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Abstract. A shifted Laplacian operator is obtained from the Helmholtz operator by

adding a complex damping. It serves as a basic tool in the most successful multigrid

approach for solving highly indefinite Helmholtz equations — a Shifted Laplacian
preconditioner for Krylov-type methods. Such preconditioning significantly acceler-

ates Krylov iterations, much more so than the multigrid based on original Helmholtz

equations. In this paper, we compare approximation and relaxation properties of
the Helmholtz operator with and without the complex shift, and, based on our ob-

servations, propose a new hybrid approach that combines the two. Our analytical
conclusions are supported by two-dimensional numerical results.
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1. Introduction

Considered here is a two-dimensional Helmholtz equation

Lu = ∆u(x) + k2(x)u(x) = f(x), x ∈ Ω ⊂ R
2, (1.1)

accompanied by the first-order Sommerfeld boundary conditions

∂u(x)

∂n
− iku(x) = 0, x ∈ ∂Ω. (1.2)

Use of standard discretization methods, considered on a sufficiently fine scale h, yields

a system of linear equations

Lhuh = fh, (1.3)

where Lh ∈ C
n×n is a sparse matrix, with n, the number of discrete degrees of freedom,

typically large.
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Use of Shifted Laplacian Operators for Solving Indefinite Helmholtz Equations 137

Iterative methodologies applied to (1.3) include multigrid (MG) approach which

is the focus of this paper. Multigrid is well known for its ability to deliver accurate

solutions at optimal computational costs. The indefinite Helmholtz (HLM) operators,

however, present many challenges for MG development, some of which are discussed

later on and many are presented, for instance, in [1,9]. Multigrid approaches for (1.1)

notably include [2, 3, 5, 10, 11, 13, 14, 17]. The most practical multigrid method to

date is the Shifted Laplacian (SL) approach suggested in [5, 6] and further developed

in [4, 7, 8, 15, 16] among others. The SL employs differential operators M = L +
ik2βI which are obtained from the Helmholtz operator by adding a complex shift. The

positive constant β is typically chosen to be one half. Discretization on scale h yields

Mh = Lh + ik2βIh. (1.4)

Both discrete operators LH and MH , H = h, 2h, · · · are computed using second-order

central differences, resulting in five-point stencils.

The Mh-based multigrid preconditioners provide a significant acceleration of Krylov

iterations applied for solving (1.3). This is due to the fact that all eigenvalues of the

preconditioned operator, (Mh)−1Lh are located at the right half of the complex plane,

i..e, for each such eigenvalue, its real part is positive. The goal of this paper is to

investigate the advantages and shortcomings of employing the shifted Laplacian and

the Helmholtz operators on different scales, H = h, 2h, · · · , and to see if their combined

use results in an improved preconditioning.

We compare two sets of operators {LH}H=h,2h,··· and {MH}H=h,2h,··· from two per-

spectives:

• Approximate qualities of coarse operators;

• The smoothing and convergence rates of relaxation schemes, especially for the

near-kernel and physically smooth error components, the latter being comprised

of eigenvectors of Lh with negative eigenvalues.

The remainder of the paper is organized as follows. The near-kernel components

(nkc) of (1.1) are presented in Section 2, and the Shifted Laplacian preconditioning on

different scales is discussed in Section 3. The accuracy, Section 4, and the relaxation,

Section 5, properties of the Helmholtz and the Shifted Laplacian operators are com-

pared, and a multigrid preconditioner based on a combination of the two is proposed,

Section 6. Numerical experiments are presented in Section 7, and the concluding re-

marks are given in Section 8.

