
Numer. Math. Theor. Meth. Appl. Vol. 8, No. 1, pp. 22-46

doi: 10.4208/nmtma.2015.w10si February 2015

Towards Textbook Efficiency for Parallel

Multigrid

Björn Gmeiner1,∗, Ulrich Rüde2, Holger Stengel3, Christian Waluga1 and
Barbara Wohlmuth1

1 Institute for Numerical Mathematics (M2), Technische Universität München,
Boltzmannstrasse 3, D-85748 Garching b. München, Germany.
2 Department of Computer Science 10, FAU Erlangen-Nürnberg,
Cauerstraße 6, D–91058 Erlangen, Germany.
3 Erlangen Regional Computing Center (RRZE), FAU Erlangen-Nürnberg,

Martensstraße 1, D–91058 Erlangen, Germany.

Received 5 December 2013; Accepted 29 July 2014

Abstract. In this work, we extend Achi Brandt’s notion of textbook multigrid effi-

ciency (TME) to massively parallel algorithms. Using a finite element based geomet-
ric multigrid implementation, we recall the classical view on TME with experiments

for scalar linear equations with constant and varying coefficients as well as linear
systems with saddle-point structure. To extend the idea of TME to the parallel set-

ting, we give a new characterization of a work unit (WU) in an architecture-aware

fashion by taking into account performance modeling techniques. We illustrate our
newly introduced parallel TME measure by large-scale computations, solving prob-

lems with up to 200 billion unknowns on a TOP-10 supercomputer.

AMS subject classifications: 65N55, 68W10

Key words: Multigrid, parallel computing, textbook efficiency, finite element method.

1. Introduction

Asymptotic complexity bounds for iterative solvers that contain unspecified con-

stants provide only heuristic criteria to design efficient solvers [10, Chapter 14]. This

simple observation motivated Brandt to coin the term textbook multigrid efficiency (TME)

to characterize truly fast multigrid algorithms. In [9] he writes

Textbook multigrid efficiency means solving a discrete PDE problem with a

computational effort that is only a small (less than 10) multiple of the opera-

tion count associated with the discretized equations itself.

∗Corresponding author. Email addresses: gmeiner@ma.tum.de (B. Gmeiner), ulrich.ruede@fau.de (U.

Rüde), waluga@ma.tum.de (C. Waluga), wohlmuth@ma.tum.de (B. Wohlmuth)

http://www.global-sci.org/nmtma 22 c©2015 Global-Science Press

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 23

In the context of Brandt’s TME, computational efficiency is evaluated in terms of the

number of floating point operations (FLOPS) that are needed to obtain a solution with a

certain accuracy. To achieve TME, the number of FLOPS to solve the discretized system

must be a small multiple of the FLOPS needed for an application of the discretized

operator. Consequently, the elementary work unit (WU) is defined as the cost of one

such operator application.

Unfortunately on modern architectures, the TME notion falls short in predicting

the performance of an iterative solver since it does not take into account the parallel

efficiency and an architecture-aware algorithm design. Nowadays even multigrid algo-

rithms that are TME efficient are not necessarily fast. Thus there is a need to extend the

TME metric so that it becomes possible to predict the time to solution also on parallel

computer architectures.

The main contribution of our work lies in adapting the TME paradigm to the issues

originating from the ongoing transition to massively parallel multicore systems with

complex communication networks and with a hierarchical memory architecture. On

such modern machines, the simple count of floating point operations of an algorithm

correlates poorly with actual computational cost. In particular, energy consumption

emerges increasingly as the fundamental bottleneck and as the limiting resource of

large scale computing. Since the use of energy is predominantly caused by data move-

ment, the computational cost is strongly affected by moving data. Here data movement

includes parallel communication in a large supercomputer cluster, the communication

between chips and memory modules in a computer node, and also the access of each

processing core to the register banks or cache memory within the chip itself.

In this paper, we focus on linear finite elements (FE) on semi-structured hierar-

chical simplicial meshes. These restrictions yield the advantage that the complex and

computationally expensive logistics of manipulating unstructured grids can be avoided

on the finer levels of the multigrid hierarchy. Our implementation is based on the

Hierarchical Hybrid Grid (HHG) framework [3,6], a geometric multigrid library imple-

mented in C++ and using the MPI message passing system and hybrid programming.

Using HHG, we recently demonstrated that it is possible to solve linear elliptic prob-

lems with more than 1012 unknowns on current TOP 10 supercomputers, using several

100 000 processor cores [18,19]. The efficiency of the framework relies on the system-

atic performance- and architecture- aware co-design of the multigrid algorithm and

its implementation. In particular, the matrix-free design avoids the explicit storage of

the stiffness matrix and thus circumvents the severe efficiency penalty in terms of data

storage and redundant data transport. In the course of our work, we also demonstrate

an enhanced method to deal with variable coefficients in our stencil-based framework.

For illustration, we complement our considerations with large-scale computations.

Before we proceed, let us discuss some related work. Due to the extensive amount

of literature dealing with multigrid methods, we must restrict ourselves to recent con-

tributions on parallel realizations for high-end distributed memory architectures. For

a further discussion of parallelization techniques for multigrid methods, we refer to

[13, 24, 35]. To the authors’ best knowledge, the first parallel multigrid solvers capa-

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

24 B. Gmeiner et al.

ble of solving systems with about a billion degrees of freedom were reported in [1, 3].

In [30] a matrix-free geometric multigrid is presented for solving elliptic partial differ-

ential equations with variable coefficients. Here, FE discretizations defined on octree-

based meshes are used, enabling extreme levels of local refinement. Numerical ex-

periments for the Poisson and linear elasticity operators demonstrate the scalability of

the method; in particular, an elasticity calculation with 8 · 109 unknowns using 32 000

processors is presented. A similar approach is followed in [32], where, an algebraic

multigrid (AMG) method is used as the coarse grid solver. Numerical experiments

for the variable-coefficient Poisson problem are given to demonstrate the scalability of

the method. They demonstrate the solution of a scalar Laplacian on a non-uniform

mesh of the Antarctic ice-sheet with 1011 unknowns using 262 144 cores. A multigrid-

preconditioned conjugate gradient algorithm in matrix-free form is developed in [14].

The solver is applied to an elasticity-problem and scalability up to 8 000 cores is demon-

strated. In [27] the performance and scalability of conjugate gradient solvers and

geometric multigrid algorithms for a scalar model equation is demonstrated on a semi-

structured refinement of a spherical shell geometry. Their largest run involves more

than 1010 unknowns on 65 536 cores. An aggregation based AMG, reaching beyond 1011

degrees of freedom on 300,000 cores, is reported in [8]. A study of the scalability of

FE solvers on clusters with GPU accelerators is given in [20]; see also [2,11,23,25,28]

for other recent contributions in this direction.

Only few realizations of multigrid algorithms are supplemented with predictive

models for the parallel performance on distributed memory architectures. In [29] a

new strategy is proposed that allows reliable predictions for the execution time of a

given code on a large number of processors, by only benchmarking the code on small

numbers of processors. Another approach is followed in [15], where a performance

model is developed to predict the time to solution by linking the convergence rate

to the arithmetic intensity (FLOPS per byte ratio) via the roofline model [36]. For

the optimized computational kernels that are employed in the multigrid implementa-

tion of HHG, however, the roofline model fails to predict the performance properties

accurately. Hence, in [18] a refined roofline and Execution-Cache-Memory (ECM) per-

formance model for the Sandy Bridge architecture was introduced.

