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1 Introduction

In this paper, we consider the three-dimensional two-fluid (including electrons and ions)

Euler-Maxwell equations in a torus T=(R/Z)3 :

∂tnα+div(nαuα)=0, (1.1)

mα[∂t(nαuα)+div(nαuα⊗uα)]+∇p(nα)=qαnα(E+uα×B)−
mαnαuα

τα
, (1.2)

ε∂tE−
1

µ
∇×B=neue−niui, (1.3)

∂tB+∇×E=0, (1.4)

εdivE=ni−ne, divB=0, (1.5)

where α= e,i, qi =1, qe =−1; ne and ni stand for the density of the electrons and ions; ue

and ui stand for the velocity of the electrons and ions; E and B are respectively the electric
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field and magnetic field; p= p(nα) is the pressure function which is sufficiently smooth

and strictly increasing for nα > 0. These variables are functions of a three-dimensional

position vector x∈T and of the time t>0. In the above systems the physical parameters

are the electron mass me and the ion mass mi, the momentum relaxation times τe and τi,

and the permittivity ε and the permeability µ.

For simplicity, we denote mα =1, ε,µ=1 and τe =τi =τ, then we obtain the following

systems:

∂tnα+div(nαuα)=0, (1.6)

∂t(nαuα)+div(nαuα⊗uα)+∇p(nα)=qαnα(E+uα×B)−
nαuα

τα
, (1.7)

∂tE−∇×B=neue−niui, divE=ni−ne, (1.8)

∂tB+∇×E=0, divB=0. (1.9)

Furthermore, we make the time scaling by replacing t by t
τ and define the enthalpy

function h(nα) by

h(nα)=
∫ nα

1

p′(s)

s
ds. (1.10)

So the system we considered is rewritten the following reduced two-fluid Euler-

Maxwell systems:

∂tnα+
1

τ
div(nαuα)=0, (1.11)

∂tuα+
1

τ
(uα ·∇)uα+

1

τ
∇h(nα)=

qα(E+uα×B)

τ
−

uα

τ2
, (1.12)

∂tE−
1

τ
∇×B=

neue−niui

τ
, divE=ni−ne, (1.13)

∂tB+
1

τ
∇×E=0, divB=0, (1.14)

with initial data:

(nα,uα,E,B)|t=0=(nτ
α,0,uτ

α,0,Eτ
0 ,Bτ

0). (1.15)

The study of compressible Euler-Maxwell equations began in 2000, Chen, Jerome and

Wang [1] prove the existence of global weak solutions of the simplified Euler-Maxwell

equations by using the method of step by step Godunov scheme combined with compen-

sated compactness; in 2007 and 2008, Peng and Wang [2,3] study the non relativistic limit

convergence problem for compressible Euler-Maxwell equations to compressible Euler-

Poisson equations and the composite limits of the quasi neutral limit and the non rela-

tivistic limit for compressible Euler-Maxwell equations; Peng, Wang and Gu [4] discuss

the relaxation limit of compressible Euler-Maxwell equations and the existence of global

smooth solution in 2011; in the same year, Wang, Yang and Zhao [5] research the relax-

ation limit of the plasma two-fluid Euler-Maxwell equations with the help of Maxwell



Relaxation Limits of the Two-Fluid Compressible Euler-Maxwell Equations 19

iteration and energy method for the well-prepared initial data; Mohamed-Lasmer Hajjej

and Peng [6] study the relaxation limits of the one-fluid Euler-Maxwell equation with

initial layer by the method of asymptotic expansion.

For later use in this paper, we recall some inequalities in Sobolev spaces [7,8] and the

local existence of smooth solutions for symmetrizablle hyperbolic equation. For any s>0,

we denote by ‖ ·‖s the norm of the usual Sobolev space Hs(T), and by ‖ ·‖ and ‖ ·‖∞ the

norms of L2(T) and L∞(T), respectively.

