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Abstract. The fourth order average vector field (AVF) method is applied to solve
the “Good” Boussinesq equation. The semi-discrete system of the “good” Boussi-

nesq equation obtained by the pseudo-spectral method in spatial variable, which is a

classical finite dimensional Hamiltonian system, is discretizated by the fourth order
average vector field method. Thus, a new high order energy conservation scheme of

the “good” Boussinesq equation is obtained. Numerical experiments confirm that the

new high order scheme can preserve the discrete energy of the “good” Boussinesq
equation exactly and simulate evolution of different solitary waves well.
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1. Introduction

The “good” Boussinesq (GB) equation provides a balance between dispersion and

nonlinearity, which leads to the existence of soliton solutions, similar to the Korteweg-

de Vries (KdV) equation and cubic nonlinear Schrödinger equation [1,19]. It describes

shallow water waves propagating in both directions and possesses a highly complicated

mechanism of solitary waves interaction and differs from other nonlinear wave equa-

tions. The solitary waves exist only for a finite range of velocities, they can merge into

a single soliton, and they interact with each other to give rise to the so-called anti-

solitons [6,12,13,15] and the references therein. The general form of the GB equation

can be written as

utt − uxx + uxxxx − (u2)xx = 0, (1.1)

in the region D = {(x, t) ∈ R
2 : −L/2 ≤ x ≤ L/2, t ≥ 0}, subject to the initial

conditions

u(x, 0) = f(x), ut(x, 0) = g(x), (1.2)
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and the boundary conditions

u(−L/2, t) = 0, u(L/2, t) = 0. (1.3)

GB equation (1.1) possess the following two global conservation laws with the

boundary conditions (1.3), namely global momentum conservation law

M(t) =

∫

(vux)dx = M(0), (1.4)

and energy conservation law

E(t) =
1

2

∫

(

v2 + u2 +
2

3
u3 + u2x

)

dx = E(0), (1.5)

where vx = ut.

Numerous numerical methods have been proposed to solve the GB equation (1.1).

Frutos et al. [6]. developed the pseudo-spectral method of the GB equation; Soliton

and anti-soliton interactions were studied by Manoranjan using the Galerkin-Petrov

method [12, 13]; Ortega and Sanz-Serna [15] investigated the nonlinear stability and

convergence behavior of numerical solutions; E-Zoheiry [20] studied the solitary wave

interactions of the GB equation using finite-difference schemes; Huang et al. [7] con-

structed the multi-symplectic scheme of the GB equation; Aydin and Karasözen [2]

constructed second order symplectic and multi-symplectic integrators for the GB equa-

tion using the two-stage Lobatto IIIA-IIIB partitioned Runge-Kutta method; Hu and

Deng [8] proposed the implicit multi-symplectic scheme of the generalized Boussinesq

equation. Chen [4] investigated the multi-symplectic Fourier pseudo-spectral method

of the GB equation. Zeng [21] developed a new fifteen-point difference scheme which

is equivalent to the multi-symplectic Preissman integrator.

Hamiltonian system, which has the energy conservation property, is one of the most

important dynamical system. It is applied widely in the structural biology, pharmacol-

ogy, semi-conductor, super-conducting, plasma, celestial mechanics, material, and par-

tial differential equation, and so on. Feng and his research group [11, 16] developed

symplectic geometric algorithms of the Hamiltonian system. Bridges and Reich devel-

oped the symplectic geometric algorithms to the multi-symplectic geometric algorithms

of the partial differential equations [3]. Symplectic and multi-symplectic geometric al-

gorithms [3,9,11,16,18], which have a long accurately computing capability, have been

used widely in astronomy, molecular mechanics and quantum mechanics, electromag-

netism, optics and so on. However, the symplectic and multisymplectic method only

approximately preserve the energy of the Hamiltonian system (they exactly preserve a

modified Hamiltonian) [9].