The remainder of the article is structured as follows: In Section 2 we present the

finite element discretization of the model problems on block-structured meshes and

discuss some important details of the multigrid solver employed in this work. Then,

in Section 3, we recall the classical view on TME and show some computational re-

sults which allow us to determine multigrid parameters to achieve good convergence

using only a small number of work-units. To extend the notion of TME to the parallel

setting, we give a new characterization of the WU in an architecture-aware fashion in

Section 4. We demonstrate how we can obtain reasonable scaling factors for the WU

in a parallel setting using a current state-of-the-art architecture. The following Section

5 then discusses the parallel TME paradigm and illustrates the newly introduced mea-

sures by large-scale computations of up to 2 · 1011 unknowns. We conclude the paper

with additional remarks in Section 6.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 25

2. Multigrid on hierarchical hybrid grids

We consider scalar elliptic PDE and systems of PDE that are discretized using stan-

dard FE on a polyhedral domain Ω ⊂ R
3. By subdividing Ω into a conforming tetra-

hedral triangulation T−2, we define our base mesh which is further refined using a

method due to Bey [7] as illustrated in Fig. 1. More precisely, we uniformly refine this

mesh twice to obtain a semi-structured coarse mesh T0. Based on this initial coarse grid

triangulation, we construct a hierarchy of grids T := {Tl, l = 0, 1, · · · , L} by successive

uniform refinement. We point out that this uniform refinement strategy guarantees

that all our meshes consist of elements which are scaled and rotated variants of a small

group of prototype elements T̃ ∈ B. For each refinement of a base element in T−2

there exists 6 such prototype elements, hence |B| ≤ 6|T−2|. This construction not only

guarantees that the resulting meshes satisfy a uniform shape-regularity assumption, it

can later also be exploited for an efficient realization of matrix-free solver strategies.

Figure 1: Structured refinement of a tetrahedron due to Bey [7].

For the discretization of the field variables on the different grid-levels, we use linear

Lagrange finite elements, i.e, given a mesh Tl ∈ T , we define the piecewise polynomial

function space

S1
l := {v ∈ C0(Ω) : v|T ∈ P1(T), ∀T ∈ Tl},

where P1(T) denotes the space of linear polynomials on a physical tetrahedral element

T of our triangulation. Note that by construction there holds S1
m ⊂ S1

l for any l > m ≥
0.

For each level l, we internally organize the unknowns in groups associated with

the primitives, i.e., the elements, faces, edges, and vertices of the base grid T−2. This

enables the realization of efficient storage schemes and simplifies the implementation

of sophisticated caching strategies to accelerate the parallel communication [5,6,16].

2.1. Scalar problems

As a first example, we consider a Poisson problem that serves as a model for many

physical phenomena; e.g., in electrostatics, diffusion processes, heat transfer or flow

problems in porous media. The governing equation in Ω is given as

−div (k∇u) = f, (2.1)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

26 B. Gmeiner et al.

where k ∈ L∞(Ω), k ≥ k0 > 0, denotes the conductivity parameter, u the potential

field, and f the right-hand side. For the sake of simplicity, we assume homogeneous

Dirichlet boundary conditions at the boundary ∂Ω of the simulation domain Ω. How-

ever, other kinds of physically relevant boundary conditions can be incorporated in the

usual way. We will study the important cases of (piecewise) constant and smoothly

varying coefficients.

Using the notation introduced above, we can discretize a weak form of the problem

on a fixed mesh-refinement level l as: find ul ∈ Vl := S1
l ∩H1

0 (Ω) such that

a(ul, vl) = L(vl) ∀ vl ∈ Vl, (2.2)

where we define the bilinear form as a(u, v) :=
∫
Ω k∇u · ∇v dx and the linear form

is given by L(v) :=
∫
Ω f v dx. As usual in finite element methods, we can expand

the discrete solutions in a nodal basis φi
l, i.e., we can write ul =

∑
i u

i
l · φ

i
l. In the

following, we call the vector ul = [uil]i the coefficient vector associated with a discrete

finite element function ul.

The nested hierarchy of meshes described above leads to a sequence of discrete

problems of the form Alul = f l, from which a canonical multigrid solver can be con-

structed.

2.1.1. Basic multigrid components

The main ingredients of a multigrid method are the prolongation and restriction opera-

tors that are used to interpolate the discrete solution between two adjacent grid levels,

and the smoother that is applied to relax the error on each level.

For the transfer operators, we use, as it is standard, the embedding of the nested

finite element spaces S1
l ⊂ S1

l+1 to define the prolongation I l+1
l , and we define the

restriction as I ll+1 := (I l+1
l)T . Consequently, the operators satisfy the Galerkin relation

Al = I ll+1Al+1I
l+1
l .

As a smoother, we employ a pointwise Gauss-Seidel update that operates on a row-

wise red-black-partition. On each level l, we perform an operation of the form

um+1
l = uml + Sl(f l −Alu

m
l),

where the processing structure is organized in groups of (base) primitives in the semi-

structured grid: first all unknowns associated with the coarse grid vertices are updated,

then all unknowns lying on coarse grid edges, followed by all faces, and finally all

elements. Generally we follow a sequential update scheme, however, for the sake

of parallel efficiency, we relax certain dependencies between primitives of the same

dimension by treating them in a block Jacobi-like fashion. In practical applications, the

effect of this simplification on the convergence rates is observed to be negligible [6],

especially when taking into account the improved parallel efficiency. As previously

mentioned, the cost of performing the smoother constitutes a work unit (WU). This

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 27

will become relevant in our concept of parallel TME. Hence, the smoother kernel will

be analyzed in detail in Section 4.

To enable an efficient matrix-free implementation of the geometric multigrid algo-

rithm, we base our compute-kernels on a stencil-paradigm, i.e., within uniform blocks

of the mesh we apply the transfer operations as well as the discrete operator associated

with our problem in the fashion of a finite difference method. For later reference, let

us here define the stencil

s[l,i] = [Al]i,

which represents the i-th row of the global stiffness matrix Al on level l. Moreover, as

most entries of Al are zero, we define by Ii the index set of non-zeros in row i, i.e.,

s
[l,i]
j = 0 for j 6∈ Ii. In case of the applied structured mesh refinement, the local repre-

sentation of the operators of interior nodes amounts to a 15-point stencil, as depicted

in Fig. 2.

Applying this stencil to a vector of unknowns constitutes the basic operation in the

smoother. The innermost loop performs the update operation

ujl ← ujl +
ω

s
[l,j]
j


f j

l −
∑

k∈Ij

s
[l,j]
k ukl


 (2.3)

for each index j associated with the primitive that is currently relaxed. Here the upper

index stands for the component of the associated vector. A moderate over-relaxation

with ω > 1 has been shown to improve the smoothing rates and thus the multigrid

efficiency, especially for 3D problems [17,37].

2.1.2. Stencil assembly

The hierarchical mesh has one important advantage when (patch-wise) constant mate-

rial parameters are considered. In this case, the amount of memory needed to represent

the discretized operator can be largely reduced due to the structured refinements which

allow to assemble the stencils locally from pre-computed element stiffness matrices A
T̃

for the different prototype element types T̃ ∈ B present in the mesh, see also [4] for

details.

For variable coefficients, however, the stencil needs to be individually assembled

for every grid point. This requires a careful implementation to retain a compute- and

storage-efficient matrix-free implementation. To this end, we observe that for linear

tetrahedral finite elements, the gradients of the reference shape functions φ̂i are con-

stant. Thus for variable coefficients k(x), the local element contributions AT to the

stiffness matrix Al can obviously be computed by

[AT]i,j := J−T
T ∇φ̂j · J

−T
T ∇φ̂i|det(JT)|

∫

T̂
k̂(x̂) dx̂, (2.4)

where JT denotes the Jacobian of the linear-affine mapping from the reference tetra-

hedron T̂ to the physical element T ∈ Tl for some l ≥ 0, and k̂ and φ̂i stand for

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

28 B. Gmeiner et al.

Figure 2: Coefficient averaging of a 15-point stencil. First, two nodal coefficient values on the highlighted
edges are averaged, then the coefficients of each element are calculated by averaging two opposing edges.

the transformed functions from T onto T̂ . Hence, given a suitable approximation of∫
T̂ k(x̂) dx̂, the stencil can again be assembled from scaled and rotated variants of

the precomputed prototype element stiffness matrices as for the constant coefficient

case. To obtain a matrix-free implementation, we must numerically evaluate the coeffi-

cient integral in each operator evaluation. For linear tetrahedra, one evaluation at the

barycentric coordinate (1/4, 1/4, 1/4) with weight 1/6, or alternatively a sum over the

four nodes with the weights 1/24 is sufficient [31], provided the coefficient is smooth

enough. In our approach, we use the vertex based quadrature formula since a node-

wise storage of the coefficient k(x) for the matrix-free construction is better suited to

the HHG memory layout structure and thus more efficient. The above integration rule

requires three additions per element, and consequently 72 additions per stencil if we

were to use a naiv implementation. To reduce the computational work, we apply a

local (i.e. stencil-wise) common subexpression elimination that reduces the number of

operations to only 40.