Lemma 1.1. (See [9, 10]) Let s≥ 3 be an integer and (nτ
α,0,uτ

α,0,Eτ
0 ,Bτ

0 )∈ Hs(T) with nτ
α,0 ≥ k

for some given constant k> 0, independent of τ. Then there exist Tτ
1 > 0 and a unique smooth

solution (nτ
α,uτ

α,Eτ,Bτ) to the periodic problem (1.6)-(1.9) defined in the time interval [0,Tτ
1 ],

with (nτ
α,uτ

α,Eτ ,Bτ)∈C1([0,Tτ
1 ];H

s−1(T))∩C([0,Tτ
1 ];H

s(T)).

The main result is as follows:

Theorem 1.1. For any integer s≥3, under the Proposition 1.1 and the following conditions:

divEτ =ni,τ−ne,τ, divBτ =0, (1.16)

sup
0≤t≤T1

‖(nα,τ,Eτ,Bτ)(t,·)‖s ≤C, sup
0≤t≤T1

‖(uα,τ(t,·)‖s ≤C, (1.17)

‖(nτ
α,0−nα,τ(0,·),uτ

α,0−uα,τ(0,·),Eτ
0 −Eτ(0,·),Bτ

0 −Bτ(0,·)‖s ≤Cτ2, (1.18)

here (nα,τ,uα,τ,Eτ,Bτ)(t,x) is the approximate solutions of (1.11)-(1.14), such that as τ→0 we

have Tτ
1 ≥T1 and the solution (nτ

α,uτ
α,Eτ,Bτ) satisfies:

‖(nτ
α ,uτ

α,Eτ,Bτ)−(nα,τ,uα,τ,Eτ,Bτ)‖s ≤Cτ2, (1.19)

‖uτ
α−uα,τ‖L2(0,Tτ;Hs)≤Cτ3. (1.20)

for any t∈ [0,Tτ ], here Tτ ≤T1.

Our main purpose in this paper is to study the relaxation limits of the two-fluid Euler-

Maxwell systems (1.11)-(1.14) with initial data (1.15). We consider the problem with

initial layer. In order to establish our result, we make an asymptotic expansion including

initial layer. In Section 2, we will take the approximate expression into systems (1.11)-
(1.14) such that we get the error estimates of the remainders. In Section 3, we prove the

main result about the convergence.

2 Asymptotic expansion

In this section, we make an asymptotic expansion with initial layer functions and take it

into the systems, then we can get the expression of the first-order initial layer functions

and second-order initial layer functions. Furthermore, we obtain the estimates of the

remainders which produced by approximate solutions and extra solutions.
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We know that

(nα,τ,uα,τ,Eτ,Bτ)=(ñα,τ,ũα,τ,Ẽτ,B̃τ)+(nα,I ,uα,I ,EI ,BI),

where (nα,τ,uα,τ,Eτ,Bτ) is the approximate solution, (ñα,τ,ũα,τ,Ẽτ,B̃τ) the inner function,

and (nα,I ,uα,I,EI ,BI) is the initial layer function.

Firstly, we make the following ansatz for inner function

(ñα,τ,ũα,τ,Ẽτ,B̃τ)(t,x)=∑
j>0

τ2j(n
j
α,τu

j
α,Ej,τBj), (2.1)

and take it into systems (1.11)−(1.14), we obtain

∂tn
0
α+div(n0

αu0
α)=0, (2.2)

∇h(n0
α)=qαE0−u0

α, (2.3)

∂tE
0−∇×B0=

n0
e u0

e −n0
i u0

i

τ
, divE0=n0

i −n0
e , (2.4)

∇×E0=0, divB0=0, (2.5)

there ∇×E0 = 0 implies the existence of a potential φ0 such that E0 =−∇φ0. Then n0
α

solves a classical system drift-diffusion equations:

{
∂tn

0
α−div(n0

α(∇h(n0
α)+qα∇φ0))=0,

−△φ0=n0
i −n0

e ,

with initial condition:

n0
α(0,x)=nα,0.

Then we can get the first order companbility condition:

uα,0=−∇h(nα,0)−qα∇φ0, E0=−∇φ0, B0=B0,

where φ0 is determined by −△φ0=ni,0−ne,0. It is similar to [6].

