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Abstract

This paper introduce a cascadic multigrid method for solving semilinear elliptic equa-

tions based on a multilevel correction method. Instead of the common costly way of directly

solving semilinear elliptic equation on a very fine space, the new method contains some

smoothing steps on a series of multilevel finite element spaces and some solving steps to

semilinear elliptic equations on a very coarse space. To prove the efficiency of the new

method, we derive two results, one of the optimal convergence rate by choosing the appro-

priate sequence of finite element spaces and the number of smoothing steps, and the other

of the optimal computational work by applying the parallel computing technique. More-

over, the requirement of bounded second order derivatives of nonlinear term in the existing

multigrid methods is reduced to a bounded first order derivative in the new method. Some

numerical experiments are presented to validate our theoretical analysis.
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1. Introduction

The purpose of this paper is to study the multigrid finite element method for semilinear

elliptic problems. As we know, the multigrid methods [4–6, 9, 13, 19, 24] provide optimal order

algorithms for solving boundary value problems. The error bounds of the approximate solutions

obtained from these efficient numerical algorithms are comparable to the theoretical bounds

determined by the finite element discretization. In the past decades, the multigrid method is

also applied to nonlinear elliptic problem to improve the efficiency of nonlinear elliptic problem

solving, i.e. [19, 25, 26]. In these methods, the Newton iteration is adopted to linearize the

nonlinear equations which require bounded second order derivatives of the nonlinear terms.

For more information, please refer to [15, 19, 25] and the references cited therein.

Recently, a type of multigrid method for eigenvalue problems has been proposed in [17,23].

And the corresponding idea can be found in [7, 11, 16]. The aim of this paper is to present a

cascadic multigrid method for solving semilinear elliptic equations based on the combination of

the multilevel correction method [17,23] and the cascadic multigrid method for boundary value

problems. Similarly to the cascadic multigrid method for the boundary value problem [2, 20],
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we only do the smoothing steps for the involved boundary value problems. Besides, we need

to solve some semilinear elliptic equations on a low dimensional space. By organizing suitable

numbers of smoothing iteration steps in different levels, the final approximate solution can have

the same accuracy as the solution of standard finite element method. In this new version of

multigrid method, solving semilinear elliptic problem will not be much more difficult than the

multigrid scheme for the corresponding linear boundary value problems. Compared with the

existing multigrid method for the semilinear problem, our new method only require a bounded

first order derivative of the nonlinear term.

During the numerical calculation, computational complexity and memory consumption in-

crease exponentially with the growth of the scale. As we know, distributed parallel computing

can balance the load on each computing node, which will play an important role in the sim-

ulation of large scale systems. So as to improve the computational efficiency, we will use the

parallel technique to design an algorithm with good scalability.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method

for the semilinear elliptic equation as well as some important properties. The Section 3 is the

main part of the paper, where a type of cascadic multigrid algorithm for solving the semilinear

elliptic equation and the corresponding error estimate are given. In Section 4, we add the parallel

technique to the cascadic multigrid algorithm in Section 3 and estimate the computational work

for the parallel algorithm. Four numerical examples are presented in Section 5 to validate our

theoretical analysis. Some concluding remarks are given in the last section.

2. Finite Element Method for Semilinear Elliptic Equation

In this paper, the letter C (with or without subscripts) is used to denote a constant which

may be different at different places. For convenience, the symbols x1 . y1, x2 & y2 and

x3 ≈ y3 mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3. Let Ω ⊂ Rd (d = 2, 3)

denote a bounded convex domain with Lipschitz boundary ∂Ω. We use the standard notation

for Sobolev spaces W s,p(Ω) and their associated norms ‖ · ‖s,p,Ω and seminorms | · |s,p,Ω (see,

e.g, [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where

v|∂Ω = 0 is in the sense of trace. For simplicity, we use ‖ ·‖s to denote ‖ ·‖s,2,Ω and V to denote

H1
0 (Ω) in the rest of the paper.