Recently, Quispel et al. [17] and McLachlan et al. [14] proposed the second order

averaged vector field (AVF) method, which can preserve the energy of the Hamiltonian
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system exactly.

zn+1 − zn

τ

=

∫ 1

0
f((1− ξ)zn + ξzn+1)dξ = S

∫ 1

0
∇H((1− ξ)zn + ξzn+1)dξ. (1.6)

where S is the constant,orthogonal and skew-symmetric matrix and H(z) : R
2d →

R is usually called as Hamiltonian energy. The second order AVF method (1.6) has

been successfully applied to solve the energy conservation partial differential equation

[5]. Motivated by the modified vector field of integral-preserving methods which can

preserve the original integral, the fourth order AVF scheme [17] has been derived by

using the modified vector field for the second order AVF scheme (1.6), as following

zn+1 − zn

τ
=

∫ 1

0
f((1−ξ)zn+ξzn+1)dξ−

1

12
τ2SHSH

∫ 1

0
f((1−ξ)zn+ξzn+1)dξ, (1.7)

where Hij = ∂2H
∂zi∂zj

(
zn+1

j
+zn

j

2 ), zk is the kth component of the vector z. In this paper,

we apply the fourth order AVF method to construct the high order energy preserving

scheme of the GB equation.

This paper is organized as follows. In section 2, a new high order energy preserving

scheme of the GB equation is obtained by the pseudo-spectral method in spatial variable

and the fourth order AVF method in time variable. In section 3, we investigate the new

scheme by simulating evolution of different solitary waves. Finally conclusions are

given in section 4.

2. High order energy preserving scheme of the GB equation

The GB equation (1.1) can be expressed in the infinite dimensional Hamiltonian

system of the form
dz

dt
= J

δH(z)

δz
, J =

[

0 ∂x
∂x 0

]

. (2.1)

where z = [u, v]T ,∂x is the first order partial derivative and the Hamiltonian function is

H(z) =
1

2

∫

(v2 + u2 +
2

3
u3 + u2x)dx. (2.2)

We solve the Hamiltonian system (2.1) by the pseudo-spectral method in spatial vari-

able and fourth order AVF method in time variable.

Supposing the spatial domain Ω = [−L/2, L/2]. The interval Ω is divided into N
equal subinterval with grid spacing h = L/N , where the integer N is an even number.

The spatial collocation nodes are given by xj = −L/2+ hj, j = 0, · · · , N − 1. Denoting

uj and vj to the approximation to u(xj , t) and v(xj , t),respectively. Defining

SN =
{

gj(x); j = 0, · · · , N − 1
}

, (2.3)
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as the interpolation space, where gj(x) is a trigonometric polynomial of degree N/2
given explicitly by

gj(x) =
1

N

N/2
∑

l=−N/2

1

cl
eilµ(x−xj), (2.4)

where cl = 1(|l| 6= N/2), c
−N/2 = cN/2 = 2, µ = 2π

L .

For any function u(x, t) and v(x, t) ∈ C0(Ω), the interpolation operator IN is defined

as follow [4]

INu(x, t) =
N−1
∑

l=0

ulgl(x), INv(x, t) =
N−1
∑

l=0

vlgl(x). (2.5)

The trigonometric interpolation operator IN at the collocation points xj satisfies

INu(x, t)|x=xj
=

N−1
∑

l=0

ulgl(xj) = uj, 0 ≤ j ≤ N − 1, (2.6)

INv(x, t)|x=xj
=

N−1
∑

l=0

vlgl(xj) = vj , 0 ≤ j ≤ N − 1. (2.7)

Suppose u = (u0, u1, · · · , uN−1)
T , v = (v0, v1, · · · , vN−1)

T and define

(Dk)j,l =
dkgl(xj)

dxk
, (2.8)

where Dk is the k order Fourier differential matrix. The value for the derivatives
d
dxINu(x, t) and d2

dx2 INu(x, t) at the collocation points xj are obtained in terms of the

value of uj , i.e

d

dx
INu(x, t)|x=xj

=
N−1
∑

l=0

ul
dgl(xj)

dx
= (D1u)j , (2.9)

d2

dx2
INu(x, t)|x=xj

=

N−1
∑

l=0

ul
d2gl(xj)

dx2
= (D2u)j . (2.10)