Secondly, let the initial data of an approximate solution (nα,τ,uα,τ,Eτ,Bτ)(t,x) have an

asymptotic expansion of the form:

(nα,τ,uα,τ,Eτ,Bτ)(t,x) |t=0=(nα,0,τuα,0,E0,τB0)+O(τ2), (2.6)

where (nα,0,τuα,0,E0,τB0) are the given smooth functions solutions; moreover the asymp-

totic expansion including initial layer correction is

(nα,τ,uα,τ,Eτ,Bτ)(t,x)=(n0
α,τu0

α,E0+τ2E1
c ,τB0)(t,x)+((n0

α,I ,τu0
α,I ,E

0
I ,τB0

I )(z,x)

+τ2(n1
α,I ,τu1

α,I ,E
1
I ,τB1

I ))(z,x)+O(τ2), (2.7)
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where z= t/τ2 is the fast variable, the subscript I stands for the initial layer variable and

E1
c is the correction term defined by:

∇×Em+1
c =−∂tB

m, divEm+1
c =0, (2.8)

where m=0,1,2,....

Obviously, (n0,u0,E0,B0) satisfies the systems (2.2)-(2.5). Putting expression (2.7)
into (1.11) and (1.13), we obtain ∂zn0

α,I =0,∂zE0
I =0 which imply

n0
α,I =E0

I =0. (2.9)

Putting expression (2.7) into (1.14) and using (2.5) and (2.9), we have

∂zB0
I =0, (2.10)

which imply

B0
I =0. (2.11)

Putting expression (2.7) into (1.12) and using (2.2), we get

∂zu0
α,I+u0

α,I =0. (2.12)

From (2.6)-(2.7), we have

u0
α(0,x)+u0

α,I(0,x)=uα,0(x), (2.13)

together with (2.12), we get the solution about first order initial layers for variable u

u0
α,I(z,x)=u0

α,I(0,x)e−z =(uα,0(x)−u0
α(0,x))e−z. (2.14)

Using the similar way, we can obtain the second order initial layers

u1
α,I(z,x)=0, (2.15)

∂zn1
α,I(z,x)+div(n0

α(0,x)u0
α,I(z,x))=0, (2.16)

∂zE1
I (z,x)=n0

e (0,x)u0
e,I(z,x)−n0

i (0,x)u0
i,I(z,x), (2.17)

∂zB1
I (z,x)+∇×E1

I (z,x)=0. (2.18)

Suppose that (nα,1,E1,B1) is smooth function, and let

(n1
α,I ,E

1
I ,B1

I )(0,x)=(nα,1,E1,B1)(x). (2.19)

Together with (2.13), (2.14) and (2.16), we have

n1
α,I(z,x)=nα,1(x)−div[n0

α(0,x)(uα,0(x)−u0
α(0,x))](1−e−z). (2.20)

Similarly, together with (2.14), (2.17) and (2.19), we obtain

E1
I (z,x)=E1+[n0

e (0,x)(ue,0(x)−u0
e (0,x))−n0

i (0,x)(ui,0(x)−u0
i (0,x))](1−e−z). (2.21)
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There we take

E1(x)=−n0
e (0,x)(ue,0(x)−u0

e (0,x))−n0
i (0,x)(ui,0(x)−u0

i (0,x)), (2.22)

divE1(x)=ni,1(x)−ne,1(x), divB1(x)=0. (2.23)

Then we have

divE1
I =n1

e,I−n1
i,I . (2.24)

From a series of calculations, we get

E1
I (z,x)=−[n0

e (0,x)(ue,0(x)−u0
e (0,x))−n0

i (0,x)(ui,0(x)−u0
i (0,x))]e−z, (2.25)

B1
I (z,x)=B1(x)+∇×[n0

α(0,x)(uα,0(x)−u0
α(0,x))](1−e−z). (2.26)

Then we have

divB1
I =0. (2.27)