We consider the following type of semilinear elliptic equation:

{
−∇ · (A∇u) + f(x, u) = g, in Ω,

u = 0, on ∂Ω,
(2.1)

where A = (ai,j)d×d is a symmetric positive definite matrix with ai,j ∈ W 1,∞ (i, j =

1, 2, · · · , d), and f(x, u) is a nonlinear function corresponding to the second variable and satisfies

the following assumption.

Assumption A: The nonlinear function f(x, ·) has a non-negative derivative in the second

argument

0 ≤
∂f

∂v
(x, v) ≤ Cf , ∀x ∈ Ω and ∀v ∈ V. (2.2)

The weak form of the semilinear problem (2.1) can be described as: Find u ∈ V such that

a(u, v) + (f(x, u), v) = (g, v), ∀v ∈ V, (2.3)
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where

a(u, v) = (A∇u,∇v). (2.4)

Obviously, a(u, v) is bounded and coercive on V , i.e.,

a(u, v) ≤ Ca‖u‖1,Ω‖v‖1,Ω and ca‖u‖
2
1,Ω ≤ a(u, u), ∀u, v ∈ V. (2.5)

we take the norm ‖w‖a :=
√
a(w,w) for any w ∈ V in this paper instead of the standard norm

‖ · ‖1.

Now, we introduce the finite element method for semilinear elliptic problem (2.3). First

we generate a shape regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3) into

triangles or rectangles for d = 2, tetrahedrons or hexahedrons for d = 3 (cf. [10,12]). The mesh

diameter h describes the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we

construct the finite element space Vh ⊂ V . For simplicity, we set Vh as the linear finite element

space defined as follows

Vh =
{
vh ∈ C(Ω)

∣∣ vh|K ∈ P1, ∀K ∈ Th

}
∩H1

0 (Ω), (2.6)

where P1 denotes the linear function space.

The standard finite element scheme for semilinear equation (2.3) is: Find ūh ∈ Vh such that

a(ūh, vh) + (f(x, ūh), vh) = (g, vh), ∀vh ∈ Vh. (2.7)

Denote a linearized operator L : H1
0 (Ω) → H−1(Ω) by:

(Lw, v) = (A∇w,∇v), ∀w, v ∈ V.

In order to deduce the global prior error estimates, we introduce ηa(Vh) as follows:

ηa(Vh) = sup
f∈L2(Ω),‖f‖0=1

inf
vh∈Vh

‖L−1f − vh‖a.

It is easy to know that ηa(Vh) → 0 as h → 0 (cf. [10, 12]).

Denote

δh(u) = inf
vh∈Vh

‖u− vh‖a.

From [19], we can give the following error estimates.

Lemma 2.1. When Assumption A is satisfied, Eqs. (2.3) and (2.7) are uniquely solvable and

the following estimates hold

‖u− ūh‖a . δh(u), (2.8)

‖u− ūh‖0 . ηa(Vh)‖u− ūh‖a. (2.9)

Furthermore, we have the following estimate

‖u− ūh‖a ≤ (1 + Cηa(Vh))δh(u). (2.10)
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Proof. The desired results (2.8)-(2.9) can be derived from Lemmas 6.2.1 and 6.2.2 in [19].

Here we only give the proof for the estimate (2.10). For this aim, we define the finite element

projection operator Ph by the following equation

a(Phu, vh) = a(u, vh), ∀vh ∈ Vh.

It is easy to know that ‖u− Phu‖a = δh(u). From (2.2) and (2.9), we have

a(Phu− ūh, vh) = a(u− ūh, vh) = (f(x, ūh)− f(x, u), vh)

≤ Cf‖u− ūh‖0‖vh‖0

≤ Cηa(Vh)‖u− ūh‖a‖vh‖a, ∀vh ∈ Vh. (2.11)

Combining (2.11) and the triangle inequality leads to the following estimates

‖u− ūh‖a ≤ ‖u− Phu‖+ ‖Phu− ūh‖a

≤ δh(u) + Cηa(Vh)‖u− ūh‖a, (2.12)

which means that

‖u− ūh‖a ≤
1

1− Cηa(Vh)
δh(u) ≤ (1 + Cηa(Vh))δh(u). (2.13)