If k(x) is extended to a tensor, e.g., in case of anisotropic material properties, one

can store the vectors J−T
T ∇φ̂j instead of the element matrix entries for a cheap evalu-

ation of element matrices.

Let us briefly sketch the averaging procedure: Fig. 2 illustrates the elements that

are attached to each inner node in the semi-structured tetrahedral mesh. First, we de-

termine the average between two nodal coefficient’s values on each of the 16 edges

that are highlighted in the figure. Then, for each of the 24 elements, the coefficients

are calculated by averaging the values of the corresponding two opposing edges. The

integration weight of 1/24 is contained in the local stiffness matrices in our implemen-

tation.

Let us remark that the node-wise organization of the coefficients does not only save

roughly a factor of 6 in memory compared to an element-wise storage, but moreover

it allows to implement the stencil assembly without indirect addressing, since plain

array data structures can be employed. The assembly procedure for the nodes lying

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 29

on the lower-dimensional primitives of the base mesh, i.e., (base) vertices, edges, and

faces, are more technical and require indirect addressing, since they are basically un-

structured or at least are composed of rotated stencil parts; we refer to [16] for more

technical details.

2.2. Extension to systems with saddle-point structure

As an example for systems of PDE with saddle point structure, we consider the

Stokes system in a polyhedron Ω:

−div (∇u− pI) = f , (2.5a)

divu = 0. (2.5b)

Here u := [u1, u2, u3]
⊤ denotes the fluid velocity, p the pressure, and f := [f1, f2, f3]

⊤

a forcing term acting on the fluid. For simplicity, let us again consider u = 0 on the

boundary ∂Ω. Further, to make the pressure well-defined, we set
∫
Ω p dx = 0.

The discrete velocity-pressure pair is approximated in the product space

Vl ×Ql := [S1
l ∩H1

0 (Ω)]
3 × [S1

l ∩ L2
0(Ω)].

By definition, the boundary conditions on the velocity u as well as the mean-value

condition of the pressure p are directly built into the discrete function spaces.

We use the following standard weak formulation of the Stokes problem for dis-

cretization: find (ul, pl) ∈ Vl ×Ql such that

a(ul,vl) + b(vl, pl) = L(vl) ∀vl ∈ Vl, (2.6a)

b(ul, ql)− c(pl, ql) = 0 ∀ ql ∈ Ql, (2.6b)

where we define the bilinear forms as

a(u,v) :=

∫

Ω
∇u : ∇v dx, b(u, q) := −

∫

Ω
divu · q dx,

and the linear form as L(v) :=
∫
Ω f · v dx. Since we use equal-order approximation of

the velocity and the pressure, we have to incorporate a stabilization to avoid spurious

pressure modes. Here, we choose a standard approach detailed in [12], namely

c(p, q) :=
∑

T∈Tl

α2
T

∫

T
∇p · ∇q dx,

which ensures stability of the discrete problem. The stabilization parameter αT ∼
diam(T) has to be chosen carefully to ensure uniform stability and to avoid unwanted

effects due to over-stabilization.

After discretizing (2.5) with finite elements as described before, the problem can

again be written as a linear system of equations:
[
Al B

⊤
l

Bl −Cl

] [
ul

p
l

]
=

[
f l

0

]
. (2.7)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

30 B. Gmeiner et al.

Here, the operators can be assembled similarly as in the scalar case, and ul and p
l
again

denote the coefficient vectors associated with the finite element functions ul ∈ Vl and

pl ∈ Ql, respectively.

For the solution of the discrete linear problem (2.7), we use an approach outlined

in [34]: By formally eliminating the velocities from the pressure equation, we can

reformulate (2.7) equivalently as

[
Al B

⊤
l

0 Cl +BlA
−1
l B

⊤
l

] [
ul

p
l

]
=

[
f l

BlA
−1
l f l

]
.

Now the discrete problem for the pressure reads

Slpl = g
l
. (2.8)

Here Sl = Cl + BlA
−1
l B

⊤
l and g

l
= BlA

−1
l f l define the pressure Schur complement

system. In our numerical experiments, we solve (2.8) by a preconditioned conjugate

gradient (PCG) method, where we choose a lumped mass matrix Ml as preconditioner

that is known to be spectrally equivalent to Sl. This simple and cheap preconditioning

reduces the convergence degradation effects due to varying element sizes and shapes.

As Sl is in general dense, its direct assembly cannot be performed efficiently. How-

ever, since the PCG method only requires applications of the Schur-complement oper-

ator, we can replace this operation by a series of matrix-vector multiplications, where

the multiplication with the discrete inverse vector-Laplacian A
−1
l is performed inex-

actly by three independent multigrid iterations (one for each velocity component ui)
as described for the scalar case. This yields an iterative scheme using inner (multigrid)

and outer (PCG) iterations. The dominant cost here is the inner iteration.

3. Classical textbook multigrid efficiency

We now proceed to analyze the efficiency of the solvers proposed in Section 2 in

the light of the classical notion of TME. To this end, we tune the multigrid parameters

to achieve fast convergence with respect to the number of WUs. Here the operator

evaluations on the coarser meshes as well as the residual calculation contribute to the

number of WUs, but we neglect the contribution of the inter-grid transfers since they

are significantly cheaper (considering their FLOPS) than one relaxation of the system.

However, for an actual implementation they require a relative high memory-bandwidth

and have a poor balance between additions and multiplications. Thus they cannot

exploit the architecture of current CPUs to their full capacity, and thereby increase the

run-time by a small percentage.

We will present results for iterative V- and W-cycles and also for a full multigrid

(FMG) implementation for the scalar case (CC) as well as for the system (SF). Here,

the expression C(µ1, µ2) denotes the number of pre-smoothing steps µ1, the post-

smoothing steps µ2, and the type of cycle C ∈ {V, W } under consideration. Similarly

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 31

Figure 3: Illustration of FMG-1V(·, ·) and FMG-2V(·, ·) cycles.

to the V-cycle and the W-cycle, two variants of the FMG are chosen as illustrated in

Fig. 3.

In the experiments, we start with a zero initial vector. To quantify discretization

errors, we use a scaled Euclidean norm ‖u−ul‖ := h
3/2
l ‖u−ul‖ℓ2 , where u denotes the

coefficient vector associated with the nodal interpolation of the exact solution into the

discrete function space. This enables us to also compare the iteration error (i.e. alge-

braic error) with the discretization error, which is essential in quantifying the efficiency

of a FMG method.

For simplicity, the computational domain in all our computations is chosen as the

unit cube Ω = (0, 1)3 if not mentioned otherwise. For scaling and performance studies

on more complex domains, we refer to our work [18], where spherical shells and com-

plex networks of channels were considered using the same version of the HHG software

framework. For such geometries the performance was observed to deteriorate by some

ten percent compared to the cube domain.

Our first experiment investigates the performance of different multigrid settings,

varying the number of smoothing steps, type of cycle, and using over-relaxation in the

smoother. We first consider the scalar case (2.1) with a constant coefficient, i.e., k = 1,

and an exact solution given as

u(x) = sin(2x1) sin(4x2) sin(16x3). (CC)

The boundary data is chosen according to the exact solution and the source term f
on the right hand side is constructed by evaluating the strong form of the operator

on the left hand side of (2.1). In Fig. 4, we display errors and residuals as functions

of computational cost measured in work units. We note that in the pre-asymptotic

stage, the W(3,3) cycle with an over-relaxation factor of ω = 1.3 produces the most

efficient error reduction, but interestingly this is not the most efficient method when

considering the convergence of the residual. In this respect, the V(3,3) cycles with a

mesh independent over-relaxation factor of again ω = 1.3 in (2.3) are found to perform

best. All methods require about 30 − 50 operator evaluations (WU) to converge to the

truncation error of approximately 10−6. Clearly, we have not yet reached the 10 WU

required for TME, but since we solve systems as large as 8.6 ·109 unknowns, we believe

that this is already in an acceptable range.