According to the asymptotic expansions above, set

nα,τ,I(t,x)=n0
α(t,x)+τ2n1

α,I(z,x), (2.28)

uα,τ,I(t,x)=τ(u0
α(t,x)+u0

α,I(z,x)), (2.29)

Eτ,I(t,x)=E0(t,x)+τ2(E1
c (t,x)+E1

I (z,x)), (2.30)

Bτ,I(t,x)=τB0(t,x)+τ3B1
I (z,x). (2.31)

Then we have

(nα,τ,I ,uα,τ,I,Eτ,I ,Bτ,I)|t=0=(nα,0,τuα,0,E0,τB0)+τ2(nα,1,0,E1+E1
c (0,x),τB1). (2.32)

Moreover, equations (2.4), (2.8) and (2.24) imply that

divEτ,I =ni,τ,I−ne,τ,I , (2.33)

and equations (2.5) and (2.27) imply that

divBτ,I =0. (2.34)

Define the remainders Rτ,I
nα , Rτ,I

uα , Rτ,I
E and Rτ,I

B by

∂tnα,τ,I+
1

τ
div(nα,τ,Iuα,τ,I)=Rτ,I

nα
, (2.35)

∂tuα,τ,I+
1

τ
(uα,τ,I ·∇)uα,τ,I++

1

τ
∇h(nα,τ,I)=

qα(Eτ,I+uα,τ,I×Bτ,I)

τ
−

uα,τ,I

τ2
+Rτ,I

uα
, (2.36)

∂tEτ,I−
1

τ
∇×Bτ,I =

ne,τ,Iue,τ,I−ni,τ,Iui,τ,I

τ
+Rτ,I

E , (2.37)

∂tBτ,I+
1

τ
∇×Eτ,I =Rτ,I

B . (2.38)
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Because that there is η∈ [0,t]⊂ [0,T1 ], such that

n0
α(t,x)−n0

α(0,x)= t∂tn
0
α(η,x)=τ2z∂tn

0
α(η,x), (2.39)

then we have

(n0
α(t,x)−n0

α(0,x))u0
α,I =O(τ2). (2.40)

After a simple calculation, we get

Rτ,I
nα

=O(τ2), Rτ,I
uα

=O(τ), Rτ,I
E =O(τ2), Rτ,I

B =0. (2.41)

Lemma 2.1. Let s≥3 be an integer. For given smooth data, the remainders Rτ,I
nα

, Rτ,I
uα

, Rτ,I
E and

Rτ,I
B satify

sup
0≤t≤T1

‖ (Rτ,I
nα

,Rτ,I
E )(t,·)‖s≤Cτ2, sup

0≤t≤T1

‖Rτ,I
uα
(t,·)‖s≤Cτ, Rτ,I

B =0, (2.42)

where C>0 is a constant independent of τ.

3 Proof of the convergence result

In this section we prove the main convergence result from approximate periodic solu-

tion to exact solution to two-fluid Euler-Maxwell equations. Let (nτ
α,uτ

α,Eτ,Bτ) be the

exact solution to (1.11)-(1.14) with initial data (nτ
α,0,uτ

α,0,Eτ
0 ,Bτ

0) and (nα,τ,uα,τ,Eτ,Bτ) be

an approximate periodic solution defined on [0,T1], with

(nα,τ,uα,τ,Eτ,Bτ)∈C([0,T1],H
s+1(T))∩C1([0,T1],H

s(T)).

By Lemma 1.1, the exact solution (nτ
α,uτ

α,Eτ,Bτ) is defined in a time interval [0,Tτ
1 ]

with Tτ
1 >0. Since nτ

α∈C([0,Tτ
1 ],H

s(T) and the embedding from Hs(T) to C(T) is contin-

uous, we have nτ
α∈C([0,Tτ

1 ]×T). From (1.17) and (1.18) and assumption nτ
α,0≥k>0, we

deduce that there exist Tτ
2 ∈ (0,Tτ

1 ] and a constant C0>0, independent of τ, such that

k

2
≤nτ

α ≤C0, ∀(t,x)∈ [0,Tτ
2 ]×T.