Similarly, we can get

d

dx
INv(x, t)|x=xj

= (D1v)j ,
d2

dx2
INv(x, t)|x=xj

= (D2v)j , (2.11)

where D1 and D2 represent the first-order and second-order Fourier differential matri-

ces with the elements, respectively

(D1)i,j =







1

2
µ(−1)i+j cot(µ

xi − xj
2

), i 6= j

0. i = j
(2.12)
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(D2)i,j =















1

2
µ2(−1)i+j+1 1

sin2(µ
xi−xj

2 )
, i 6= j

− µ2N
2 + 2

12
. i = j

(2.13)

The semi-discrete Fourier pseud-spectral approximation for system (2.1) is con-

structed as follow

((INu(x, t))t − ∂x(INv(x, t)))|x=xj
= 0, (2.14)

((INv(x, t))t + ∂x(INu(x, t))xx − ∂x(INu(x, t) + IN (u(x, t))2))|x=xj
= 0. (2.15)

Using the Fourier differential matrix (2.12)-(2.13) to Eqs. (2.14)-(2.15) and approxi-

mating ∂x by first-order Fourier differential matrix D1, we can get

duj
dt

= (D1v)j , (2.16)

dvj
dt

= −(Au)j +
N
∑

l=1

dj,l
(

ul + u2l
)

, (2.17)

where A = D1D2 and dl,k is the lth row and kth column element of the matrix D1.

The semi-discrete Fourier pseud-spectral approximation of Eqs. (2.16,2.17) is equiv-

alent to
dZ

dt
= f(Z) = J∇H(Z), J =

[

O D1

D1 O

]

. (2.18)

where Z = [uT ,vT ]T and the corresponding discrete Hamiltonian energy function is

H(Z) =
1

2

N−1
∑

j=0

(

v2j + u2j +
2

3
u3j

)

−
1

2
u
TD2u. (2.19)

The semi-discrete Hamiltonian system (2.21) is solved by the fourth order AVF method

(1.7), we can get

Z
n+1 − Z

n

τ

=

∫ 1

0
f
(

(1− ξ)Zn + ξZn+1
)

dξ −
τ2

12
Ĵ 2

∫ 1

0
f
(

(1− ξ)Zn + ξZn+1
)

dξ, (2.20)

where

Ĵ 2 =

[

−D1(A− B) O
O −(A− B)D1

]

.

In the above matrix, B = D1D and D can been expressed as

D =











un+1
1 + un1 0 · · · 0

0 un+1
2 + un2 · · · 0

...
...

. . .
...

0 0 · · · un+1
N + unN











+











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1











. (2.21)
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It can be verified that Eq. (2.20) is equivalent to

un+1
j − unj

τ
=

N
∑

l=1

dj,l

∫ 1

0
((1− ξ)vnl + ξvn+1

l )dξ +
τ2

12

N
∑

l=1

dj,l (2.22)





N
∑

p=1

(al,p − bl,p)

(

N
∑

s=1

dp,s

∫ 1

0

(

(1− ξ)vns + ξvn+1
s

)

dξ

)



 ,

vn+1
j − vnj

τ
=−

N
∑

l=1

aj,l

∫ 1

0

(

(1− ξ)unl + ξun+1
l

)

dξ (2.23)

+

N
∑

l=1

dj,l

∫ 1

0

(

((1− ξ)unl + ξun+1
l ) + ((1− ξ)unl + ξun+1

l )2
)

dξ

+
τ2

12

N
∑

l=1

(aj,l − bj,l) +





N
∑

p=1

dl,p

(

−

N
∑

s=1

ap,s

∫ 1

0

(

(1− ξ)uns + ξun+1
s

)

dξ

)





+
τ2

12

N
∑

l=1

(aj,l − bj,l) +
N
∑

p=1

dl,p

(

N
∑

s=1

dp,s

∫ 1

0
((1 − ξ)uns + ξun+1

s

+ ((1− ξ)uns + ξun+1
s )2)dξ

)

.

