(uk,Mk).

According to Condition 2.5, the procedure MARK selects a subset M̂k ⊂ Mk with

minimal cardinality, then

#M̂k ≤ #ω(Rk) . #Rk,

where we have used (2.2) and the shape regularity of Mk to get the last estimate. Then

from Condition 2.3 and (2.4) we obtain

#M̂k . #Rk ≤ #M
k̂
−#Mk ≤ #M

ĥ
−#M0.

The proof finishes by combining this with (5.16). �

5.5. Quasi optimality

Assume that (u, f,A) ∈ Ãs for some s > 0. We are going to prove that the ap-

proximation uk generated by the AMPDG converges to u with the same rate (#Mk −
#M0)

−s as the best approximation described by Ãs.

As a consequence of the previous estimates and the fact that the AMPDG is a con-

traction for the discrete quasi-error, we obtain quasi optimality of the discrete quasi-

error.

Theorem 5.1 (Quasi optimality). Let Condition 2.3, 2.4, 2.5, 2.6 be valid. Let f and A
satisfy the assumptions in Section 2.1, and let u ∈ H1

0 (Ω) be the solution of (2.1). Let

{Mk, Vk, uk}k≥0 be the sequence of meshes, approximate spaces, and discrete solutions

generated by the AMPDG algorithm. Let γ∗0 and θ∗ be given as in (5.10). If (u, f,A) ∈ Ãs

and γ0 > γ∗0 , 0 < θ < θ∗, then there holds that

(
e2hk

(uk) + βE2
hk
(uk,Mk)

) 1
2
.

(
1− θ2

θ2∗

)− 1
2

θ−4s|u, f,A|s (#Mk −#M0)
−s .
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Proof. The global lower bound (3.11) implies

e2hj
(uj) + βE2

hj
(uj ,Mj) ≤

(
1 +

β

CGL

)(
e2hj

(uj) + osc2hj
(uj ,Mj)

)
.

By invoking Condition 2.4, Lemma 5.6 and Theorem 4.1, we can deduce that

#Mk −#M0 .

k−1∑

j=0

#M̂j

. |u, f,A|
1
s
s µ

− 1
2s

k−1∑

j=0

{
e2hj

(uj) + osc2hj
(uj ,Mj)

}− 1
2s

.

(
1 +

β

CGL

) 1
2s

|u, f,A|
1
s
s µ

− 1
2s

k−1∑

j=0

{
e2hj

(uj) + βE2
hj
(uj ,Mj)

}− 1
2s

.

(
1 +

β

CGL

) 1
2s

|u, f,A|
1
s
s µ

− 1
2s

{
e2hk

(uk) + βE2
hk
(uk,Mk)

}− 1
2s

k−1∑

j=0

α
k−j

s

.

(
1 +

β

CGL

) 1
2s

|u, f,A|
1
s
s µ

− 1
2s

{
e2hk

(uk) + βE2
hk
(uk,Mk)

}− 1
2s α

1
s

1− α
1
s

.

By raising to the sth power and reordering, we arrive at

(
e2hk

(uk) + βE2
hk
(uk,Mk)

) 1
2

.

(
1 +

β

CGL

)1
2

µ− 1
2

(
α

1
s

1− α
1
s

)s

|u, f,A|s
(
#Mk −#M0

)−s
.

From Remark 4.1(iii), we have β . θ2 and

(
α

1
s

1− α
1
s

)s

≤ (1− Cθ4)
1
2

(
1− (1− Cθ4)

1
2s

)s

for some constant C ∈ (0, 1). Simple calculations show that, given s > 0, the function

g(t) := 1−t
1
2s

1−t is monotone in t ∈ (0, 1). Since the limiting values g(0+) = 1 and

g(1−) = 1
2s , we have g(t) ≥ min(1, 1

2s) & 1. Apply this inequality with t = 1 − Cθ4 to

obtain
(

α
1
s

1− α
1
s

)s

.
(1− Cθ4)

1
2(

Cθ4
)s . θ−4s.

This completes the proof of the theorem. �
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Remark 5.4. (i) The same decay rate is obtained for the discrete total error due to its

equivalence to the discrete quasi-error (see (5.7)).

(ii) The quasi-optimal result is almost the same as that for the AIPDG (cf. [3, Theo-

rem 5.7]) except we use the discrete quasi-error instead of the total error.

(iii) ‖|u− uk‖| satisfies the same quasi-optimal convergence rate.

6. Concluding remarks

In this paper we have analyzed an adaptive multi-penalty discontinuous Galerkin

method. Convergence and quasi-optimality of the AMPDG method are proved for the

diffusion problem. Extra works have been done to deal with the additional penalty

terms. We will investigate the convergence properties of the AMPDG for Helmholtz

scattering problems with high wave numbers in a future work.
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[14] W. DÖRFLER, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.,

33 (1996), pp. 1106–1124.
[15] R. H. W. HOPPE, G. KANSCHAT, AND T. WARBURTON, Convergence analysis of an adaptive

interior penalty discontinuous Galerkin method, SIAM J. Numer. Anal., 47 (2008), pp. 534–
550.
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