Similarly, the function t 7→‖ (nτ
α(t,·),u

τ
α(t,·),E

τ(t,·),Bτ(t,·)) ‖s is continuous in C([0,Tτ
2 ]).

From (1.17), the sequence (‖ (nτ
α(0,·),uτ

α(0,·),Eτ(0,·),Bτ(0,·)) ‖s)τ>0 is bounded. Then

there exist Tτ
3 ∈ (0,Tτ

2 ] and a constant, still denoted by C0, such that

‖ (nτ
α(t,·),u

τ
α(t,·),E

τ(t,·),Bτ(t,·))‖s≤C0, ∀t∈ (0,Tτ
3 ].

Then we define Tτ=min(T1,Tτ
3 )>0, such that the exact solution and the approximate are

both defined on [0,Tτ ], and the exact solution satisfy:

k

2
≤nτ

α ≤C, ‖ (nτ
α ,uτ

α,Eτ,Bτ)‖s≤C, (3.1)
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where C>0 is a constant independent of τ. Obviously it is valid from the paper [6].

Let

(Nτ
α ,Uτ

α ,Fτ,Gτ)=(nτ
α−nα,τ,uτ

α−uα,τ,Eτ−Eτ,Bτ−Bτ), (3.2)

obviously the error function (Nτ
α ,Uτ

α ,Fτ,Gτ) satisfies:

∂tN
τ
α +

1

τ
((Uτ

α+uα,τ)·∇)Nτ
α +

1

τ
(Nτ

α +nα,τ)divUτ
α

=−
1

τ
(Nτ

α divuα,τ+(Uτ
α ·∇)uα,τ)−Rτ

nα
, (3.3)

∂tU
τ
α +

1

τ
((Uτ

α+uα,τ)·∇)Uτ
α +

1

τ
h′(Nτ

α +nα,τ)∇Nτ
α

=−
1

τ
[(Uτ

α ·∇)uα,τ+(h′(Nτ
α +nα,τ)+h′(nα,τ))]

−
1

τ2
Uτ

α −
1

τ
qα[F

τ+(Uτ
α+uα,τ)×Gτ+Uτ

α×Bτ]−Rτ
uα

, (3.4)

∂tF
τ−

1

τ
∇×Gτ

=
1

τ
[(Nτ

e Uτ
e −Nτ

i Uτ
i )+(ne,τUτ

e −ni,τUτ
i )+(Nτ

e ue,τ−Nτ
i ui,τ)]−Rτ

E, (3.5)

∂tG
τ+

1

τ
∇×Fτ =0, divFτ =Nτ

i −Nτ
e . (3.6)

Set

Wτ
I =

(
Nτ

α

Uτ
α

)
, Wτ

I I =

(
Fτ

Gτ

)
, Wτ =

(
Wτ

I

Wτ
I I

)
=




Nτ
α

Uτ
α

Fτ

Gτ


,

H1(W
τ
I )=

(
−(Uτ

α ·∇)nα,τ−Nτ
α divuα,τ

−(Uτ
α ·∇)uα,τ−(h′α(Nτ

α +nα,τ)−h′α(nα,τ))∇nα,τ

)
,

H2(W
τ
I )=

(
0

−Uτ
α

)
,H3(W

τ)=

(
0

qα[Fτ+(Uτ
α +uα,τ)×Gτ+Uτ

α ×Bτ]

)
,

Rτ =

(
Rτ

nα

Rτ
uα

)
,AI

j (n
τ
α,uτ

α)=

(
uτ

α,j nτ
αet

i

h′α(n
τ
α)ej uτ

α,j I3

)
, j=1,2,3,

where α=e,i, (e1,e2,e3) is the canonical basis of R3, yj denotes the ith component of y∈R3

and I3 is the 3×3 unit matrix. Then systems (3.3) and (3.4) for unknown Wτ
I can be

rewritten as

∂tW
τ
I +

1

τ

3

∑
i=1

AI
i (n

τ
α,uτ

α)∂xi
Wτ

I =
1

τ
(H1(W

τ
I )+H3(W

τ))+
1

τ2
H2(W

τ
I )−Rτ. (3.7)
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It is symmetrizable hyperbolic with symmetrizer

