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Abstract. In order to suppress the failure of preserving positivity of density or pres-
sure, a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta

discontinuous Galerkin (RKDG) method is developed in this paper. Such a method is
implemented to simulate flows with the large Mach number, strong shock/obstacle

interactions and shock diffractions. The Cartesian grid with ghost cell immersed

boundary method for arbitrarily complex geometries is also presented. This ap-
proach directly uses the cell solution polynomial of DG finite element space as the

interpolation formula. The method is validated by the well documented test ex-

amples involving unsteady compressible flows through complex bodies over a large
Mach numbers. The numerical results demonstrate the robustness and the versatility

of the proposed approach.
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1. Introduction

Recently, the Cartesian grid methods have become very popular in computational

fluid dynamics (see [1–11] and their references), because such methods do not suf-

fer from the complex grid generation and grid management requirements which are

inherent in other methods, and also these methods are easily extended to high order
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numerical schemes. Conceptually, the Cartesian grid approach is much simpler to be

implemented than other grid methods. In general, solid bodies with a Cartesian grid

for the partition of the flow field are cut out of a single static background mesh and

their boundaries are represented by different types of cut cells. When cut cells become

very small, however, degenerate cells will be encountered. In this situation, numerical

instability may occur when an explicit time step scheme is used in numerical calcu-

lations. Some techniques have already been employed to overcome these problems

along with time step stability restrictions [1, 6–9]. Although there are many different

techniques, ghost cell method or immersed boundary method for its simplification still

obtains many researcher’s favourite [2–5, 10, 11]. In our recent article [12], we devel-

oped an adaptive Cartesian grid RKDG method combined with the ghost cell immersed

boundary technique to deal with a complex geometry. This methodology was based on

the image point ghost cell method [4] and used an inverse distance weighting interpo-

lation formula to obtain the value at the image point. In this paper, we extend this idea

and develop a new approach for immerse boundary treatment, in which the interpo-

lation formula for cell solution polynomials is created on discontinuous Galerkin finite

element space.

In practice, it is quite often to encounter the situation in which the density or pres-

sure of the numerical solutions becomes negative [13–15]. For instance, highly ener-

getic flows may contain regions with a dominant kinetic energy, and a relatively small

internal energy which is easy to become negative in the simulation [16]. Another

well-known example is the computational simulation of shock wave or gas detonation

propagation through different geometries [15]. The shock diffraction may result in

very low density and pressure [13–16]. In general, the most commonly used high or-

der numerical schemes for solving Euler equations do not satisfy the positivity property,

which may produce negative density or pressure and cause blow-ups of the numerical

algorithm. The ad hoc methods in numerical strategy, which modify the computed neg-

ative density and/or the computed negative pressure to be positive, destroy not only a

local and global conservation, but also often cause numerical instability [17]. Recently,

based on certain Gauss-Lobatto quadratures and positivity-preserving flux, Zhang and

Shu [13–15] used Lax-Friedrichs flux and successfully developed a positivity-preserving

approach for high-order discontinuous Galerkin methods. Such an approach is also ap-

plied to unstructured meshes and p-adaptive numerical solutions by Kontzialis and Eka-

terinaris [18]. In a recent paper of Wang et al. [16], they simplified the method and ex-

tended it to solve gaseous detonations. The aim of the present work, then, is to develop

a simple approach under the adaptive Cartesian grid to simulate large Mach number

flows with strong shock/obstacle interactions and shock diffraction. The present paper

can be considered as a companion work to [12] on the so-called adaptive Cartesian

grid RKDG methods for arbitrarily complex geometries. More specifically, in this paper

we employed a simplified version of high-order positivity-preserving technique with

h-adaptive RKDG method, and a modified version of the well-known Harten-Lax-van

Leer contact numerical flux named as HLLC-HLL flux in [19] to remedy the numerical

shock instability.
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The paper is organized as follows. In Section 2, the governing equations and

their numerical discretization are presented, including the review of RKDG method, h-

adaptive RKDG method and the limiting process near the discontinuous. The positivity-

preserving limiter on adaptive Cartesian grid and the implementation of the ghost cell

immersed boundary method coupling with the high-order accurate RKDG method are

presented in Section 2. In Section 3, computational results are presented based on

two dimension benchmark problems with complex geometries. The numerical results

demonstrate the efficiency, robustness, and versatility of the proposed approach. Fi-

nally, some concluding remarks are given in Section 4.

2. Governing equations and numerical method

The inviscid compressible Euler equations can be written in vector form explicitly

expressing the conservation laws of mass, momentum and energy, which are

∂U

∂t
+∇ · F = 0, (2.1)

where, the conservative state vector U and the inviscid flux vectors F = [fx, fy]
T are

defined by

U =




ρ

ρu

ρv

ρE



, fx =




ρu

ρu2 + p

ρuv

u(ρE + p)



, fy =




ρv

ρuv

ρv2 + p

v(ρE + p)



,

where p, ρ, u and v are variables, which represent the pressure, the density, and the two

Cartesian components of the velocity vector, respectively, and E is the total energy per

unit mass. The pressure p is obtained by using an equation of state for ideal gases

p = (γ − 1)ρ

(
E − 1

2
(u2 + v2)

)
, (2.2)

where γ is the specific heat ratio.