To achieve full TME, we next consider a FMG algorithm. To evaluate different

variants of FMG, Table 1 lists the ratio

γl = ‖u− ũl‖/‖u − ul‖, (3.1)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

32 B. Gmeiner et al.

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#)

!"#$%#*

!"#$%#+

!"#$%#!

!"#$,##

(!# !(+# +(*# *()#)((#

$
--
.
-/
01
23
45
6
/5
7
28
/

9.-:/7;<=1/

>0!?!8%2@245 >0*?*8%2@245 >0*?*8%2@245/0ABC8 90*?*8%2@245/0ABC8

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#)

!"#$%#*

!"#$%#+

!"#$%#,

!"#$%#-

!"#$%#!

!"#$.##

* !# !* -# -* ,# ,* +# +* *#

/
0
12
3
4
5
67
80
4
9:
7

;<=>74?2@17

A8!B!:%9C960 A8,B,:%9C960 A8,B,:%9C96078DE/: ;8,B,:%9C96078DE/:

Figure 4: Error (left) and residual (right) for (CC) on a resolution of 8.6 · 109 grid points.

between the total error obtained by the FMG ‖u − ũl‖ and the discretization error

‖u − ul‖, where ũl denotes the result obtained with FMG. For the first row of Table 1

there is only one coarser level, and we thus display the results for a two-level algorithm.

In each following row of the table, the mesh size of the finest mesh is halved and

thus number of multigrid levels increases by one. Here a FMG-V(2,2) cycle is a full

multigrid method employing a single V(2,2) cycle on each new level. As shown in Table

1 the combined error is roughly 1.7 times larger than the discretization error, and thus

discretization error and algebraic error are roughly of the same size. The FMG-2V(1,1)

cycle employs 2 V-cycles on each new level and results in a relative algebraic error of

≈ 10% compared to the discretization error.

Table 1: Ratio γl between approximation error after one FMG-cycle and the discretization error for (CC).

Resolution Discr. Error FMG-V(1,1) FMG-2V(1,1) FMG-V(2,2) FMG-V(3,3)

1293 1.4 · 10−4 4.3 1.2 2.3 2.0

2573 3.4 · 10−5 4.0 1.1 1.7 1.3

5133 8.4 · 10−6 3.9 1.1 1.7 1.3

1 0253 2.1 · 10−6 4.1 1.1 1.7 1.3

2 0493 5.3 · 10−7 4.4 1.1 1.7 1.3

A V(2,2) cycle employs on the finest grid a total of 4 WU for the smoothing steps,

plus one for the residual computation. We neglect the work for restriction and pro-

longation, but account for the cost of V-cycle recursion with standard coarsening in

3D by the factor of 1 + 1
8 + 1

64 + · · · = 8
7 . Note that the second recursion in the FMG

algorithm contributes another factor of 8
7 to the cost estimate, such that the cost of the

FMG-V(2,2) cycle can be estimated as (87)
2 · 5 ≈ 6.5 WU, while the FMG-2V(1,1) cycle

requires (87)
2 · 2 · 3 ≈ 7.8 WU. Thus, the 1.3 extra work units lead to an error reduction

from 1.7 to 1.1 times the discretization error.

A heuristic explanation why the FMG-2V(1,1) cycle yields better results for this

example than the FMG-V(2,2) cycle can be given as follows. On finer grids not only

the solution of the model problem (CC) is smooth, but also the discretization error

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 33

is essentially a smooth function. On each new level, the V-cycles must reduce an er-

ror component that is the difference of the discretization errors of the two levels, i.e. a

smooth function. However, for a smooth error, relaxation on fine grids is inefficient and

thus this error must be reduced on coarser grids. Note that this remaining discretiza-

tion error can only be evaluated on a fine grid, but it must be removed algebraically

by recursing onto coarser grids. Thus, the extra coarse grid corrections and residual

computations of the FMG-2V(1,1) cycle (as compared to the FMG-V(2,2) cycle) pay off,

even though both methods eventually use an equal number of smoothing steps on each

level. Note further that this is an effect in the pre-asymptotic stage of the V-cycle when

considering it as an algebraic solver. However, this situation is typical when V-cycles

are used within an FMG method that is itself in the asymptotic phase as a solver for the

differential problem.

To assess next which of the two V-cycle methods is more efficient in error reduction

with respect to the PDE problem, we can argue as follows. Comparing the FMG-2V(1,1)

cycle with the FMG-V(2,2) cycle, a 35% improvement of the error is achieved by 20%

higher cost. We must now compare this error reduction relative to the cost with the

accuracy improvement that could be achieved by progressing to another level of mesh

refinement. Here an 8-fold increase of work would asymptotically lead to 4-fold re-

duced error (for both the FMG-2V(1,1) and FMG-V(2,2) method). This is asymptoti-

cally less efficient than the ratio 20/35, and thus the error reduction by the stronger

FMG-2V(1,1) method must be considered as efficient in the given constellation. Pro-

gressing to a finer grid with the same solution strategy would not reduce the error

with respect to the differential equation not as effectively as using the more expensive

iteration on the coarser grid.

In our second example, we consider the solution of the Stokes system (2.5):

u(x) =



−4 cos(4x3)
8 cos(8x1)
−2 cos(2x2)


 , and p(x) = sin(8x2) sin(2x3) sin(4x1). (SF)

Let us remark that u is solenoidal by construction. The boundary data and right hand

side are again chosen such that the strong problem (2.5) is satisfied.

Analog to the FMG cycle, the algorithm proceeds from the coarsest to the finest

level. However instead of one or two multigrid V-cycles, we apply four PCG iterations

as pressure correction to the system (2.8), including one restart every two iterations on

each level. As described in Section 2.2, each outer CG iteration uses one inner multi-

grid cycle (that is, however, applied independently to each scalar velocity unknown).

Table 2 lists the ratio γl for two different V-cycle types. We observe an almost mesh

independent convergence using around (87)
2 · 6 · 4 ≈ 31 WU for the case FMG-4CG-

1V(2,1) that employs on each level 4 CG iterations each of which employs one V(2,1)

cycle. Indeed, this is about three times more than ideal TME. Nevertheless, the op-

erator evaluations are cheap when considering that a non-staggered discretization is

often handled by significantly more expensive smoothers. But we note that while the

solution process through the pressure Schur complement is algorithmically simple and

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

34 B. Gmeiner et al.

Table 2: Ratio γl between approximation error after one FMG-cycle and the discretization error for (SF).

Resolution Discr. Error FMG-2CG-1V(2,1) FMG-4CG-1V(2,1) FMG-4CG-1V(2,2)

1293 8.5 · 10−4 2.1 1.2 1.2

2573 2.1 · 10−4 3.0 1.1 1.1

5133 5.2 · 10−5 5.4 1.2 1.1

1 0253 1.3 · 10−5 9.7 1.3 1.2

2 0493 3.2 · 10−6 19.1 1.4 1.3

easy to implement, it seems to be less efficient (in the sense of TME) than the multigrid

strategies based on distributive smoothers as proposed for staggered and non-staggered

discretizations in [10].

4. Architecture-aware characterization of a work unit (WU)

The TME metric used in the previous results illustrates the convergence of the multi-

grid algorithm, but it does neither reflect how the algorithm performs on single-nodes

nor on massively parallel computer architecture. Thus there is a need to quantify the

performance of an algorithm with respect to run time. The goal of this section is a sys-

tematic assessment of this issue for the presented multigrid solver. This requires that

we develop estimates or upper bounds for the cost of a WU. Consequently, we will now

proceed to develop a systematic performance analysis based on the notion of TME for

the HHG multigrid implementation.