AI
0(n

τ
α)=

(
(nτ

α)
−1 0

0 (h′α(n
τ
α))

−1 I3

)
,

which is a positive definite matrix when 0< k
2≤nτ

α=Nτ
α +nα,τ≤C, where α=e,i. Moreover

ÃI
i (n

τ
α,uτ

α)=AI
0(n

τ
α)AI

i (n
τ
α,uτ

α)=uτ
α,j A

I
0(n

τ
α)+Di (3.8)

is symmetric for all 1≤ j≤3, where each Dj is a constant matrix

Dj=

(
0 et

j

ej 0

)
.

In order to prove Theorem 1.1, it suffices to establish uniform estimates of Wτ with

respect to τ. In what follows, we denote by C > 0 various constants independent of τ

and for β∈ N3, (Wτ
I,β,Wτ

I I,β)= ∂
β
x(W

τ
I ,Wτ

I I), etc. The main estimates are contained in the

following two lemmas for Wτ
I and Wτ

I I , respectively. We first consider the estimate for

Wτ
I .

Lemma 3.1. Under the assumptions of Theorem 1.1, for all t∈ (0,Tτ ], as τ→0 we have

‖Wτ
I (t)‖

2
s +

1

τ2

∫ t

0
‖Uτ

α (t)‖
2
s dξ≤C

∫ t

0
(‖Wτ(ξ)‖2

s +‖Wτ(ξ)‖4
s )dξ+Cτ4. (3.9)

Proof. Differentiating equation (3.7) with respect to x yields and then multiplying by

AI
0(n

τ
α) and taking the inner product of the resulting equation with Wτ

Iβ, we obtain

d

dt
(AI

0(n
τ
α)W

τ
I,β,Wτ

I,β)−
2

τ
(AI

0(n
τ
α)∂

β
x H2(W

τ
I ),W

τ
I,β)

=
2

τ

(
(AI

0(n
τ
α)[∂

β
x H1(W

τ
I )+∂

β
x H3(W

τ)]·Wτ
I,β),W

τ
I,β

)

+
2

τ
(Jτ

β ,Wτ
I,β)+(divAI

τ(n
τ
α,uτ

α)W
τ
I,β,Wτ

I,β)−2(AI
0(n

τ
α)∂

β
x Rτ,Wτ

I,β), (3.10)

where

Jτ
β =−Σ3

j=1AI
0(n

τ
α)
[
∂

β
x(AI

j (n
τ
α,uτ

α)∂xi
Wτ

I )−AI
j (n

τ
α,uτ

α)∂
β
x∂xi

Wτ
I

]
, (3.11)

divAI
τ(n

τ
α,uτ

α =∂t AI
0(n

τ
α+

1

τ

3

∑
j=1

∂xj
ÃI

i (n
τ
α,uτ

α). (3.12)

From estimating each term of equation (3.10), for ∀ |β |≤ s, we have

d

dt
(AI

0(n
τ
α)W

τ
I,β,Wτ

I,β)+
k

τ2
≤

Cε

τ2
‖Uτ

α ‖
2
s +Cε(‖Wτ ‖2

s +‖Wτ ‖2
s )+Cετ

4. (3.13)

Integrating this equation over (0,t) with t∈(0,Tτ) and summing up over all |β|≤s, taking

ε≥0 sufficiently small that the term including Cε

τ2 ‖Uτ
α ‖

2
s can be controlled by the left-hand

side, together with condition (1.18) for the initial data, we get (3.9).
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The estimate for Wτ
I is similar to the paper [6], so we give the simple steps. Now we

establish the estimate for Wτ
I I , it will be complicated because there exist both electron and

ion.