The high order energy-preserving scheme (2.22)-(2.23) is equivalent to

un+1
j − unj

τ
(2.24)

=

(

D1(
v
n+1 + v

n

2
)

)

j

+
τ2

12

N
∑

l=1

dj,l





N
∑

p=1

(al,p − bl,p)

(

N
∑

s=1

dp,s

(

vn+1
s + vns

2

)

)



 ,

vn+1
j − vnj

τ
(2.25)

=−

(

A(
u
n+1 + u

n

2
)

)

j

+
N
∑

l=1

dj,l

(

unl + un+1
l

2
+

(unl )
2 + unl u

n+1
l + (un+1

l )2

3

)

+
τ2

12

N
∑

l=1

(aj,l − bj,l)





N
∑

p=1

dl,p

(

−
N
∑

s=1

ap,s(
un+1
s + uns

2
)

)





+
τ2

12

N
∑

l=1

(aj,l − bj,l)

N
∑

p=1

dl,p

(

N
∑

s=1

dp,s

(

uns + un+1
s

2
+

(uns )
2 + unsu

n+1
s + (un+1

s )2

3

)

)

.
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where al,k and bl,k is the lth row and kth column element of the matrices A and B
respectively. Eqs. (2.24)-(2.25) can been written as matrix-vector form




un+1

j
−un

j

τ
vn+1

j
−vn

j

τ



 =

[

D1
vn+vn+1

2

−(Aun+un+1

2 +D1
(un).2+un.∗un+1+(un+1).2

3

]

+
τ2

12

[

D1(A− B) O
O (A− B)D1

]

[

D1
vn+vn+1

2

−(Aun+un+1

2 +D1
(un).2+un.∗un+1+(un+1).2

3

]

.

3. Numerical experiment

In this section, we investigate the high order energy-preserving scheme (2.24)-

(2.25) by simulating evolution of different solitary waves under different initial condi-

tions and comparing the relative discrete energy errors.The energy function of the GB

equation is

En =
1

2

N−1
∑

j=0

(

(vnj )
2 + (unj )

2 +
2

3
(unj )

3 + ((D1u)
n
j )

2

)

. (3.1)

We take the relative discrete energy errors as

RE(t) =

∣

∣

∣

∣

En − E0)

E0

∣

∣

∣

∣

, (3.2)

where E0 is the initial discrete energy and RE(t) is the relative energy errors at t = nτ .

Example 3.1. Firstly, we consider evolution of single solitary wave by choosing the

initial condition

f(x) = −Asech2

(
√

A

6
(x− x0)

)

, (3.3)

v(x, 0) = Ac sech2

(
√

A

6
(x− x0)

)

, (3.4)

where v(x, 0) =
∫ x
−L/2 ut(y, 0)dy = −cu(x, 0), A is the amplitude,c is the velocities. We

take L = 200, N = 300, τ = 0.025, x0 = −40, c =
√

14/15 and boundary condition

u(±L/2, t) = 0.

Fig. 1 shows evolution of single solitary wave at t ∈ [0, 80]. The solitary wave

emerges without any changes in their shapes. The solitary wave can propagate well

at given velocities. Fig. 2 displays the relative energy errors at t ∈ [0, 80]. The energy

errors can be neglected (up to the machine accuracy). From Figs. 1 and 2 we can get

that the high order energy-preserving scheme not only has good numerical performance

in simulating evolution of single solitary wave, but also preserves the discrete energy

of the GB equation exactly.
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0

40

80

−100

0

100
−0.02

0

0.02

0.04

0.06

0.08

0.1

t
x

−
u

Figure 1: Evolution of single solitary wave

at A = 0.1,

0 40 80
0

0.5

1

1.5

2

2.5
x 10

−13

t

R
E

Figure 2: The relative energy errors at A =

0.1.

Example 3.2. Then, we consider the birth of solitary waves by choosing the initial

condition

f(x) = −Asech2

(
√

A

6
(x+ x0)

)

, (3.5)

v(x, 0) = 0, (3.6)

We take L = 200, N = 400, τ = 0.02,x0 = 0 and boundary condition u(±L/2, t) = 0 .

0

30

60

−100
0

100
−0.5

0

0.5

1

1.5

t

x

−
u

Figure 3: Evolution of solitary wave at A =

1.48,

0 30 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−13

t

R
E

Figure 4: The relative energy errors at A =

1.48.