The architectural complexity of modern computers makes the prediction of com-

pute times and other performance metrics increasingly difficult. For example, reliable

estimates of the run-time require elaborate performance models. We advocate with this

article, that the development of appropriate quantitative and predictive performance

models should be seen as an essential step in the systematic design of scientific com-

puting software for high performance computers.

For the development of a quantitative model we first have to identify the critical

resource in the computationally intensive parts of the algorithm. In the light of TME,

our starting point is thus a careful inspection of the multigrid smoother on the finest

mesh level that defines the work unit (WU). The basic operation (2.3) in the smoother

corresponds to a 15-point stencil applied in a point-wise Gauss–Seidel update scheme,

see (2.3). In the simplest case of a scalar PDE with constant coefficients (CC), we

count 15 multiplications, 14 subtractions/additions, 15 loads (14 for u, 1 for f), and

one store operation per stencil update. Executing this loop for all nodes of the finest

FE mesh constitutes one WU. Note that the relaxation loop uses a stride of 2 due to

the row-wise red-black partitioning. However, we significantly gain performance by

the design of HHG using patch-wise structured meshes. Within each tetrahedral HHG

patch, the connectivity structure at each node is identical such that a matrix row can be

described as a stencil and 3D-arrays can be used to store the solution and load vectors.

This permits significantly more efficient machine code, since the stencil update can be

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 35

implemented with only direct addressing and efficient index incrementing schemes for

all data access operations. This also helps the compiler to analyze data dependencies

and better exploit instruction level parallelism, leads to a better use of caches and

prefetching hardware, etc.

Let us next consider the case of variable coefficients (VC). Following Section 2.1.2,

the stencil at each node s[l,i] (i.e. one row of the stiffness matrix) is assembled from

the local FE stiffness matrices in the surrounding tetrahedra as illustrated in Fig. 2.

Note that each of the local stiffness matrices is just a scaled variant of the local stiffness

matrix of the same tetrahedron for constant coefficients. Thus there exists only a small

number of different local stiffness matrices on each structured block of the HHG grid

that can be pre-computed and then re-used when assembling the stencil at a node; cf.

[18] for details. Altogether, 136 subtractions/additions, 121 multiplications, 1 division,

30 loads (15 k, 14 u, 1 f) and 1 store must be performed in one stencil update.

We proceed by evaluating how much time is required to execute a single elementary

relaxation. Therefore, we first focus on the elementary compute unit, i.e., a single

processor core of the supercomputer system under consideration. The performance is

here expressed in form of the reciprocal value, as lattice updates per second (Lups/s),

see [21], where 1 GLups/s = 1000 MLups/s = 109 Lups/s. This metric connects the

relevant useful work performed to the run-time.

For the convenience of the reader, let us first summarize the results of the perfor-

mance predictions obtained by the different models and our measurements, and then

discuss in detail how these are obtained. Table 3 lists the theoretically maximal perfor-

mance for both smoother kernels (i.e. one WU in each case) on a single core of an Intel

Sandy Bridge (SNB) system under different assumptions on what the limiting resource

is. Here the values that assume memory bandwidth as the bottleneck are based on the

measured STREAM [26] bandwidth of 16GB/s for a single core of the architecture,

while the FLOPS based limiting values are derived from the theoretical peak perfor-

mance. Note here that the memory limit for case (VC) is only moderately lower than

for the (CC) case. This is a result of the assembly of the matrix on the fly with only

a minimal storage requirement for the coefficient k, as described in Section 2.1.2. If

the stiffness matrix Al were stored in a conventional sparse matrix format, requiring

read access for 15 entries per row, plus the indices/pointers needed for indirect ad-

dressing, this would lead to almost an order of magnitude higher memory traffic and a

correspondingly sharper bandwidth performance limit.

Table 3: Predicted versus measured computational performance for one WU (one Intel SNB core).

assumed limiting resource

FLOPS throughput memory bandwidth ECM model measured

const. coeff. (CC) 720 MLups/s 667 MLups/s 159-189 MLups/s 176 MLups/s

var. coeff. (VC) 79.4 MLups/s 500 MLups/s 40.0-42.5 MLups/s 39.5 MLups/s

The performance limits of Table 3 show that for (CC), both memory bandwidth

and FLOPS throughput would lead to similar limitations, but that the measured perfor-

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

36 B. Gmeiner et al.

mance is significantly lower. This can be explained by the more involved ECM model

that we will introduce below. Similarly, the (VC) case is severely limited by FLOPS

throughput, and will not be bandwidth limited on a single core. However, considering

measurements we note that an accurate prediction again requires the use of a more

advanced model.

In the following sections, we will analyze the limiting resource for the smoothers

in detail. This must take reference to a concrete compute system, consisting of hard-

and software. For the experiments below, the code is compiled with the Intel compiler

version 13.1.3 build 20130607 (using flags -O3 -xAVX -fno-alias) and linked to Intel

MPI version 4.1.1.036. For optimal vectorization, the #pragma simd compiler directive

is employed where appropriate. For benchmarking purposes, we use a dual-socket

system with eight-core SNB (Xeon E5-2680) processors and DDR3-1600 memory. The

clock frequency is fixed to 2.7 GHz.

4.1. Roofline performance model

For first insights into the expected performance, we map the smoother kernel code

to a basic machine model and determine the quantitatively dominant operation. In

the constant coefficient case (CC), loads and multiplications are on par with 15 ap-

pearances each. Due to its higher computational intensity, 136 additions are required

in the variable coefficient code (VC). On the SNB micro-architecture, one mul or add

instruction can be executed per cycle. It is assumed that the most effective instruc-

tions employing single instruction multiple data (SIMD) can be used, which results in

4 arithmetic operations per instruction using the Advanced Vector Extensions (AVX)

to the instruction set with 256 bit register width. Under the further assumptions that

all pipelines can operate in parallel without dependencies and that all data resides in

L1 cache, one iteration of the AVX vectorized inner loop takes 15 cycles (CC) and 136

cycles (VC), to perform 4 Lup. This results in a single-core performance of

Pmax
core (CC) = 2.7·109 cycles/s

15/4 cycles/Lup
= 720MLups/s , (4.1)

and Pmax
core (VC) = 2.7·109 cycles/s

136/4 cycles/Lup
= 79.4MLups/s, (4.2)

for the constant and variable coefficient case, respectively. These values take the role of

a speed of light for these particular algorithms, since they mark the maximal throughput

under best case assumptions. If further assuming perfect parallel scalability, the single-

core performance can be extrapolated to Pmax
socket(CC) = 5.76GLups/s and Pmax

socket(VC) =
635MLups/s for the full socket (8 cores).

Next, we turn to the limitations that are caused by memory throughput and de-

termine the actual memory data traffic for one stencil update. Due to the presence

of caches not all load instructions executed by the processor cause data transfer from

memory (see following sections for details), resulting in 24 bytes (CC) and 32 bytes
(VC) of mandatory main memory traffic for a single update (8 bytes per double pre-

cision element). For single-core execution, a memory bandwidth of 720MLups/s ·

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 37

24bytes/Lup = 17.3GB/s would be required for (CC), and 79.4MLups/s·32bytes/Lup =
2.5GB/s for (VC).

Again, we extrapolate to the socket level. For a bandwidth limited code this is the

relevant scaling unit. In case (CC) a main memory bandwidth of roughly 138 GB/s

would be needed, and 20.3 GB/s for (VC). However, the SNB system can sustain ap-

proximately 42 GB/s for an update data access pattern. Based on this first estimate, we

conclude that case (CC) is main memory bandwidth limited on the given architecture

when all cores are employed. The prediction for socket performance must be adjusted

to

Pmax
socket(CC) = 42GB/s

24B/Lup
= 1.75GLups/s. (4.3)

We further conclude that case (VC) is limited by FLOPS throughput and will not be

affected by the memory bandwidth limit of
42GB/s
32B/Lup

= 1.31GLups/s.