2.1. Review of RKDG method and h-adaptive RKDG method

2.1.1. RKDG method

To formulate the RKDG method [20–24], we first discretize (2.1) in space using the

discontinuous Galerkin method. For simplicity, U is considered as a scalar function

here only. If U is vector-valued, one simply proceeds component by component.
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Assuming that Th is a grid coverage of Ω where the domain Ω is subdivided into a

collection of nonoverlapping elements K, we seek the approximate solution Uh(t, x, y)
in the finite element space of discontinuous functions defined as

Vh = {vh ∈ L∞(Ω) : vh|K ∈ P k,∀K ∈ Th},

where P k is a space of polynomials with degree ≤ k.

Firstly, the equation (2.1) is multiplied by a test function v(x, y) ∈ Vh and integrated

over cell K, integration by parts is performed, and then the following semi-discrete

form of (2.1) is obtained

d

dt

∫

K
U(x, y, t)vdxdy −

∫

K
F (U) · ∇vdxdy +

Ne∑

i=1

∫

ei
K

F (U) · ~nivds = 0, (2.3)

where ~ni is the outward unit normal to the edge eiK and Ne is the number of faces of the

cell K. The volume integral term
∫
K F (U) · ∇vdxdy can be computed either exactly or

by a numerical quadrature with sufficiently high order of accuracy. The line integral in

(2.3) can also be discretized by a Gaussian quadrature with sufficiently high accuracy,

that is ∫

eiK

F (U) · ~nivds ≈ |eiK |
q∑

β=1

ωβF (U(Gi,β , t))~niv(Gi,β), (2.4)

where q (= k + 1) is the number of Gaussian quadrature points. Since the numer-

ical solution Uh is discontinuous on the interface between two elements, the flux

F (U(Gi,β , t))~ni must be replaced by a numerical flux function F̂ (U−(Gi,β), U
+(Gi,β), ~ni),

which depends on both the inner- and outer-trace of Uh on ∂K, and the unit outward

normal vector ~ne of edge e. In this study, a modified robust HLLC numerical flux named

as HLLC-HLL flux in [19] is used as the approximate Riemann solver. It should be em-

phasized that the choice of the numerical flux function is independent of the finite

element spaces employed here.

To complete the definition of the RKDG method, the following third-order total

variation diminishing (TVD) Runge-Kutta time discretization [25] is used to solve the

semi-discrete form (2.3), that is

u(1) = un +△tL(un, tn),

u(2) = 3
4u

n + 1
4u

(1) + 1
4△tL(u(1), tn +△t),

un+1 = 1
3u

n + 2
3u

(2) + 2
3△tL(u(2), tn + 1

2△t),

(2.5)

where L denotes the spatial discretization. For unsteady problems, global time steps are

used in Runge-Kutta method, which are equal to the smallest local time step calculated

by local maximum characteristic speed and the local cell size at each time level, which

can be formulated by

∆tlocal = CFL
dxdy

(|u|+ a)dy + (|v|+ a)dx
. (2.6)
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Here, a denotes the local sound speed; dx and dy denote the cell length.

2.1.2. h-adaptive RKDG method

In fact, for h-adaptive Cartesian grid RKDG method, apart from the appearance of

hanging cell, there is no main difference from general RKDG method. The detailed

procedure has been reported in our recent paper [12]. Cartesian grid in conjunction

with tree data structure is a natural choice for solution adaptive grids. In this work, we

use a generalized binary tree (e.g., quad-tree in 2D, octree in 3D, etc.) data structure.

We do not allow any cells with side length ratio > 2 or < 0.5 to be neighbours. This

restriction results in what is known as a balanced tree [26,27].

For the RKDG method, if a local basis of P k is given and denoted as v
(K)
j (x, y)

for j = 0, · · · , Qk in cell element K, then, numerical solution Uh(x, y, t) ∈ Vh can be

expressed as

Uh(x, y, t)|K =

Qk∑

j=0

U
(j)
K (t)v

(K)
j (x, y), (2.7)

where U
(j)
K (t) (j = 0, · · ·Qk) are the degrees of freedom. Commonly, the local orthog-

onal basis functions are adopted during the implementation and numerical calculation

of RKDG method, which are

1, φ1, φ2, φ
2
1 −

1

3
, φ1φ2, φ

2
2 −

1

3
, · · · ,

inside the rectangular element K = [xK−
1

2

, xK+ 1

2

]× [yK−
1

2

, yK+ 1

2

], and

φ1 =
x− xK
△xK/2

, φ2 =
y − yK
△yK/2

,

where (xK , yK) is the centre of rectangle K, △xK and △yK are lengths of K ’s sides in

the direction of x and y, respectively. Obviously, U
(0)
K (t) is the cell average of Uh over

K.