Fig. 3 shows that the numerical solution at t ∈ [0, 60] with amplitude A = 1.48. the

initial profile of the wave is splitted into two pulses and moving in different direction.

The corresponding relative energy error is investigated in Fig. 4.

Fig. 5 shows the numerical solution at A = 1.50. The preservation of the the rel-

ative energy error over time is given in Fig. 6. We can see that the energy of the GB

equation can been preserved exactly. From Figs. 3 and 6, we have noticed that the high

order energy-preserving scheme has good numerical performance in simulating evolu-

tion of solitary waves, which is consistent with the results obtained by the symplectic
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and multi-symplectic method [2]. Moreover, it can preserve the energy conservation

property of the GB equation precisely.

0

22

44−100
0

100

−0.5

0

0.5

1

1.5

t

x

−
u

Figure 5: Evolution of solitary wave at A =

1.50,

0 22 44
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−15

t

R
E

Figure 6: The relative energy errors at A =

1.50.

Example 3.3. Finally, we consider interaction of two solitary waves with the initial

condition

f(x) = −A1sech
2

(
√

A1

6
(x− x01)

)

−A2sech
2

(
√

A2

6
(x− x02)

)

, (3.7)

v(x, 0) = A1c1 sech
2

(
√

A1

6
(x− x01)

)

+A2c2 sech
2

(
√

A2

6
(x− x02)

)

. (3.8)

We take L = 200 and boundary condition u(±L/2, t) = 0.

0

75

150

−100

0

100
−1

0

1

2

t
x

−
u

Figure 7: Interaction of two solitary waves

at A1 = 0.369 and A2 = 0.369 with x
0
1 = 50

and x
0
2 = −50,
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Figure 8: The relative energy errors at A1 =

0.369 and A2 = 0.369 with x
0
1 = 50 and

x
0
2 = −50.

Fig. 7 shows the typical interaction of two solitary waves with equal amplitudes

A1 = A2 = 0.369 and different velocities c1 = 0.86833 and c2 = −0.86833, over
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the time interval 0 ≤ t ≤ 150 with N = 320, τ = 0.1.Two solitary waves initially

located at the positions x01 = 50 and x02 = −50, traveling toward each other, and

colliding. During the collision, the amplitude of the pulse doubled and two waves

leave each other without changing their shape.The numerical results reveal that the

collisions generated no radiation. The relative energy errors of the two solitary waves

is shown in Fig. 8. We note that the relative energy errors of the GB equation can been

preserved exactly (up to the machine accuracy).
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Figure 9: Interaction of two solitary waves

at A1 = 0.3 and A2 = 1.0 with x
0
1 = −80

and x
0
2 = −50,
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Figure 10: The relative energy errors at

A1 = 0.3 and A2 = 1.0 with x
0
1 = −80

and x
0
2 = −50.

Fig. 9 shows the interaction of two solitary waves over the time interval 0 ≤ t ≤ 180
with N = 300, τ = 0.025, which is located at x01 = −80 and x02 = −50 respectively,

moving in the same direction with different velocities c1 = 0.8944 and c2 = 0.5774.

The interaction has taken place and the faster wave interacted and separated from

the slower one and left it behind, which is consistent with the results obtained by the

fourth order finite difference method [10]. In Fig. 10 we track the the energy conserved

quantity during the interaction scenario. Obviously, the high order energy-preserving

scheme can preserve the relative energy error of the GB equation exactly. Moreover,this

type of interactions for the GB equation, which can preserve the energy in the long time,

seems to not been reported in the literatures as authors know.

4. Concluding remarks

In this paper, a new high order energy-preserving scheme of the GB equation is

obtained by the pseudo-spectral method in spatial variable and the fourth order AVF

method in time variable. Numerical results show that the new high order energy-

preserving scheme can well simulate different solitary wave behaviors of the GB equa-

tion in long time and preserve the discrete energy conservation of the GB equation

precisely. Obviously, the high order AVF method give the new choice in simulating the

energy conservation partial differential equation numerically.
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