2. Error components and the Helmholtz operator

An efficient multigrid algorithm works in the following way: Each coarse operator

AH , H = 2h, 4h, · · · approximates the finest operator Ah for all components unreduced

by the processing on preceding finer grids. A finer error eH/2 with a large relative

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w03si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:30:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w03si
https://www.cambridge.org/core


138 I. Livshits

residual, ‖rH/2‖ = ‖AH/2eH/2‖ ≫ ‖eH/2‖, is practically annihilated by a few relaxation

sweeps applied to the residual equation AH/2eH/2 = rH/2. The remaining error, with

a small relative residual, is accurately approximated on scale H, and so forth. This

means in particular that error components with the smallest relative residuals, i.e., the

near-kernel error components of Ah,

Aheh ≈ 0, (2.1)

have to be approximated on all, including the coarsest, scales. This works naturally

when (2.1) are smooth, which is not the case for the Helmholtz operators with large

wave numbers, for which the nkc are given by

e(x, y) = ei(ω1x+ω2y), |ω| =
√

ω2
1 + ω2

2 ≈ k. (2.2)

Starting with some scale H, (2.2) are too oscillatory to be accurately represented by

coarse scale operators.

3. Shifted Laplacian preconditioner

One of the biggest shortcomings of the indefinite Helmholtz operator from the com-

putational point of view is an abundance of eigenfunctions with negative eigenvalues,

which, when erroneous, are not reduced or even amplified by standard linear iterative

schemes. Preconditioning of Lh by Mh eliminates this particular issue. It is well estab-

lished, e.g., [5], that on the finest scale h all eigenvalues of operator (Mh)−1Lh (and

Lh(Mh)−1) are located in the right half of the complex plane. This quality of the SL

operators is not unique to small h. In fact, as Fig. 1 shows, for all scales H = h, 2h, · · · ,

all eigenvalues of the HLM operator preconditioned by the SL operator have positive

real parts, i.e., preconditioning of LH by MH will improve performance of the Krylov-

based iterations for error components visible and updated on an arbitrary scale H. This

is important because in the iterative multigrid cycle (versus the direct inversion of Mh

on the finest grid), the preconditioning of Lh by the Shifted Laplacian operator for each

error component is actually determined by the approximation of (MH)−1, where H is

the scale where the error component in question is updated. For most error component

LH approximates Lh, and thus the action of (MH)−1LH plays the same role of the one

of (Mh)−1Lh in one-grid solvers.

4. Approximation properties of the Helmholtz and the shifted Laplacian
coarse operators

An approximation accuracy of a fine operator by a coarse operator is often measured

by comparing symbols of the two for Fourier components visible on the coarser scale.

Generally, a symbol of a linear operator A applied to ei(ω1x+ω2y) is defined as a complex

coefficient Ã(ω1, ω2):

Aei(ω1x+ω2y) = Ã(ω1, ω2)e
i(ω1x+ω2y). (4.1)
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Figure 1: The eigenvalues of (MH)−1LH for different values of kH ; the finest scale satisfies kH = 0.625,
the coarsest – kH = 5.

For a coarse correction, produced either by LH or by MH , to provide an adequate

approximation to solution of (1.3), symbol ratios

τHLM
H (ω1, ω2) =

L̃h(ω1, ω2)

L̃H(ω1, ω2)
=

(2 cos ω1h+ 2cos ω2h− 4 + k2h2)H2

(2 cos ω1H + 2cos ω2H − 4 + k2H2)h2
(4.2)

and

τSLH (ω1, ω2) =
L̃h(ω1, ω2)

M̃H(ω1, ω2)
=

(2 cos ω1h+ 2cos ω2h− 4 + k2h2)H2

(2 cos ω1H + 2cos ω2H − 4 + k2H2(1 + iβ))h2
(4.3)

should be close to one. Fig. 2 illustrates how values of (4.2) and (4.3) change when

considered for increasingly larger H; it shows results for error components that are

visible on each scale H, 0 ≤ ω1,2H ≤ π. In particular, it demonstrates how well the

error components that are oscillatory on scale H, with π/2 ≤ ωmaxH ≤ π, ωmax =
max{|ω1|, |ω2|}, are approximated.