This is the desired result (2.10) and the proof is completed. �

3. Cascadic Multigrid Method for Semilinear Elliptic Equations

In this section, a type of cascadic multigrid method for semilinear problems is proposed

based on the multilevel correction scheme in [17, 23]. The main idea in this method is to

approximate the underlying boundary value problems defined on each level by applying some

simple smoothing iteration steps. In order to describe the cascadic multigrid method, we first

introduce the sequence of finite element spaces and the properties of the concerned smoothers.

In order to design the multigrid scheme, we first generate a coarse mesh TH with the mesh

size H and the coarse linear finite element space VH is defined on it. Then we define a sequence

of triangulations Thk
of Ω ⊂ Rd as follows. Suppose Th1

(produced from TH by regular refine-

ment) is given and let Thk
be obtained from Thk−1

by a regular refinement step (produce βd

subelements) such that

hk ≈
1

β
hk−1, (3.1)

where the positive number β ≥ 1 (always equals 2) denotes the refinement index. Based on this

sequence of meshes, we construct the corresponding nested linear finite element spaces such

that

VH ⊆ Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn
. (3.2)

The nested spaces have the following relations of approximate accuracy

ηa(VH) & δh1
(u), δhk

(u) ≈
1

β
δhk−1

(u), k = 2, · · · , n. (3.3)

In fact, since the computing domain is convex, we give the following assumptions

ηa(VH) ≈ H, ηa(Vhk
) ≈ hk and δhk

(u) ≈ hk, k = 1, · · · , n. (3.4)
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Remark 3.1. The relation (3.3) is reasonable since we can choose δhk
(u) = hk (k = 1, · · · , n).

Always the upper bound of the estimate δhk
(u) . hk holds. Recently, the lower bound result

δhk
(u) & hk is also obtained (c.f. [18]).

For generality, we introduce a smoothing operator Sh : Vh → Vh which satisfies the following

estimates 



‖Sm
h wh‖a ≤ C

mα
1
h‖wh‖0,

‖Sm
h wh‖a ≤ ‖wh‖a,

‖Sm
h (wh + vh)‖a ≤ ‖Sm

h wh‖a + ‖Sm
h vh‖a,

(3.5)

where C is a constant independent of h and α is some positive number depending on the choice

of smoother. It is proved in [13,19,22] that the symmetric Gauss-Seidel, the SSOR, the damped

Jacobi and the Richardson iteration are smoothers in the sense of (3.5) with parameter α = 1/2

and the conjugate-gradient iteration is the smoother with α = 1 (cf. [20, 21]).

Then we define the following notation

wh = Smooth(Vh, f, ξh,m, Sh) (3.6)

as the smoothing process for the following boundary value problem

a(uh, vh) = (f, vh), ∀vh ∈ Vh, (3.7)

where ξh denotes the initial value of the smoothing process, Sh denotes the chosen smooth-

ing operator, m denotes the number of the iteration steps and wh denotes the output of the

smoothing process.

Now, we come to introduce the cascadic multigrid method for the semilinear elliptic equation

(2.3). Assume we have obtained an approximate solution uhk ∈ Vhk
. We design the following

cascadic type one correction step to improve the accuracy of the current approximation.

Algorithm 3.1. Cascadic type of One Correction Step

1. Define the following auxiliary source problem: Find ûhk+1 ∈ Vhk+1
such that

a(ûhk+1 , vhk+1
) = (g, vhk+1

)−
(
f(x, uhk), vhk+1

)
, ∀vhk+1

∈ Vhk+1
. (3.8)

Perform the smoothing process (3.6) to obtain a new approximate solution ũhk+1 ∈

Vhk+1
by

ũhk+1 = Smooth(Vhk+1
, g − f(x, uhk), uhk ,mk+1, Shk+1

). (3.9)

2. Define a new finite element space V
hk+1

H = VH + span{ũhk+1} and solve the following

semilinear elliptic equation: Find uhk+1 ∈ V
hk+1

H such that

a(uhk+1 , v
hk+1

H ) + (f(x, uhk+1), v
hk+1

H ) = (g, v
hk+1

H ), ∀v
hk+1

H ∈ V
hk+1

H . (3.10)

Summarize the above two steps by defining

uhk+1 = SmoothCorrection(VH , Vhk+1
, uhk ,mk+1, Shk+1

).