In order to retain the approximation accuracy and the local conservation character,

a L2 projection approach is used to obtain the new generated grid’s degrees of freedom

[12,28]. Suppose Uh is already known on the mesh Th(tn), and we need to determine

the degrees of freedom U
(j)
K ′ (tn)(j = 0, · · · , Qk) in a new cell K ′ ∈ Th(tn+1). Let U ′

h

denote the L2 projection of Uh, and satisfy the following equation

∫

K ′

U ′

h|K ′v
(K ′)
j (x, y)dxdy =

∫

K ′

Uhv
(K ′)
j (x, y)dxdy, (2.8)

where v
(K ′)
j (x, y) is a local basis of P k in cell element K ′. Substituting (2.7) into (2.8),

we obtain the degrees of freedom in the new generated grid K ′. The implementation

of the adaptive mesh for RKDG method based on P 2 polynomials on each element is

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1416
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:06:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1416
https://www.cambridge.org/core


92 J.-M. Liu et al.

Figure 1: The sketches of coarsening (left) and refinement (right) in the adaptive mesh.

given in our recent paper [12]. Here, we only give the results directly. When four cells

K1,K2,K3,K4 are flagged and coarsened to a new cell K ′ (see the left sketch in Fig.

1), the new degrees of freedom are given by

U
(0)
K ′ = 1

4 (U
(0)
K1

+ U
(0)
K2

+ U
(0)
K3

+ U
(0)
K4

),

U
(1)
K ′ = 1

8 (U
(1)
K1

+ U
(1)
K2

+ U
(1)
K3

+ U
(1)
K4

) + 3
8(−U

(0)
K1

+ U
(0)
K2

− U
(0)
K3

+ U
(0)
K4

),

U
(2)
K ′ = 1

8 (U
(2)
K1

+ U
(2)
K2

+ U
(2)
K3

+ U
(2)
K4

) + 3
8(−U

(0)
K1

− U
(0)
K2

+ U
(0)
K3

+ U
(0)
K4

),

U
(3)
K ′ = 1

16 (U
(3)
K1

+ U
(3)
K2

+ U
(3)
K3

+ U
(3)
K4

) + 3
16 (−U

(2)
K1

+ U
(2)
K2

− U
(2)
K3

+ U
(2)
K4

)

+ 3
16 (−U

(1)
K1

− U
(1)
K2

+ U
(1)
K3

+ U
(1)
K4

) + 9
16(U

(0)
K1

− U
(0)
K2

− U
(0)
K3

+ U
(0)
K4

),

U
(4)
K ′ = 1

16 (U
(4)
K1

+ U
(4)
K2

+ U
(4)
K3

+ U
(4)
K4

) + 15
32 (−U

(1)
K1

+ U
(1)
K2

− U
(1)
K3

+ U
(1)
K4

),

U
(5)
K ′ = 1

16 (U
(5)
K1

+ U
(5)
K2

+ U
(5)
K3

+ U
(5)
K4

) + 15
32 (−U

(2)
K1

− U
(2)
K2

+ U
(2)
K3

+ U
(2)
K4

).

(2.9)

When a parent cell K is flagged and refined to four child cells K ′

1,K
′

2,K
′

3,K
′

4, (see the

right sketch in Fig. 1), the new degrees of freedom can be defined as

U
(0)
K ′

i
= U

(0)
K + aiU

(1)
K + biU

(2)
K + aibiU

(3)
K ,

U
(1)
K ′

i
= 1

2U
(1)
K + (−1)iaibiU

(3)
K + aiU

(4)
K ,

U
(2)
K ′

i
= 1

2U
(1)
K + (−1)i|aibi|U (3)

K + biU
(5)
K ,

U
(3)
K ′

i
= 1

4U
(3)
K , U

(4)
K ′

i
= 1

4U
(4)
K , U

(5)
K ′

i
= 1

4U
(5)
K ,

(2.10)

where

ai = (−1)i
1

2
, b1 = b2 = −1

2
, b3 = b4 =

1

2
(i = 1, 2, 3, 4).

It is noted that in the process of the grid refinement the cell averages in (2.10) for

some physical variables, such as density and pressure, might appear to be negative. In

this case, the cell averages of the new generated child cells are set to equal to the ones

of their parents which doesn’t destroy local mass conservation, and other moments of

U
(j)
K ′ (t) (j = 1, · · ·Qk) are still calculated by the L2 projection of (2.8).
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2.2. HLLC-HLL numerical flux

In general, RKDG methods are in favour of Lax-Friedrichs flux [13, 14, 16, 20–24].

However, RKDG/Lax-Friedrichs flux is too dissipative for flows, such as turbulence

flows with strong shocks computed in direct numerical simulations (DNS) and large

eddy simulations (LES) [17]. In general, Harten-Lax-van Leer contact (HLLC) flux has

smaller dissipation than Lax-Friedrichs flux [29, 30]. However, it should be noted that

original HLLC flux may produce shock instabilities in the vicinity of strong shocks [19].