4.2. ECM performance model for constant coefficients (CC)

Actual single-core measurements result in a performance of 176 MLups/s, equiva-

lent to approximately 4.2GB/s main memory bandwidth. This suggests that the arith-

metic instruction throughput is not sufficient to explain and predict the performance

of executing the (CC) smoother stencil. The prediction of the estimate in Section 4.1

suggests that we should find a severe bandwidth saturation. However, the estimate

yields only an upper bound and the benchmark suggests a significantly lower degree of

bandwidth saturation, making it unlikely that bandwidth is truly the critical resource.

The degree of bandwidth saturation is also an important indication of potential code

optimizations.

Since the performance predictions obtained as above by the roofline model are

unsatisfactory, we must proceed to develop a more accurate analysis. To this end, a

more careful inspection of the code reveals the following: The vectorization report by

the Intel compiler confirms that the innermost loop of the stencil code is optimally

executed. However, the roofline model in its simplest setting does not account for a

possible non-optimal instruction code scheduling. Also the run-time contributions of

transfers inside the cache hierarchy are not taken into account. To include these effects,

we employ the Execution-Cache-Memory (ECM) model of [22,33], and we refer to [18]

for a thorough description of the modeling process for this kernel.

An overview of the input parameters to the model is displayed in Fig. 5. Different

assumptions which operations can be overlapped lead to a corridor of performance pre-

dictions of 159− 189MLups/s for a single core. The obtained measurements are within

this range, indicating that the micro architecture is capable of overlapping at least some

of the operations (cf. Fig. 6). We also note that the (CC) kernel cannot saturate the

maximal memory bandwidth of 42 GB/s with 8 cores. A comparison of the different

run-time contributions shows that the single-core performance is in fact dominated by

code execution and that — in contrast to the initial analysis — instruction throughput

and not memory bandwidth is the critical resource. The poor predictive results that

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

38 B. Gmeiner et al.

���������

�	

��
���� 	�
������

��
����
�

�
	�
����
��

��

��

������

��
����

	���
����

	�
������

	���
������

����

	�
������

	�
������

	���
������

 ��!�����

��"#�$��

%�&�'����������

�	

��

��

������

()�
������

*

*

	�(
������

Figure 5: ECM model for the 15-point stencil with variable coefficients (left) and constant coefficients
(right) on SNB core. An arrow indicates a 64 Byte cache line transfer. Run-times represent 8 elementary
updates.

1 2 3 4 5 6 7 8

cores

0

400

800

1200

1600

p
e
rf

o
rm

a
n
c
e
 [
M

L
u
p
s
/s

]

constant coefficients ECM model
constant coefficients measured
variable coefficients ECM model
variable coefficients measured

Figure 6: SNB single-chip performance scaling of the stencil smoothers on 256
3 grid points. Measured data

and ECM prediction ranges are shown.

were obtained with the simple model are mainly caused by an over-optimistic assump-

tion for the peak performance value that was based on FLOPS throughput alone. For

the (CC) smoother, additional instruction overhead has to be considered. We remark

that this is caused by the red-black pattern of updates that requires a high number of

logistic machine instructions before vectorized operations can be used. In such cases,

a thorough understanding of the performance depends on a careful code analysis. As

demonstrated, this leads to a realistic prediction interval for the single-core perfor-

mance.

We can additionally conclude that code optimization strategies that try to speed up

the execution of a WU by reducing the memory bandwidth requirements, in particu-

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 39

lar cache blocking strategies, would fail. The above discussion demonstrates that —

different form conventional wisdom — memory bandwidth is not the critical resource

and thus an any code tuning aimed at this alleged bootleneck would not help to speed

up the code. Code optimization would rather first have to focus on the memory layout

that prohibits a more efficient vectorization of the code.

4.3. ECM performance model for variable coefficients (VC)

As for the constant coefficient kernel, there is a considerable deviation of the roofline

model prediction of 79.4 MLups/s for one WU and actual performance measurement at

39.5 MLups/s. Here, the measurement immediately confirms the assumption that mem-

ory bandwidth is not the critical resource. We therefore again employ the ECM model

with particular interest in refining our understanding of the instruction throughput lim-

itation. In contrast to the roofline model, the ECM model considers the necessary data

transfers through the memory hierarchy as well as run-time for code execution for es-

timating the single-core execution time. As a cache line (64 byte, 8 double precision

elements) is the smallest unit of data that can be handled in the memory hierarchy,

all input values to the ECM model have to be scaled to represent this size. Run-time

contributions for data transfers have to be determined separately for each layer of the

memory hierarchy.

For case (VC), as described in Section 2.1.2, we do not determine the execution

time by manual code inspection, but we employ the Intel Architecture Code Analyzer

(IACA, v. 2.01). In the (assembly) code, the dominant loop has to be marked and

IACA determines (based on a simplified micro-architecture model of the processor) the

number of cycles required for one iteration as well as the throughput bottleneck. 246

cycles for 4 updates (4-way SIMD) are reported, limited by the maximal throughput for

load instructions. The reason for the difference to the 136 cycles that resulted from the

manual code inspection is a lack of floating point registers. In summary, the processor

cannot hold all required variables for one loop iteration in its registers. Therefore,

register contents have to be repeatedly transferred to and from cache (register spill),

resulting in excess load and store instructions. This is apparent from the assembly code.

For a full update of one cache line size two iterations of the loop have to be accounted

and the input value to the ECM model is therefore 2 · 246 = 492 cycles.

Next we analyze the data transfer between the levels of the memory hierarchy.

Loading data from main memory to L3 cache is limited by the memory bandwidth of

the system (42GB/s, which is equivalent to 15.6B/cycle at 2.7GHz). The L3 cache of

SNB has 2.5 MB/core and is consequently large enough to hold at least two layers (in

our setting one layer has a size of at most 256 · 256 · 8B = 512 kB) of the coefficient

vector k and the solution vector u (layer condition - (relevant) previously loaded values

can be reused from cache). Therefore, only one load stream is necessary per vector. In

total, four load streams for cache lines are required: one load for k, u, f each, and one

store to u. This costs additionally 16.5 cycles (4 · 64B/15.6B/cycle) of data transfer

time.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

40 B. Gmeiner et al.

The layer condition is not fulfilled for the smaller caches L2 and L1. Therefore, two

additional load streams for both, k and u, have to be accounted, resulting in 8 streams

between adjacent caches. As 32 bytes can be transferred between caches per cycle, the

transfer of one cache line takes 2 cycles. This translates to 16 cycles for 8 streams.

Fig. 5 illustrates the previously established run-times as input to the ECM model.

According to our experience, they do not overlap for codes that are dominated by load

instructions. Overall, run-time according to the ECM model is therefore the total ag-

gregate (540.5 cycles), which is equivalent to a performance of 40.0MLups/s using one

core. Due to the massive dominance of core execution time, overlap of transfers would

not have a significant influence, resulting in a narrow prediction range (cf. Fig. 6).

As a consequence, the performance scales perfectly on the socket-level, since instruc-

tion throughput on each core is the limiting resource. The memory subsystem operates

clearly below its capability and the performance values are at the lower limit of the

predicted range, confirming the overlap hypothesis.

5. Towards parallel textbook multigrid efficiency

Based on the elaborate characterization of a WU for the system architecture under

consideration, we can now proceed to define a new metric for the efficiency of parallel

finite element solvers. Assuming that the performance of a single core is µsm Lups/s,

then a perfectly scalable multiprocessor with U processor cores should ideally perform

at UµsmLups/s. When employed for relaxing N discrete points, i.e., when performing

one WU, we should ideally observe a compute time of

TWU(N,U) =
N

Uµsm
(seconds).

As part of the analysis we will also quantify, how many WU are needed to solve a

problem. If full textbook efficiency were achieved, we would expect that the total cost

remains at less than 10 WU. As shown above, this alone is an ambitious goal, but we

must now additionally account for the overhead of parallel execution. For a problem

that requires a compute time of T (N,U) seconds for N unknowns, when run on a

computer with U processor cores, we define the parallel textbook efficiency factor

EParTME(N,U) =
T (N,U)

TWU(N,U)
= T (N,U)

Uµsm

N
. (5.1)

This is a metric where algorithmic efficiency (in the sense of Brandt’s classical TME) is

combined with implementation scalability.