As Fig. 2 suggests, operators LH and MH have similar approximation accuracy

for high-frequency components visible on the finest grids, both do not approximate

the nkc components (seen as quarter of a ring in all figures, note that the presented

range [0, π]2] is a quarter of the actual range [−π, π]2) and perform differently for the

smoothest components on intermediate and coarse scales. Symbols (4.2)-(4.3) have

the following properties:
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Figure 2: Symbol ratios for Fourier components with frequencies θ1 = ω1H, θ2 = ω2H visible on scale H ;
the left column shows τHLM

H , the second and the third — the real and the imaginary parts of τSL
H ; the first

and the second columns are filtered to emphasize the regions with 0.5 ≤ τ ≤ 2, otherwise τ is set to zero,
which is shown in dark blue. The imaginary part remains unchanged.

• For kH ≤ 0.625: all components with π/2 < ωmaxH ≤ π are well approximated

by LH and MH : Re(τSLH ) ≈ τHLM
H are close to one, Im(τSLH ) ≤ .1.

• For kH = 1.25: all components with π/2 < ωmaxH ≤ π are accurately approxi-

mated by LH , they satisfy (1 + α1)k ≤ |ω| ≤ 2(1 + α1)k, α1 ≈ .4. The accuracy

deteriorates as |ω| approaches k. MH provides an accurate approximation for a

smaller range of components, the ones with (1 + β1) ≤ |ω| ≤ 2(1 + α1)k, β1 ≈ .8.

The growing imaginary part of τSLH for smaller |ω| affects the approximation qual-

ity.
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Use of Shifted Laplacian Operators for Solving Indefinite Helmholtz Equations 141

• For kH = 2.5: LH provides an accurate approximation for |ω| ≤ (1 − α0)k,

with α0 ≈ .1, and it does not approximate components with |ω| ≥ k. Shifted

Laplacian operator MH gives a rise to a wrong approximation for all components

in question.

• For kH ≥ 5: all components visible on scale H, 0 ≤ |ω| ≤ 0.65k, have an accurate

approximation by LH , but not by MH (due to a large imaginary part).

To summarize, a sequence of coarse-grid Helmholtz operators {LH}H>h accurately

approximates the finest grid Helmholtz operator Lh for all Fourier components except

(2.2) with ω satisfying (1−α0)k ≤ |ω| ≤ (1+α1)k, where α0 ≈ .1 and α1 ≈ .4. Coarse-

grid Shifted Laplacian operators {MH}H>h approximate the finest-grid Helmholtz op-

erator Lh for all oscillatory components, failing to approximate both (2.2) and (unlike

LH) smooth errors, i.e., for all ω with 0 ≤ |ω| ≤ (1 + β1)k, where β1 ≈ .8.

5. Relaxation for L
H and M

H

Next we discuss how different relaxation schemes perform when applied to the

HLM and the SL operators on increasingly coarser scales H.

First iterative scheme considered here is the lexicographic Gauss-Seidel (lex-GS).

When applied to LH and MH , one iteration changes an amplitude of an erroneous

Fourier component ei(ω1x+ω2y) by a factor of µ(θ1, θ2), θ1 = ω1H and θ2 = ω2H,

µ(θ1, θ2) =

∣

∣

∣

∣

exp(iθ1) + exp(iθ2)

exp(−iθ1) + exp(−iθ2)− c

∣

∣

∣

∣

, (5.1)

where c = 4− k2H2 and c = 4− k2(1+ iβ)H2 for the Helmholtz and the Shifted Lapla-

cian operators, respectively. Typically, in predicting a convergence rate of a multigrid

solver, the smoothing properties of the relaxation is the main parameter. It is mea-

sured by a smoothing rate, i.e., reduction of the oscillatory on the current scale error

components, defined as

µ = max
π/2≤max{|θ1|,|θ2|}≤π

µ(θ1, θ2). (5.2)

For the Helmholtz operators, there is an additional phenomenon – a divergence of

physically smooth error components corresponding to the eigenfunctions with negative

eigenvalues. To monitor the divergence, an overall convergence rate is considered:

µ = max
0≤max{|θ1|,|θ2|}≤π

µ(θ1, θ2). (5.3)

Fig. 3 shows the values of (5.1) for LH and MH , obtained on increasingly coarser scale

and for different frequencies. It confirms that

• For kH = 0.625, the smoothing rate are given by µHLM ≈ µSL ≈ 0.7, and the

divergence is bounded by µHLM ≈ µSL ≤ 1.1; (for smaller values of kH, not

depicted here, the smoothing rates are better and the divergence is very modest).
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Figure 3: Reduction rates of the lex-GS applied to LH (left column) and MH (right column) on different
scales H .