Recently, using finite volume method with weighted average flux, Kim et al. [19] pre-

sented a robust HLLC flux named as HLLC-HLL flux to resolve these instabilities, which

combined the HLLC and Harten-Lax-van Leer (HLL) schemes in a single framework

with a switching function. In this study, we follow the idea of the switching function

proposed in [19] and use the modified HLLC approximate Riemann solver (HLLC-HLL)

as the numerical flux to remedy the numerical shock instabilities.

The HLL Riemann solver [29, 31] assumes a single constant state between two

nonlinear waves, according to the reconstructed quantities - termed the left (l) and

right (r) on the cell face, and the single constant state vector can be defined as

UHLL =
SrUr − SlUl + Fl − Fr

Sr − Sl
, (2.11)

where Sl is the smallest wave speed and Sr is the largest wave speed [32]. The HLL

Riemann solver can be written as

F̂HLL =
SrFl − SlFr + SrSl(Ur − Ul)

Sr − Sl
. (2.12)

Clearly, the original HLLC flux [29, 30] is a modification of the HLL scheme wherein

the missing contacts and shear waves are resolved, which is given by

F̂HLLC =





Fl, 0 < Sl

F∗l = Fl + Sl(U∗l − Ul), Sl ≤ 0 ≤ S∗

F∗r = Fr + Sr(U∗r − Ur), S∗ ≤ 0 ≤ Sr

Fr, 0 ≥ Sr,

(2.13)

where U∗l and U∗r are the conserved variable vectors in the star region separated by

the contact, which are defined as

U∗k = ρk

(
Sk − unk
Sk − S∗

)



1
S∗

utk

Ek + (S∗ − unk)
[
S∗ +

pk
ρk(Sk−unk

]


 , k = l or r, (2.14)
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where the subscripts n and t represent the normal and tangential velocity components,

and S∗ is the middle wave speed. F∗l and F∗r are obtained by applying Rankine-

Hugoniot conditions across each wave [29, 30]. Because the HLL flux assumes a two-

wave system, F∗l and F∗r are the same as HLL flux given in (2.12).

In order to cure the shock instability in the vicinity of strong shocks, Kim et al. [19]

introduced a switching function f , and the data of states U∗l and U∗r are replaced by

Unew
∗l and Unew

∗r as follows

Unew
∗l = f · U∗l + (1− f) · UHLL,

Unew
∗r = f · U∗r + (1− f) · UHLL.

(2.15)

The function f has a value of 0 or 1. Then the left and right fluxes F∗l and F∗r of (2.13)

in the star region are defined by newly obtained data of states Unew
∗l and Unew

∗r as

Fnew
∗l = Fl + Sl(U

new
∗l − Ul),

Fnew
∗r = Fr + Sr(U

new
∗r − Ur).

(2.16)

In order to define the switching function f , we use a simple shock indicator fp :

fp =

{
1, if |pr − pl| > α|unr − unl|

√
γρlpl or |pr − pl| > α|unr − unl|

√
γρrpr

0, otherwise
(2.17)

presented in [33] to identify a shock wave. α is a constant, and is chosen as α = 0.3
in all calculations. The switching function f is only employed when there is a strong

shock, that is [19]

if fp = 1, f =





1.0, if Ml > 1.0 and Mr > 1.0

1.0, if Ml < 1.0 and Mr < 1.0

0.0, otherwise

(2.18)

where Ml and Mr are local Mach numbers at the left and right cell face, respectively.

In this way, when the function f has a value 0, the HLLC-HLL scheme will be switched

to the HLL scheme. Furthermore, the HLLC-HLL flux is a positivity preserving flux. In

fact, both HLL and HLLC fluxes are positivity-preserving [13,31,32]. As a consequence,

the HLLC-HLL flux is a positivity preserving flux.

2.3. Discontinuous detector

If there are strong discontinuities in an approximate solution, oscillations may occur

or even the method may break down. To enhance the stability of the method and elim-

inate possible spurious oscillations in the approximate solution, some kinds of limiting

must be added during the time evolution. Unfortunately, most of limiters frequently
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identify regions near smooth extrema as requiring limiting and this typically results

in a reduction of the optimal high-order convergence rate. In this study, discontinu-

ity detector introduced by Krivodonova et al. in [34] is used to distinguish regions

where solutions are smooth or discontinuous. With such knowledge, limiting would

only be used near discontinuities, hence, high-order accuracy for the solution would be

preserved in smooth regions.