Based on the above algorithm, i.e. the cascadic type of one correction step, we can construct

a cascadic multigrid method for semilinear elliptic equation (2.3) as follows:
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Algorithm 3.2. Semilinear Elliptic Cascadic Multigrid Method

1. Solve the following semilinear elliptic equation in the initial finite element space Vh1
:

Find uh1 ∈ Vh1
such that

a(uh1 , vh1
) + (f(x, uh1), vh1

) = (g, vh1
), ∀vh1

∈ Vh1
.

2. For k = 1, · · · , n− 1, do the following iteration

uhk+1 = SmoothCorrection(VH , Vhk+1
, uhk ,mk+1, Shk+1

).

End Do

Finally, we obtain an approximate solution uhn ∈ Vhn
.

In order to analyze the convergence of Algorithm 3.2, we introduce an auxiliary algorithm

and then show its superapproximate property. Similarly, assume we have obtained an approxi-

mate solution ũhk
∈ Vhk

. The auxiliary one correction step is defined as follows.

Algorithm 3.3. Auxiliary One Correction Step

1. Solve the following auxiliary source problem: Find ûhk+1
∈ Vhk+1

such that

a(ûhk+1
, vhk+1

) = (g, vhk+1
)−

(
f(x, ũhk

), vhk+1

)
, ∀vhk+1

∈ Vhk+1
. (3.11)

2. Define a new finite element space ṼH,hk+1
= VH + span{ûhk+1

} + span{ũhk+1} and

solve the following semilinear elliptic equation: Find ũhk+1
∈ ṼH,hk+1

such that

a(ũhk+1
, ṽH,hk+1

) + (f(x, ũhk+1
), ṽH,hk+1

) = (g, ṽH,hk+1
), ∀ṽH,hk+1

∈ ṼH,hk+1
. (3.12)

Summarize the above two steps by defining

ũhk+1
= AuxiliaryCorrection(VH , Vhk+1

, ũhk
, ũhk+1).

Algorithm 3.4. Semilinear Elliptic Auxiliary Multilevel Correction Method

1. Solve the following semilinear elliptic equation in the initial finite element space Vh1
:

Find ũh1
∈ Vh1

such that

a(ũh1
, vh1

) + (f(x, ũh1
), vh1

) = (g, vh1
), ∀vh1

∈ Vh1
.

2. For k = 1, · · · , n− 1, do the following iteration

ũhk+1
= AuxiliaryCorrection(VH , Vhk+1

, ũhk
, ũhk+1).

End Do

Finally, we obtain an approximate solution ũhn
∈ Vhn

.



118 F. XU AND F. S. LUO

Before analyzing the convergence of Algorithm 3.2, we show a superapproximate property of

ũhk
obtained by Algorithm 3.4.

Theorem 3.1. Assume ũhk
(k = 1, · · · , n) are obtained by Algorithm 3.4 and ūhk

(k =

1, · · · , n) denote the standard finite element solutions in Vhk
. If the sequence of finite element

spaces Vh1
, · · · , Vhn

and the coarse finite element space VH satisfy the following condition

Cηa(VH)β2 < 1, (3.13)

then the following estimates hold:

‖ūhk
− ũhk

‖a ≤ Cηa(Vhk
)δhk

(u), k = 1, · · · , n, (3.14)

‖ūhk
− ũhk

‖0 ≤ Cηa(Vhk
)δhk

(u), k = 1, · · · , n. (3.15)

Proof. From (2.7) and (3.11), we have

â(ūhk+1
− ûhk+1

, vhk+1
) =

(
f(x, ũhk

)− f(x, ūhk+1
), vhk+1

)

. ‖ūhk+1
− ũhk

‖0‖vhk+1
‖a

.
(
‖ūhk+1

− ūhk
‖0 + ‖ūhk

− ũhk
‖0
)
‖vhk+1

‖a.