In the following, we will evaluate this factor for a variety of problems. The per-

formance µsm for one work unit are the ECM model estimations (i.e. µsm = 189 · 106

and µsm = 42.5 · 106 for the constant and variable case, respectively) from Table 3. We

conduct all our experiments on SuperMUC, an IBM System x iDataPlex system with a

peak performance of more than 3.2 petaflop/s, using the SNB processor architecture,

and that is currently ranked as number 10 on the TOP-500 list (November 2013).

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 41

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#)

!"#$%#*

!"#$%#+

!"#$%#!

!"#$,##

+#)# '# -# !## !+# !)#

$
..
/
.0
12
34
56
7
06
8
39
0

!
"#$%&!

'

:1!;!9%3<356 :1*;*9%3<356 :1*;*9%3<35601=>?9 @1*;*9%3<35601=>?9

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#)

!"#$%#*

!"#$%#+

!"#$%#,

!"#$%#-

!"#$%#!

!"#$.##

-# +#)# '# !## !-# !+#

/
0
12
3
4
5
67
80
4
9:
7

!
"#$%&!

'

;8!<!:%9=960 ;8,<,:%9=960 ;8,<,:%9=96078>?/: @8,<,:%9=96078>?/:

Figure 7: Error and residual for (CC) on a resolution of 8.6 · 109 grid points on 4 096 cores.

The performance data in Fig. 7, we reconsider different non-FMG cycles as in Sec-

tion 3. Different, from the original ETME definition, the EParTME factor is approximately

worse by a factor of 2.5 compared to classical TME. We also point out that the coarsest

mesh level is not yet accounted in the measurements, since it heavily relies on the coars-

est level solver and number of input elements per core. In our current implementation

and examples, this results in an additional overhead of around 15% per V-cycle.

Below we consider again the case of constant coefficients (CC) and the more ex-

pensive operator involving variable coefficients (VC). In the latter case the solution is

kept identical to (CC), but the coefficient is chosen such that it smoothly varies, i.e.,

k(x) = sin(x1 + x2 + x3) + 2. (VC)

Moreover, we consider the Stokes problem with the exact solution (SF) as an example

for a system of equations. We assume that one WU of the Stokes system is equivalent

to five WU for the case (CC), three for the velocity components, one for the gradient

operator, and one for the divergence operator.

Table 4 lists the efficiencies for the (CC), (VC), as well as the (SF) case. In the latter

case, we employ the FMG-4CG-1V(2,1) pressure correction cycle. All cycles are chosen

such that they are as cheap as possible, but still keep the ratio γl ≈ 2. We observe a

larger gap between the ETME and the new EParTME for (CC) and (SF) compared to the

Table 4: TME factors for different problem sizes and discretizations.

Setting/Measure ETME ESerTME ENodeTME EParTME1 EParTME2

Grid points - 2 · 106 3 · 107 9 · 109 2 · 1011

Processor cores U - 1 16 4 096 16 384

(CC) - FMG(2,2) 6.5 15 22 26 22

(VC) - FMG(2,2) 6.5 11 13 15 13

(SF) - FMG(2,1) 31 64 100 118 -

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

42 B. Gmeiner et al.

previous cases. We also observe the effect that traversing the coarser grids of the multi-

grid hierarchy is less efficient than the processing the large grids on the finest level.

This is particularly true because of communication overhead and the deteriorating sur-

face to volume ratio on coarser grids, but also because of loop startup overhead. When

there are less operations, the loop startup time is less well amortized.

The case (VC) exhibits a better relative performance, since time is here spent in the

more complex smoothing and residual computations. However, for the quality of an

implementation it is crucial to show that the WU is implemented as time efficient as

possible for a given problem. We remark that a good parallel efficiency by itself has lim-

ited value when the serial performance of the algorithm is slow. In this sense, multigrid

may exhibit a worse parallel efficiency than other solvers while it is superior in terms

of absolute execution time for a given problem and a given computer architecture.

ESerTME and ENodeTME are measured using only one core (U = 1) and one node

(U = 16), respectively. We observe that the transition from one core to one node causes

a similar overhead as the transition from one node to 256 nodes (EParTME1). For the

(CC) case, roughly a factor of two lies between the TME and the serial implementation,

and a further factor of two between the serial and the parallel execution. To interpret

these results, recall that TME and ParTME would only coincide if there were no inter-

grid transfers, if the loops on coarser grids were executed as efficiently as on the finest

mesh, if there were no communication overhead, and if no additional copy operations,

or other program overhead occurred.

For the last setup EParTME2, we increase the number of grid points per core to the

maximal capacity of the main memory. This also provides a better (lower) surface to

volume ratio and consequently decreases the EParTME even for more compute cores.

The HHG multigrid implementation is already designed to minimize these over-

heads so that we can solve very large finite element systems. The largest Stokes system

presented in Table 4 is solved on 4096 cores and has 3.6 × 1010 degrees of freedom.

Note that though this compares favorably with some of the largest FE computations to

date, it is already achieved on a quite small partition of the SuperMUC cluster that has

in total 155,656 cores. For scaling results to even larger computations with more than

1012 degrees of freedom we refer to [18,19].

6. Conclusion/outlook

In this paper, we extended the classical definition of TME to a more general concept

taking into account the cost associated with the implementation on a parallel computer.

In the paper, we have demonstrated that Brandt’s seminal idea of TME can be used to

effectively assess the efficiency of a multigrid algorithm. However, the classical notion

of TME does not provide criteria that account for how fast a WU should be executed on

a given architecture and it cannot predict the performance of an implementation on a

massively parallel supercomputer. For this scenario we have developed in this article a

refined TME paradigm. As central conclusion, we believe that in high performance sci-

entific computing, the discretization, the solver algorithms, and their implementation

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 43

should be developed in a co-design process in which also the target computer architec-

ture is taken into account. Thus, the algorithm development should be accompanied

by a systematic and critical performance engineering process.

Our results demonstrate that very large FE systems can be solved in moderate com-

pute times on current parallel architectures. Based on our experience, we believe that

achieving a EParTME factor of 10 may not be realistic with current hard- and software

systems. Currently we achieve a EParTME factor that is significantly below 20 for the

scalar problems and slightly above 100 for the Stokes system. Taking unavoidable

parallel overhead into account, we believe that these are respectable values. Our quan-

titative performance analysis shows that the HHG implementation is highly efficient, in

the sense that it achieves a high percentage of the expected peak performance on the

architectures considered. For this, we have introduced the advanced ECM-performance

model and have carefully analysed what the critical resource is. In particular, HHG has

reached a development stage that the potential for further code optimization is quite

limited.

Our evaluation of EParTME factors as high as 100 for the Stokes system, however,

indicates that compared to the classical results in [10] it should be possible to improve

the efficiency of the current Stokes solver significantly. The potential, lies in developing

better algorithms. Several approaches seem promising, e.g. by considering other types

of smoothers, in particular distributive smoothers. These, however, will typically lead

to more complex data access patterns which will then imply more complex communica-

tion requirements in a distributed memory system, and thus also increased parallel ex-

ecution overhead. Further work on improving the Stokes solver should also include the

construction of the discretization itself into the co-design process and should develop

a meaningful way to assess the efficiency of a discretization in the parallel context.

To this end, modern higher order finite element (FE) discretizations seem to be very

attractive. With higher order approximations and in the case of smooth solutions, less

unknowns might be required to achieve the same accuracy. However, it is far from ob-

vious that the cost of computing a solution of prescribed accuracy is reduced for higher

order schemes when compared to low order methods, since they may lead to denser

linear systems than simple low oder discretizations. Thus the cost of the discretization

may increase significantly, since constructing it via quadrature formulas and applying

it (i.e., a WU in the sense of the TME) may become significantly more expensive.