The discontinuity detector works in the following way. First partition the cell bound-

ary ∂K into two portions ∂K− and ∂K+, where the flow is into (V · ~n < 0, ~n is the

normal vector to ∂K) and out of (V ·~n > 0) cell K, respectively. Then the discontinuity

detector is defined as

IK =

∣∣∫
∂K−(UK − UnbK)ds

∣∣
h(k+1)/2 |∂K−| ‖UK‖ , (2.19)

and if IK > 1, UK is discontinuous; otherwise, UK is smooth. Note that here h is the

radius of the circumscribed circle in element K, and ‖UK‖ is a maximum norm based

on local solution maximum at integration points. Considering its abilities both for

the shock and the contact discontinuity, we use entropy as the discontinuity detection

variable for Euler equations [34]. Furthermore, a local slope limiting named as TVB

limier introduced in [22,23] is used near the discontinuity region. In the original TVB

limiter, TVB limiter constant M is taken to prohibit the degeneracy of accuracy at the

smooth extrema and make the resulting RKDG scheme retains its optimal accuracy.

The TVB limiter will not destroy accuracy for large enough M , see [22, 23] for more

details of the TVB limiter. In this study, we first use a discontinuity detector introduced

to distinguish regions where solutions are smooth or discontinuous, then we use the

TVB limiter at these cells which have been detected as discontinuous cells. In the

present study, except the special instructions, M = 50 is used in all examples. For

uniform grids, there are no trouble in the limiting procedure, however, for h-adaptive

Cartesian grid, the appearances of hanging nodes would make some neighbours not

real cells with same refinement levels, for the detailed descriptions, which can refer to

our recent paper [12].

2.4. Positivity-preserving method

The solutions of the density and the pressure computed by any numerical meth-

ods should be positive. However, for strong shocks and through different geometries,

numerical solutions may produce negative pressures or densities. In this section, we

will develop a positivity-preserving method and implement it with h-adaptive Cartesian

grid RKDG methods.

Positivity limiters are constructed based on the observation of Jensen inequality.

Because the pressure p is a concave function of the state variables. For

U1 = [ρ1, ρ1u1, ρ1v1, ρ1E1]
T , U2 = [ρ2, ρ2u2, ρ2v2, ρ2E2]

T ,
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Jensen inequality [16] implies

p(sU1 + (1− s)U2) ≥ sp(U1) + (1− s)p(U2). (2.20)

for every 0 ≤ s ≤ 1.

Based on certain Gauss-Lobatto quadratures and positivity preserving flux, in order

to preserve the positivity of density and pressure fields in numerical calculations, a

limiting procedure under a CFL-like condition [17, 36] presented by Zhang and Shu

[13–15] and simplified by Wang et al. [16] is developed in limiting the solution with

positivity-preserving flux and the TVB limiter.

Given the DG polynomials

UK(x, y) = [ρK(x, y), (ρu)K (x, y), (ρv)K (x, y), (ρE)K(x, y)]T

with its cell average U
n
K = [ρnK , ρunK , ρvnK , ρE

n
K ]T and the assumption of the positive

cell averages of the density and pressure at n-th time step, the first step is to limit

the coefficients for the density field and then the second step is to limit the pressure

and enforce the positivity of the pressure. Here the assumption for the cell averages

of the density and pressure are positive at n-th time step. This procedure is accom-

plished by setting a fixed small value ǫ, for example, ǫ = 10−13. Here, based on the

positivity-preserving limiter under unstructured grid in [15], we use the improved pres-

sure positivity-preserving limiter [16] to give a simple algorithm as follows:

• In each cell, modify the density first:

– if ρnK ≥ ǫ, then replace ρK(x, y) by

ρ̂K(x, y) = θ1(ρK(x, y)− ρnK) + ρnK , θ1 = min

(∣∣∣∣
ρnK − ǫ

ρnK − ρmin

∣∣∣∣ , 1
)
,

and set

ÛK(x, y) = [ρ̂K(x, y), (ρu)K (x, y), (ρv)K (x, y), (ρE)K(x, y)]T ,

where ρmin is the minimum value of densities looping over the set of the

Gauss-Lobatto quadrature points SK . In practice, for the local orthogonal

bases (2.7), the final degrees of freedom U
(j)
K , (j = 1, · · · , Qk) for the

density expansion are only modified by θ1U
(j)
K .

– if ρnK < ǫ, set

ÛK(x, y) = [ρnK , (ρu)K(x, y), (ρv)K (x, y), (ρE)K (x, y)]T .
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• Then modify the pressure:

– if pnK ≥ ǫ, set

θ2 = min
X∈SK

θX , θX =





p(U
n
K)−ǫ

p(U
n
K)−p(ÛK(X))

, if p
(
ÛK(X)

)
< ǫ

1, if p
(
ÛK(X)

)
≥ ǫ

and have the following new vector of polynomials

̂̂
UK(x, y) = θ2(ÛK(x, y)− U

n
K) + U

n
K .

– if pnK < ǫ, set
̂̂
UK(x, y) = U

n
K .

• Replace UK(x, y) by
̂̂
UK(x, y) for each cell K in the DG solutions.

In the original positivity-preserving limiter in [13, 15], a quadratic equation of θX
should be solved, in practice the solved θX cannot guarantee the strict non-negativity

of pressure numerically due to the round off errors for some wild data [16]. The limiter

developed here for pressure is different from the one in paper [16]. Here, in order to

suppress zero pressure, sp(U1) + (1− s)p(U2) in (2.20) is set equal to ǫ to calculate the

value θX . Furthermore, if pnK < ǫ, we directly ask
̂̂
UK(x, y) = U

n
K which is suggested

in [15] for unstructured grid.