It leads to the following estimate

‖ūhk+1
− ûhk+1

‖a ≤ C
(
‖ūhk+1

− ūhk
‖0 + ‖ūhk

− ũhk
‖0
)
. (3.16)

Note that the semilinear elliptic equation (3.12) can be regarded as a finite dimensional subspace

approximation of the semilinear elliptic equation (2.7). From Lemma 2.1 and the second step

in Algorithm 3.3, the following estimate holds:

‖ūhk+1
− ũhk+1

‖a ≤ C inf
ṽH,hk+1

∈ṼH,hk+1

‖ūhk+1
− ṽH,hk+1

‖a ≤ C‖ūhk+1
− ûhk+1

‖a. (3.17)

Then combining (3.16) and (3.17) leads to

‖ūhk+1
− ũhk+1

‖a ≤ C
(
‖ūhk+1

− ūhk
‖0 + ‖ūhk

− ũhk
‖0
)
. (3.18)

From the properties of Vhk
⊂ Vhk+1

, ṼH,hk
⊂ Vhk

, Lemma 2.1 and (3.3), we have

‖ūhk+1
− ūhk

‖a ≤ Cδhk
(u), ‖ūhk+1

− ūhk
‖0 ≤ Cηa(Vhk

)‖ūhk+1
− ūhk

‖a,

‖ūhk
− ũhk

‖0 ≤ Cηa(VH)‖ūhk
− ũhk

‖a.

Substituting above inequalities into (3.18) leads to the following estimate

‖ūhk+1
− ũhk+1

‖a ≤ C
(
ηa(Vhk

)δhk
(u) + ηa(VH)‖ūhk

− ũhk
‖a
)
. (3.19)

When k = 1, since ũh1
:= ūh1

, we have

‖ūh2
− ũh2

‖a ≤ Cηa(Vh1
)δh1

(u). (3.20)
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Based on (3.3), (3.19), (3.20) and recursive argument, we have the following estimates

‖ūhk
− ũhk

‖a ≤ C
k∑

j=2

(
Cηa(VH)

)k−j
ηa(Vhj−1

)δhj−1
(u)

≤ C
k∑

j=2

(
Cηa(VH)

)k−j
βk−j+1ηa(Vhk

)βk−j+1δhk
(u)

≤ Cβ2
( k∑

j=2

(
Cηa(VH)β2

)k−j
)
ηa(Vhk

)δhk
(u)

≤
Cβ2

1− Cβ2ηa(VH)
ηa(Vhk

)δhk
(u). (3.21)

Therefore, the desired result (3.14) holds under the condition Cηa(VH)β2 < 1. Furthermore,

(3.15) can be obtained directly from Lemma 2.1 and the property ṼH,hk+1
⊂ Vhk+1

. �

Note that V hk

H ⊂ ṼH,hk
, we can obtain the following estimates which will play an important

role in our analysis.

Lemma 3.1. Let uhk , V hk

H and ũhk
, ṼH,hk

be defined in Algorithms 3.1 and 3.3. Then the

following estimates hold:

‖uhk − ũhk
‖a ≤ C‖ûhk

− ũhk‖a, (3.22)

‖uhk − ũhk
‖0 ≤ Cηa(VH)‖uhk − ũhk

‖a. (3.23)

Proof. Since V hk

H ⊂ ṼH,hk
, according to (3.10) and (3.12), uhk can be viewed as a finite

dimensional approximation of ũhk
. Then from Lemma 2.1 and the definitions of ṼH,hk

and V hk

H ,

we have

‖ũhk
− uhk‖a ≤ C inf

v
hk
H

∈V
hk
H

‖ũhk
− vhk

H ‖a ≤ C inf
v
hk
H

∈V
hk
H

‖ûhk
− vhk

H ‖a

≤ C‖ûhk
− ũhk‖a, (3.24)

which is the desired result (3.22).