• For kH = 1.25, the divergence of smooth error components becomes large, with

µHLM ≈ 4.5 and µSL ≈ 3.5; no error reduction for |ω| ≈ k. However, error

components with |ω| ≥ 1.3k for LH and with |ω| ≥ 1.8k for MH are reduced by

at least a factor of 0.7.

• For kH = 2.5, no convergence for physically oscillatory there near-kernel compo-

nents, µHLM ≈ µSL ≈ 1. For smoother components, with |ω| ≤ .9k for the HLM

and (|ω| ≤ .8k) for the SL operators, the convergence rate µ(ω1H,ω2H) is below

0.7.
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• For kH = 5, the overall convergence factors are given by µHLM
H

≈ .1 and µSL
H

≈
.085. making a couple of relaxation sweeps an equivalent to a direct solver. No

coarser grids are needed.

Overall, the lexicographic Gauss-Seidel relaxation for both approaches performs

well on scales with kH / 0.625 and kH ' 2.5. It fails to reduce near-kernel components

(2.1) on any grid and causes a significant divergence of smooth error components when

kH ≈ 1.25.

Clearly, point-wise relaxations are usable on most scales. For the HLM operators

on scales, kH = 1.25 and kH = 2.5, one needs a relaxation scheme that will yield

a smaller divergence and better smoothing rates than traditional linear schemes. The

same is true for the SL operators on scale kH ≈ 1.25. Any converging (or modestly

diverging) relaxation can be used on kH ≈ 2.5, but only for the purposes of preparing

error components to the Krylov iteration. Possible candidates for such schemes are the

Kaczmarz relaxation scheme [12], or, in case of parallel processing, inspired by it, the

point-wise Gauss-Seidel applied to normal operators (LH)∗(LH) and (MH)∗MH , re-

spectively. These relaxation schemes work, but they are both slow (many iterations are

needed) and with larger operation count, both due to inflated (indirectly and directly,

respectively) stencils. A cost of such relaxation is 13/5 times higher than the one for

the GS applied to five-point stencils of LH and MH , and typically four pre- and four

post-relaxation sweeps are needed to avoid a slow down due to relaxation on these

scales. This results in an equivalent of 112/5 of regular iterations sweeps. We note,

however, that this is an equivalent of 112/20 additional iterations on the next finer

scale kh = 0.625, and only 112/80 ≈ 1.4 iterations on the target (in our experiments)

scale kh = 0.3125.

Another, more economical, option is to apply the Gauss-Seidel relaxation to oper-

ators (BH)∗LH (or (BH)∗MH), where BH is an operator with a smaller stencil. Our

choice for BH is a discretization of one of the one-dimensional Shifted Laplacian oper-

ators

Bx = ∂xx + k2(1 + iβ0) and By = ∂yy + k2(1 + iβ0), (5.4)

with β0 = 1. Unlike MH , the choice of larger complex dumping does not affect the

approximation accuracy, and it does improve the convergence rates. The stencil’s size

of (BH)∗LH and (BH)∗MH is eleven, i.e., each iteration costs only 2.2 times more

than a standard Gauss-Seidel applied to a five-point stencil. (It is only a small cost

gain compared to the thirteen point stencil if the BH = LH , but it becomes more

pronounced in three dimensions.) The reduction rate µ(θ1, θ2) of the new operators is

given by

µ(θ1, θ2) =

∣

∣

∣

∣

(2 cos θ2 + b+ c) exp(iθ1) + exp(2iθ1) + b exp(iθ2)