2.5. Solution-based mesh refinement on Cartesian grids

Sensors are employed in this paper to detect and localize physical flow phenomena

[35]. Because the divergence of velocity is direction independent and very effective in

locating shock and the gradient of density finds shock and contact discontinuity well,

we consider a sensor combined with divergence of velocity and gradient of density as

follows

τdi = |∇ · V |d
3

2

i , τgi = |∇ρ|d
3

2

i

for i = 1, 2, · · · , Nc, where Nc is the total number of cells and di =
√

|K| (|K| is the

cell volume). The standard deviation of both parameters are computed as

σd =

√√√√√
Nc∑
i=1

τ2di

Nc
, σg =

√√√√√
Nc∑
i=1

τ2gi

Nc
.

A cell is flagged for refinement or coarsening if one of two possible conditions hold:
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(a) if either τdi > ω1σd or τgi > ω2σg, the cell is flagged for refinement

(b) if both τdi < ω3σd and τgi < ω4σg the cell is flagged for coarsening

where ωl (l = 1, 2, 3, 4) are adjustable coefficients based on different problems. ω1, ω2

can be chosen between 1.0 ∼ 1.5 and ω3, ω4 can be chosen between 0.1 ∼ 0.4. In our

tests, we set ω1 = ω2 = 1.2 and ω3 = ω4 = 0.3.

2.6. Boundary treatment

In order to implement the developed numerical method to simulate the flow over

arbitrary complex solid bodies on Cartesian grid, the boundary cut-cell intersected by

the solid surface must be treated specifically. In this study, the ghost cell immersed

boundary method is used. During the process, we need to proceed by identifying cells

whose centers are inside the solid, and then name them as the ghost cells. Solid cells

can be identified by ray-tracing approach. Actually, we only need to identify the closest

row of solid cells near the body surface as the ghost cells (gc), because the stencil

of RKDG is compact and demand only the nearest neighbour cells, which is shown

in Fig. 2. It is easy to derive a numerical scheme that allows us to calculate the

value of each variable at the ghost cell center such that the boundary conditions on the

immersed boundary are satisfied. Here, we propose the following equations to be used

to calculate the values on the ghost cells for two dimensional inviscid flow

pgc = prp − ρrp
V 2

~trp

R ∆n,

ρgc = ρrp, V~tgc = V~trp,

V~ngc = − δg
δr
V~nrp,

(2.21)

where R is the local radius of curvature of the wall; V~t and V~n are the two velocity

components on tangential and normal to the body surface, respectively; rp denotes

the reference point chosen along the normal direction to the body surface from the

ghost cell (gc; see Fig. 2); ∆n = δg + δr indicates the distance between the rp and

gc; and δg and δr denote the distances from the ghost point gc and the reference point

rp to the wall, respectively. In the current study, δr is set to the length of ghost cell

diagonal. Clearly, the nonpenetration boundary conditions are satisfied automatically.

Instead of utilizing image point as shown in our recent paper [12], we use reference

point to set the boundary, in which the reference point can be located in a fluid cell.

Therefore, we can directly use the cell solution polynomial of DG finite element space

as the interpolation formula to obtain the value at the reference point. That is an

advantage of DG method. In the finite volume method or finite difference method,

an interpolation must be set up to calculate the values at the reference point. For

instance, based on the finite volume method, in the paper [37], the primitive variables

at a reference point are interpolated from the primitive variables of the three closest

neighbor cell centers using the linear interpolation. However, if an image point is used
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Figure 2: 2D schematic describing ghost cell method used in the current solver.

in DG method, a situation may be encountered where the image point may locate in

the ghost cell itself. In this situation, there is no ready-made polynomial to interpolate

the value at the image point.

In order to test the approximated accuracy, we compare the reference point method

(2.21) with the image point method (with a change of rp to the image point of ip in the

equation (2.21)) by a subsonic flow at Mach number 0.38 around a circular cylinder

with radius r = 0.5. As the setting in the paper [12], we consider the same background

grid with three different initial mesh refinement numbers (Nr = 1, 2, 3). As a sample,

the local view of the computational grid at Nr = 3 and the Mach contours are shown in

Fig. 3. From the Table 1, we can find the entropy errors by the present reference point

method (2.21) are smaller than the ones by the image point method.

Table 1: L∞/L2 errors in entropy for the circular cylinder.