Similarly, we also have (3.23) by the following argument

‖ũhk
− uhk‖0 ≤ Cηa(V

hk

H )‖ũhk
− uhk‖a ≤ Cηa(VH)‖ũhk

− uhk‖a.

The proof is completed. �

Remark 3.2. Since VH ⊂ V hk

H and VH ⊂ ṼH,hk
, from Lemma 2.1, we have

‖uhk − ũhk
‖a ≤ ‖uhk − u‖a + ‖u− ũhk

‖a ≤ CδH(u). (3.25)

Now, we come to give the error estimates for Algorithm 3.2.

Theorem 3.2. Assume the approximate solution uhn is obtained by Algorithm 3.2, ũhn
is

obtained by Algorithm 3.4 and the smoother selected in each level Vhk
satisfy the smoothing
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property (3.5) for k = 1, · · · , n. Under the conditions of Theorem 3.1, we have the following

estimates

‖ũhn
− uhn‖a ≤ C

n∑

k=2

(
1 + Cηa(VH)

)n−k

mα
k

δhk
(u), (3.26)

‖ũhn
− uhn‖0 ≤ Cηa(VH)

n∑

k=2

(
1 + Cηa(VH)

)n−k

mα
k

δhk
(u). (3.27)

Proof. Define ehk
:= uhk − ũhk

for k = 1, · · · , n. Then it is easy to see that eh1
= 0.

From Lemma 3.1, the following inequalities hold

‖ehk+1
‖a = ‖uhk+1 − ũhk+1

‖a ≤ C‖ûhk+1
− ũhk+1‖a

≤ C
(
‖ûhk+1

− ûhk+1‖a + ‖ûhk+1 − ũhk+1‖a
)
. (3.28)

For the first term in (3.28), from (3.8), (3.11), Lemma 3.1 and (3.25), we have

‖ûhk+1
− ûhk+1‖a ≤ C‖uhk − ũhk

‖0 ≤ Cηa(VH)‖ehk
‖a. (3.29)

For the second term in (3.28), due to (3.5) and (3.29), the following estimates hold

‖ûhk+1 − ũhk+1‖a = ‖S
mk+1

hk+1
(ûhk+1 − uhk)‖a

≤ ‖S
mk+1

hk+1
(ûhk+1 − ũhk

)‖a + ‖S
mk+1

hk+1
(ũhk

− uhk)‖a

≤ ‖S
mk+1

hk+1
(ûhk+1 − ûhk+1

)‖a + ‖S
mk+1

hk+1
(ûhk+1

− ũhk
)‖a + ‖ũhk

− uhk‖a

≤ ‖ûhk+1
− ûhk+1‖a +

C

mα
k+1

1

hk+1
‖ûhk+1

− ũhk
‖0 + ‖ũhk

− uhk‖a

≤
(
1 + Cηa(VH)

)
‖ehk

‖a +
C

mα
k+1

1

hk+1
‖ûhk+1

− ũhk
‖0. (3.30)

According to (3.3), (3.14), (3.16), Theorem 3.1 and its proof, we have

‖ûhk+1
− ũhk

‖0 ≤ ‖ûhk+1
− ūhk+1

‖0 + ‖ūhk+1
− ūhk

‖0 + ‖ūhk
− ũhk

‖0

≤ Cηa(Vhk+1
)δhk+1

(u). (3.31)

Combining (3.4) and (3.28)−(3.31), we derive

‖ehk+1
‖a ≤

(
1 + Cηa(VH)

)
‖ehk

‖a +
C

mα
k+1

δhk+1
(u), k = 1, · · · , n− 1. (3.32)

Based on (3.32), the fact eh1
= 0 and the recursive argument, the following estimates hold

‖ehn
‖a ≤

(
1 + Cηa(VH)

)
‖ehn−1

‖a +
C

mα
n

δhn
(u)

≤
(
1 + Cηa(VH)

)2
‖ehn−2

‖a +
(
1 + Cηa(VH)

) C

mα
n−1

δhn−1
(u) +

C

mα
n

δhn
(u)

≤ C

n∑

k=2

(
1 + Cηa(VH)

)n−k 1

mα
k

δhk
(u).