(2 cos θ2 + b+ c) exp(−iθ1) + exp(−2iθ1) + b exp(−iθ2) + 2 + b c

∣

∣

∣

∣

, (5.5)

where the values of c are the same as in (5.1) and b = −2 + k2H2(1− iβ0). The values

of (5.5) are given in Fig. 4 for BH
x LH (left column) and BH

x MH (right column). In
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Figure 4: Reduction rates of the relaxation for BH
x LH (left column) and BH

x MH (right column), where
BH

x was obtained by discretizing operator Bx, (5.4).

our numerical experiments, this relaxation scheme is used on scales kH = 1.25 and

kH = 2.5 for operators BHMH . Three pre- and two post relaxation sweeps is used

for kH ≈ 1.25. This is the cost of eleven Gauss-Seidel sweeps applied to LH or MH ,

equivalent of 11/4 relaxation sweeps on the next finer scale and 11/16 sweeps on the

target kH = 0.3125. One pre- and one post iteration is used on scale kH = 2.5. As the

Fig. 4 shows, the relaxation is convergent on both scales. The rates are not symmetric

for θ1 and θ2. Therefore, the algorithms presented in the next Section alternate between

BH
x and BH

y , the discretization of By.
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6. Hybrid algorithm

We consider multigrid V-cycles constructed using the following elements:

• Operators LH and/or MH , results of the second-order finite-difference discretiza-

tion of differential operators L and/or M , each with five-point stencils;

• A bilinear interpolation;

• A full weighting restriction;

• Gauss-Seidel iterations:

– one pre- and post-smoothing steps on all scales except kH ≈ 1.25 and kH ≈
2.5, applied either to LH or to MH ;

– three pre- and two post-smoothing steps on scale kH ≈ 1.25, applied either

to (BH)TLH or to (BH)TMH ;

– one pre- and one post-smoothing step on scale kH ≈ 2.5, applied either to

(BH)TLH or to (BH)TMH .

The relaxation strategy depends on kH and not on k, i.e., the number of relax-

ation sweeps and their relative (to the fine-grid problem size) cost do not increase

as k increases. Moreover, as discussed in Section 8, the relative cost becomes

smaller when the target problem is considered on finer scale, with smaller kh.

On each scale, a coarse-grid operator is used in two capacities: (A) for relaxation and

(B) for computing coarse grid residuals. Based on the analysis reported in Sections 2-5,

in addition to the SL-based V-cycle preconditioner, we consider a new hybrid V-cycle

(HYB-V) that

• Employs operators LH , H = h, 2h, · · · to compute coarse residuals;

• Employs Gauss-Seidel relaxation of residual equations LHeH = rH on all scales

except kH ≈ 1.25 and kH ≈ 2.5;

• Employs Gauss-Seidel relaxation of residual equations (BH)∗LHeH = (BH)∗rH

on scales kH ≈ 1.25 and kH ≈ 2.5, where BH alternates between BH
x and BH

y .

The motivation for the hybrid method comes from the observations reported in Sections

4 and 5 regarding performance of the SL and the HLM operators on intermediate and

coarse scales. (On finer grids both act very similarly, and either one can be used.) The

strength of the Shifted Laplacian approach, studied in detail in [5, 6], is the transfor-

mation rather than reduction of the near-kernel error components that mostly occurs

on intermediate scales. This is the reason for employing MH in relaxation there.

On coarse grids, however, Helmholtz operators LH , give rise to an accurate approx-

imation of smooth components, and, together with a fast convergence by Gauss-Seidel,

allow for an efficient coarse-grid correction. Therefore, LH is used in relaxation on the

coarsest scale(s).
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7. Numerical experiments and computational cost

In all numerical experiments, the computational domain is a unit square [0, 1]2, the

right-hand-size fh is homogeneous except at one point. The intergrid transfers used

in the V-cycles are a linear interpolation and a full weighting. As Krylov iterations,

the Bi-CGSTAB algorithm is used, as it showed to be more efficient than the GMRES

algorithm. We note that each BI-CGSTAB iteration employs two multigrid cycles.