Image point method Reference point method

Nr L∞(εent) L2(εent) L∞(εent) L2(εent)

1 8.9412e-03 4.4780e-03 3.4121e-03 1.4635e-03

2 4.5468e-03 1.6233e-03 1.2699e-03 4.2361e-04

3 2.2591e-03 5.4040e-04 3.7106e-04 1.2013e-04

3. Numerical examples

In this section, numerical experiments are carried out to demonstrate the effec-

tiveness of adaptive Cartesian grid RKDG method with positivity-preserving method

developed in this paper. For these typical numerical test cases, the original high-order

RKDG methods may fail to preserve the positivity of density or pressure. Here, the
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Figure 3: Local view of the computational grid at Nr = 3 and the Mach contours.
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Figure 4: Density and pressure contour images with positivity-preserving limiter for Sedov blast wave.

h-adaptive RKDG method with P 2 polynomial is used in each cell for all numerical test

examples. The testes here use a smaller CFL number 0.034 to satisfy the limited CFL

number [13,15].

3.1. Two-dimensional Sedov blast wave

The first example is a two-dimensional Sedov problem which was studied in [13,

15,16], in which the computation is performed on the domain [−1.1, 1.1] × [−1.1, 1.1].
In this case, a high pressure region occupies in the computational cells near the origin.
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Figure 5: Density and pressure contour images with positivity-preserving limiter for Sedov blast wave,
solution adaptive Cartesian grid: a base grid of 80×80 with two levels of mesh refinement, and the position
operated by the posivity-preserving limiter for the TVB limiter M = 50.

An initial condition is given by

(ρ, u, v, p) =

{
(1, 0, 0, 4 × 10−13) if |x| > ∆x, |y| > ∆y

(1, 0, 0, 9.79264
∆x∆y × 104) otherwise

where ∆x = ∆y = 1.1/160. A final time is t = 1.0 × 10−3. An outflow condition is also

applied on the computational boundary.

In this special case, we first use a uniform grid and set ∆x = ∆y = 1.1/160 with

TVB limiter parameter M = 8000. Without the positivity limiter, the DG scheme is

blown up for such a large value of M . However, if the positivity-preserving method is
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Figure 6: Density profile along y = 0.

used to simulate this case, the computational results are satisfied and are compatible

with ones presented in [13, 15, 16]. Fig. 4 shows the contour images of the density

and pressure with positivity-preserving limiter for Sedov blast wave. Furthermore,

the example is also tested with h-adaptive Cartesian grid RKDG method, in which a

base grid of 80 × 80 is used with two levels of mesh refinements. Fig. 5 shows the

contour images of density and pressure with positivity-preserving limiter for Sedov

blast wave using the adaptive Cartesian grids with two levels of mesh refinement. The

computational results demonstrate that the adaptive grid method presented in this

paper does not make the solutions blown up even when the mesh grids are refined with

a large value of M . That is clearly shown in Fig. 6, where the numerical density agrees

well with the exact solution. In order to demonstrate whether the presented schemes

are positivity preserving, the calculation at the TVB limiter M = 50 is also tested. If

the positivity preserving limiter is not used, for M = 50, the solution evolution broke

up and the negative pressure or density appeared. In this test, the position operated

by the posivity-preserving limiter for the TVB limiter M = 50 at time t = 1.0 × 10−3 is

shown in Fig. 5(d).

3.2. High Mach number astrophysical jet

The second example is a high Mach number astrophysical jet problem, which was

used as an example in [13,15,36].

In this example a Mach 80 jet problem with γ = 5/3 is computed. The computation

is performed on the domain [0, 2] × [−0.5, 0.5], which is full of the ambient gas with

(ρ, u, v, p) = (5, 0, 0, 0.4127) initially. The boundary conditions for the right, the top

and the bottom are outflow. For the left boundary, (ρ, u, v, p) = (5, 30, 0, 0.4127) if
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Figure 7: Simulation of Mach 80 jet with a simple positivity-preserving limiter. Scales are logarithmic.

y ∈ [−0.05, 0.05] and (ρ, u, v, p) = (5, 0, 0, 0.4127) otherwise. The terminal time is 0.07.

The computation is performed with ∆x = 2.2
150 and ∆y = 1.1

80 combined with two levels

solution refinements. TVB limiter parameter is M = 10000. Without the positivity-

preserving limiter, the DG scheme will blow up for such large value of M . Fig. 7 shows

the contour images for the density, pressure and temperature. One can observe that

these results are in very good agreement with these in [13, 15]. Clearly, the solutions

with the adaptive Cartesian grid method developed in this paper capture well with the

flow character as shown in Fig. 7(d).

3.3. A shock wave diffracts at a convex corner

A shock wave diffracting at a sharp convex corner is a benchmark problem in com-

putational fluid dynamics. When the Mach number of the shock wave becomes larger,

low density or pressure may appear [15].

Zhang and Shu in [15], used positivity-preserving high order discontinuous Galerkin

schemes on triangular meshes to simulate a Mach 10 shock diffracting at a 120o convex

corner. In this paper, we use the same example, in which an initial condition is a pure

right-moving shock of Mach=10, initially located at x = 3.4 and 6 ≤ y ≤ 11, mov-
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Figure 8: A shock wave diffracts at a convex corner with a simple positivity-preserving limiter at time
t = 0.9.

ing into undisturbed air ahead of the shock with a density of ρ = 1.4 and pressure of

p = 1.0. The terminal time is t = 0.9. The computation is performed at ∆x = 13.4
180 and

∆y = 11.4
154 with two levels solution refinements.