At this point, we also remark that although computational cost will be increasingly

dominated by data movement, we are far from a situation where FLOPS can be consid-

ered free. This will remain so for the foreseeable future, if only because FLOPS operate

on data that must come from somewhere. For this see e.g. the discussion of register

spills in Section 4 that shows how a high density of operations can indirectly lead to

an overhead for data transfers (in the cache hierarchy). Hence, if the commonly used

phrase FLOPS are free should mean more than an excuse for using underperforming

(yet scalable) algorithms, we have to investigate further in the development of modern

discretization and solver techniques that are suitable for modern architectures.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

44 B. Gmeiner et al.

References

[1] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos. Ultrascalable implicit
finite element analyses in solid mechanics with over a half a billion degrees of freedom.

In ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing. IEEE
Computer Society, 2004.

[2] Nathan Bell, Steven Dalton, and Luke N Olson. Exposing fine-grained parallelism in

algebraic multigrid methods. SIAM Journal on Scientific Computing, 34(4):C123–C152,
2012.

[3] B. Bergen, F. Hülsemann, and U. Rüde. Is 1.7×1010 Unknowns the Largest Finite Element

System that Can Be Solved Today? In ACM/IEEE Proceedings of SC2005: High Performance
Networking and Computing. IEEE Computer Society, 2005.

[4] B. K. Bergen. Hierarchical Hybrid Grids: Data structures and core algorithms for efficient
finite element simulations on supercomputers. SCS Publishing House eV, 2006.

[5] B. K. Bergen, T. Gradl, F. Hülsemann, and U. Rüde. A massively parallel multigrid method

for finite elements. Computing in Science and Engineering, 8(6):56–62, 2006.
[6] B. K. Bergen and F. Hülsemann. Hierarchical hybrid grids: data structures and core

algorithms for multigrid. Numerical linear algebra with applications, 11(2-3):279–291,

2004.
[7] J. Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.

[8] M. Blatt, O. Ippisch, and P. Bastian. A massively parallel algebraic multigrid precondi-
tioner based on aggregation for elliptic problems with heterogeneous coefficients. arXiv

preprint arXiv:1209.0960, 2012.

[9] A. Brandt. Barriers to achieving textbook multigrid efficiency (TME) in CFD. Institute
for Computer Applications in Science and Engineering, NASA Langley Research Center,

1998.

[10] A. Brandt and O. E. Livne. Multigrid Techniques: 1984 Guide with Applications to Fluid
Dynamics, Revised Edition. Classics in Applied Mathematics. Society for Industrial and

Applied Mathematics, 2011.
[11] James Brannick, Yao Chen, Xiaozhe Hu, and Ludmil Zikatanov. Parallel unsmoothed

aggregation algebraic multigrid algorithms on gpus. In Numerical Solution of Partial

Differential Equations: Theory, Algorithms, and Their Applications, pages 81–102. Springer
New York, 2013.

[12] F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the

Stokes equations. In W. Hackbusch, editor, Efficient Solutions of Elliptic Systems. Springer,
1984.

[13] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. Meier-Yang. A survey of par-
allelization techniques for multigrid solvers. In M. A. Heroux, P. Raghavan, and H. D.

Simon, editors, Parallel processing for scientific computing, number 20 in Software, En-

vironments, and Tools, pages 179–201. Society for Industrial and Applied Mathematics,
2006.

[14] C. Flaig and P. Arbenz. A scalable memory efficient multigrid solver for micro-finite

element analyses based on CT images. Parallel Computing, 37(12):846–854, 2011.
[15] P. Ghysels and W. Vanrose. Modeling the performance of geometric multigrid on many-

core computer architectures. Technical report, ExaScience Lab, Intel Labs Europe, Kapel-
dreef 75, 3001 Leuven, Belgium, 2013. Submitted.

[16] B. Gmeiner. Design and Analysis of Hierarchical Hybrid Multigrid Methods for Peta-Scale

Systems and Beyond. PhD thesis, University of Erlangen-Nuremberg, 2013.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

Towards Textbook Efficiency for Parallel Multigrid 45

[17] B. Gmeiner, T. Gradl, F. Gaspar, and U. Rüde. Optimization of the multigrid-convergence
rate on semi-structured meshes by local Fourier analysis. Computers & Mathematics with

Applications, 65(4):694–711, 2013.

[18] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. Performance and scalabil-
ity of hierarchical hybrid multigrid solvers for Stokes systems. SIAM Journal on Scientific

Computing, 2015, accepted.
[19] Björn Gmeiner, Harald Köstler, Markus Stürmer, and Ulrich Rüde. Parallel multigrid on

hierarchical hybrid grids: a performance study on current high performance computing

clusters. Concurrency and Computation: Practice and Experience, 26(1):217–240, 2014.
[20] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. H. M. Buijssen, M. Grajewski,

and S. Turek. Exploring weak scalability for FEM calculations on a GPU-enhanced cluster.

Parallel Computing, 33(10–11):685 – 699, 2007.
[21] G. Hager and G. Wellein. Introduction to high performance computing for scientists and

engineers. CRC Press, 2010.
[22] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. Exploring performance

and power properties of modern multi-core chips via simple machine models. to appear

in: Concurrency and Computation: Practice and Experience, 2014.
[23] V. Heuveline, D Lukarski, N. Trost, and J.-P. Weiss. Parallel smoothers for matrix-based

geometric multigrid methods on locally refined meshes using multicore CPUs and GPUs.

In Facing the Multicore-Challenge II, pages 158–171. Springer, 2012.
[24] F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel Geometric Multigrid. In

A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equations
on Parallel Computers, number 51 in Lecture Notes in Computational Science and Engi-

neering, pages 165–208. Springer, 2005.

[25] Harald Koestler, Daniel Ritter, and Christian Feichtinger. A geometric multigrid solver on
gpu clusters. In GPU Solutions to Multi-scale Problems in Science and Engineering, pages

407–422. Springer Berlin Heidelberg, 2013.

[26] J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)

Newsletter, pages 19–25, December 1995.
[27] E. H. Mueller and R. Scheichl. Massively parallel solvers for elliptic PDEs in numerical

weather- and climate prediction. ArXiv e-prints, July 2013.

[28] A. Neic, M. Liebmann, G. Haase, and G. Plank. Algebraic multigrid solver on clusters of
CPUs and GPUs. In Applied parallel and scientific computing, pages 389–398. Springer,

2012.

[29] G. Romanazzi and P. K. Jimack. Parallel performance prediction for multigrid codes on
distributed memory architectures. In High Performance Computing and Communications,

pages 647–658. Springer, 2007.
[30] R. S. Sampath and G. Biros. A parallel geometric multigrid method for finite elements on

octree meshes. SIAM Journal on Scientific Computing, 32(3):1361–1392, 2010.

[31] V. V. Shaidurov. Multigrid methods for finite elements, volume 318. Kluwer Academic
Publishers (Dordrecht and Boston), 1995.

[32] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. Parallel geometric-

algebraic multigrid on unstructured forests of octrees. In ACM/IEEE Proceedings of
SC2012: High Performance Computing, Networking, Storage and Analysis, page 43. IEEE

Computer Society, 2012.
[33] J. Treibig and G. Hager. Introducing a performance model for bandwidth-limited loop

kernels. In R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, editors,

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

46 B. Gmeiner et al.

Parallel Processing and Applied Mathematics, volume 6067 of Lecture Notes in Computer
Science, pages 615–624. Springer Berlin / Heidelberg, 2010.

[34] R. Verfürth. A combined conjugate gradient – multi-grid algorithm for the numerical

solution of the Stokes problem. IMA Journal of Numerical Analysis, 4(4):441–455, 1984.
[35] C. Wieners. A geometric data structure for parallel finite elements and the applica-

tion to multigrid methods with block smoothing. Computing and visualization in science,
13(4):161–175, 2010.

[36] S. W. Williams, A. Waterman, and D. A. Patterson. Roofline: An insightful visual perfor-

mance model for floating-point programs and multicore architectures. Technical Report
UCB/EECS-2008-134, EECS Department, University of California, Berkeley, Oct 2008.

[37] I. Yavneh. On red-black SOR smoothing in multigrid. SIAM Journal on Scientific Comput-

ing, 17(1):180–192, 1996.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w10si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w10si
https://www.cambridge.org/core