First, the algorithms are tested for (1.1) with a constant k, considered on Ω = [0, 1]2,

and the results are presented in Table 1. Initial approximations x0 are zero in all

experiments; iterations are performed until the initial residual ‖r0‖ = ‖f‖ is reduced

by a factor of 107. In Tables 1-2, right-hand-sides are homogeneous except at the center

of Ω, where f(.5, .5) = 1.

Clearly, the relaxation regiment on scales kH ≈ 1.25, 2.5 needs fine-tuning, both

with the type of relaxation (e.g., different types of BH , in particular the size of complex

shift, β0) are to be optimized, as well as the number of relaxation sweeps. This is a

subject of future work.

In Table 2, performance of the SL-V and the HYB-V methods is tested when con-

sidered on increasingly finer h; both show an improved convergence when computing

increasingly accurate solutions.

Next, the algorithms are tested for (1.1) with heterogeneous medium — a wedge

problem shown in Fig. 5; numerical experiments presented in Table 3. Again, the

hybrid preconditioner performs better than the algorithm based strictly on the shifted

Laplacian operator.
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Figure 5: Wave number distribution in the wedge problem The point source is located at the middle of the
upper boundary: f(0.5, 1.) = 1, and it is zero elsewhere.
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Table 1: The number of the Bi-CGSTAB iterations for the SL-V and the HYB-V preconditioners for different
values of constant wave numbers; in all experiments kh = 0.3125. Given in parenthesis is the number of
the Bi-CGSSTAB if the number of post-iterations on scale kH ≈ 1.25 is increases from two to three, and
on kH ≈ 2.5 — from one to two.

k 40 50 80 100 160

h 1/64 1/80 1/128 1/160 1/240

SL-V 21 24 35.5 45 68.5 (67.5)

HYB-V 14.5 17.5 27.5 34 55.5 (50)

Table 2: The number of the Bi-CGSTAB iterations for the SL-V and the HYB-V preconditioners; k = 40,
kh ranges from 0.625 to 0.078125.

h 1/64 1/128 1/256 1/512

SL-V 22 21 20.5 19

HYB-V 18 15.5 14.5 13.5

Table 3: The number of Bi-CGSTAB iterations for the SL-V and the HYB-V preconditioners, applied to
the Helmholtz equation with discontinuous k(x, y) defined in Fig. 5; in all experiments krefh ≈ 0.2344; the
value of k in the table varies from 15 to 480.

kref 15 30 60 120 240

SL-V 12 20 41 77 121

HYB-V 9 14 23 44 72

Computational cost of the SL-V and the HYB-V preconditioners is close to the one

of a standard multigrid V (1, 1) cycle applied to any complex discrete operator with a

five point stencil; the only difference is the cost of additional relaxation sweeps applied

to operators with larger stencils on scales kH = 1.25 and kH = 2.5, which is discussed

in Section 5. While the absolute cost of these iterations remains the same for a given

(1.1), its relative fraction in the overall costs becomes smaller when (1.3) is discretized

on finer scale h.

8. Conclusions and future work

Analysis of approximation and relaxation properties of the Helmholtz and the Shifted

Laplacian operators showed that the use of one or another is beneficial depending on

the considered scale. On the finer grids both LH and MH perform equally well; on

the intermediate grids the SL operator allows a better preconditioning of the nkc for

the Krylov iteration, and on the coarsest scale the Helmholtz operator gives a more

accurate approximation for the smoothest error components. In addition, a new type

of relaxation is proposed to replace linear relaxation scheme on the intermediate grids

where the latter are strongly divergent. The hybrid multigrid algorithm HYB-V built on

these observations show better convergence than the SL-V solver.

Our next step is to test these findings in the context of the original Shifted Laplacian

algorithm [5], including its three dimensional implementation.
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