In this geometry, a special procedure will be encountered, which is the problem of

multi-valued ghost points. It is often found near unresolved thin surfaces and sharp

corners, such as the cases at the sharp trailing edge of an airfoil or near the apex of

triangle or near the convex corner as shown in Fig. 8. At sharp corners, one cell centre

inside the geometry may be the ghost cell center for one side of the corner surface, as

well as for the other sides. Also, a ghost cell center pertaining to one side of a corner

surface may be located inside the flow field on the other side of the corner. To handle

this case, we firstly find the fluid cells, in which the multiple valued ghost points are
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Figure 9: Plots of density and pressure along the lines: x = 6 and y = 8.5 at time t = 0.9.

needed to advance the solution process, and then set flags. Generally speaking, the

ghost boundary conditions are given before time evolution. In this special situation,

the multiple valued ghost points are evaluated during the time evolution. The rest

fluid cells are computed as usual. The advantage of this approach is that there is no

need to allocate new memory to save the values on the multiple valued ghost points.

For this problem, the density and pressure in the region across the convex corner

will drop close to zero. The high order DG method without the positivity-preserving

limiter may blow up the solutions [15]. However, when the adaptive grid techniques

developed in this paper are implemented, the numerical solutions look very good and

stable as shown in Fig. 8. When right-moving shock passes through the sharp con-

vex corner, many complicated flow characteristics, such as contact discontinuity and

rarefactional wave, will appear. These flow characteristics can be apparently found in

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.m1416
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:06:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.m1416
https://www.cambridge.org/core


106 J.-M. Liu et al.

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

DEN

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

(a) Density at t = 0.08

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

(b) Grid at t = 0.08

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

DEN

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

(c) Density at t = 0.125

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

(d) Grid at t = 0.125

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

DEN

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

(e) Density at t = 0.245

X

Y

-0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

(f) Grid at t = 0.245

Figure 10: A shock wave pass a finite wedge with a simple positivity-preserving limiter at different time.

Figs. 8(a) and 8(b). That is justified by the line plots of Figs. 9(a) and 9(b) for the den-

sity and pressure along a line at x = 6, which demonstrate that solutions capture well
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Figure 11: Plots of density and pressure along the lines: x = 2.25 and y = 1 at time t = 0.245.

for the contact discontinuities. Furthermore, Fig. 8(c) shows that the adaptive sensors

defined in Section 3 is effective to capture the contact discontinuities and shocks. The

line plots of the density and pressure along a line at y = 8.5 are also plotted in Figures

9(c) and 9(d), where we can apparently find that there are a weak shock, a contact dis-

continuity and a strong shock, respectively. However, the weak shock and the contact

discontinuity are too dissipate and have not being sharply captured by the numerical

solution given in [15] with triangular elements (Mesh size is 0.05).

3.4. Schardins problem: shock waves pass a finite wedge

In order to show the ability of the present h-adaptive RKDG method for complex

geometry, a Mach 10 shock passing a triangle is considered. In this example, the initial

condition is a pure right-moving shock of Mach=10, initially located at x = 0.2, moving
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into undisturbed air ahead of the shock with a density of ρ = 1.4 and pressure of

p = 1.0. The set up for this test case is identical to the test case presented in [15]. It

is interesting to note that in this example the density and the pressure in the region

behind the triangle will drop close to zero after the diffracting of the shock, which will

cause the solution blown up for most of high order schemes due to the appearance

of negative density and pressure [15]. In this example, the h-adaptive RKDG method

on Cartesian grid with positivity-preserving techniques is implemented with ∆x = 5.6
120

and ∆y = 4.4
60 combined with four levels solution refinements. The density contours

and the adaptive grids at different times are illustrated in Fig. 10. These figures expose

some complicated flow characteristics, such as contact discontinuities and rarefactional

waves, after a right-moving shock around a finite wedge. That is justified by the line

plots of Fig. 11 for the density and pressure along lines at x = 2.25 and y = 1, which is

also demonstrates the method is capturing well with the contact discontinuities. One

can observe that these results are in very good agreement with these in [15].

4. Conclusion

The h-adaptive RKDG method on Cartesian grid is developed in this paper to sim-

ulate large moving shocks. In order to suppress the failure of preserving positivity

of density or pressure, a positivity-preserving limiter coupled with a modified robust

HLLC flux is developed. Furthermore, in this paper, a h-adaptive Cartesian grid RKDG

method with ghost cell immersed boundary method has been successfully developed

to simulate flows through complex geometries. A reference point boundary treatment

technique is presented, which can assure that the reference point locates in a fluid cell.

Therefore, the cell solution polynomial of DG finite element space can be directly used

as the interpolation formula to obtain the value at the reference point. Numerical ex-

amples show that the results are well matched with ones in the literature. The proposed

method that has the potential to be extended to three dimensional DG discretizations,

which will be our future study.
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