Lemma 3.2. Under the assumptions of Theorem 1.1, for all t∈ (0,Tτ ], as τ→0 we have

‖Wτ
I I(t)‖

2
s≤
∫ t

0

(
1

τ2
‖Uτ

α (t)‖
2
s +‖Wτ(ξ)‖2

s +‖Wτ(ξ)‖4
s

)
dξ+Cτ4. (3.14)

Proof. For a multi-index β∈N3 with |β |≤ s, differentiating the equations (3.5) and (3.6)
with respect to x, we have

∂tF
τ
β −

1

τ
∇×Gτ

β =
1

τ
∂

β
x

[
(Nτ

e Uτ
e −Nτ

i Uτ
i )+(ne,τUτ

e −ni,τUτ
i )

+(Nτ
e ue,τ−Nτ

i ui,τ)
]
−∂

β
x Rτ

E, (3.15)

and

∂tG
τ
β+

1

τ
∇×Fτ

β =0. (3.16)

Taking the inner product of equation (3.15) with Fτ
β and taking the inner product of equa-

tion (3.16) with Gτ
β, then we have

∫

T

1

2

[
∂t(Fτ

β )
2+∂t(G

τ
β)

2
]
dx=

1

τ

∫

T

∂
β
x

[
(Nτ

e Uτ
e −Nτ

i Uτ
i )+(ne,τUτ

e −ni,τUτ
i )

+(Nτ
e ue,τ−Nτ

i ui,τ)
]
·Fτ

β −∂
β
x Rτ

E ·F
τ
β dx, (3.17)

there because

∫

T

(
1

τ
∇×Gτ

β ·F
τ
β −

1

τ
∇×Fτ

β ·G
τ
β

)
dx=

1

τ

∫

T

div(Fτ
β ×Gτ

β)dx=0. (3.18)

Then we have

d

dt
‖Wτ

I Iβ(t)‖
2≤
∫

T

|∂
β
x

[
(Nτ

e Uτ
e −Nτ

i Uτ
i )+(ne,τUτ

e −ni,τUτ
i )

+(Nτ
e ue,τ−Nτ

i ui,τ)
]
·Fτ

β |dx+
∫

T

|∂
β
x Rτ

E ·F
τ
β |dx. (3.19)

Using energy estimate, (1.21) and Lemma 2.1, we obtain

d

dt
‖Wτ

I Iβ(t)‖
2≤

1

2τ2
‖Uτ

α (t)‖
2
s +C‖Wτ(ξ)‖2

s +C‖Wτ(ξ)‖4
s +Cτ4. (3.20)

Integrating (3.20) over (0,t), summing up over β satisfying | β |≤ s and using (1.18), we

obtain the lemma.
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Proof of Theorem 1.1. Let τ → 0 and ε> 0 be sufficiently small. By Lemma 3.1 and

Lemma 3.2, for t∈ (0,Tτ ] we have

‖Wτ(t)‖2
s +

1

τ2

∫ t

0
‖Uτ

α (t)‖
2
s dξ≤C

∫ t

0
(‖Wτ(ξ)‖2

s +‖Wτ(ξ)‖4
s )dξ+Cτ4. (3.21)

Let

y(t)=C
∫ t

0
‖Wτ(ξ)‖2

s +‖Wτ(ξ)‖4
s dξ+Cτ4. (3.22)

Then it follows from (3.21) that

‖Wτ(t)‖2
s≤y(t),

1

τ2

∫ t

0
‖Uτ

α (t)‖
2
s dξ≤y(t), ∀t∈ (0,Tτ ], (3.23)

y′(t)=C(‖Wτ(ξ)‖2
s +‖Wτ(ξ)‖4

s )≤C(y(t)+y2(t)), (3.24)

with

y(0)=Cτ4. (3.25)

From Gronwall inequality, we get

y(t)≤Cτ4eCt ≤Cτ4eCT1 , ∀t∈ [0,Tτ ]. (3.26)

Therefore, from (3.23) we obtain

‖Wτ(t)‖s≤
√

y(t)≤Cτ2,
∫ t

0
‖Uτ

α (ξ)‖
2
s dξ≤τ2y(t)≤Cτ6. (3.27)

By a standard argument on the time extension of smooth solutions, we obtain Tτ
3 ≥T1, i.e.

Tτ =T1. This finishes the proof of Theorem 1.1.
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