This is the desired result (3.26). The estimate (3.27) can be obtained from Lemma 2.1 and

(3.26). �
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Corollary 3.1. Under the conditions of Theorem 3.2, we have the following estimate

‖ūhn
− uhn‖a ≤ C

(
ηa(Vhn

)δhn
(u) +

n∑

k=2

(
1 + Cηa(VH)

)n−k

mα
k

δhk
(u)

)
. (3.33)

Define the dimension of each linear finite element space as

Nk := dim Vhk
, k = 1, · · · , n.

Then we have

Nk ≈
(hk

hn

)−d

Nn =
( 1

β

)d(n−k)

Nn, k = 1, · · · , n. (3.34)

To give a precise analysis for the final error and complexity estimates, we assume the following

inequality holds for the number of smoothing iterations in each level mesh:

(hk

hn

)ζ

≤
mα

k

m̄α
≤ σ

(hk

hn

)ζ

, k = 2, · · · , n− 1, (3.35)

where m̄ = mn, σ > 1 and ζ > 1 are some appropriate constants.

Now, we give the final error estimates for Algorithm 3.2.

Theorem 3.3. Under the conditions (3.3), (3.35) and β1−ζ(1 + CH) < 1, for any given γ ∈

(0, 1], the final error estimate

‖uhn − ũhn
‖a ≤ γhn (3.36)

holds if we take

m̄ >
(CCζ

γ

) 1
α

, (3.37)

where Cζ = 1/(1− β1−ζ(1 + CH)).

Proof. By Theorem 3.2, together with (3.1), (3.4), (3.26), (3.35) and β1−ζ(1+CH) < 1, we

have the following estimates

‖uhn − ũhn
‖a ≤ C

n∑

k=2

(1 + Cηa(VH))n−k 1

mα
k

δhk
(u)

≤ C

n∑

k=2

(1 + CH)n−k 1

m̄α

(hk

hn

)−ζ

hk

≤ C

n∑

k=2

(1 + CH)n−kβ(n−k)(1−ζ) hn

m̄α

= C
hn

m̄α

n−2∑

k=0

(
β1−ζ(1 + CH)

)k

≤ C
hn

m̄α

1

1− β1−ζ(1 + CH)
≤

CCζ

m̄α
hn. (3.38)

Then it is obvious that ‖uhn − ũhn
‖a ≤ γhn when m̄ satisfies the condition (3.37). �

Corollary 3.2. Under the same conditions of Theorem 3.3 and (3.37), if Chn ≤ γ, we have

the following estimate

‖uhn − ūhn
‖a ≤ 2γhn. (3.39)
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4. Parallel Cascadic Multigrid Method and Computational Work

In this section, we will propose how to solve the semilinear elliptic equation (2.3) by parallel

computing technique.

For the boundary value problem included in the first step of Algorithm 3.1, there exists a

standard procedure to execute parallel computing. We have to assemble the matrix and storage

the data on different nodes. to carry out the smooth process by parallel computing.

It is different from the linear elliptic equation case that, in the second step of Algorithm

3.1, we have to solve a semilinear elliptic problem on the newly constructed coarse space V hk

H .

Always, some type of nonlinear iteration method is used to solve this semilinear elliptic equation.

In each nonlinear iteration step, the computational work of assembling the stiffness matrix on

the finite element space V hk

H (k = 2, · · · , n) is O(Nk). Fortunately, the matrix assembling

can be carried out by the parallel way easily in the finite element space since there is no data

transfer. And the solving time can be ignored due to the low dimension.

So based on the parallel scheme above, we can rewritten Algorithm 3.1 and 3.2 in the

following way.

Algorithm 4.1. Parallel type of One Correction Step

1. Define the following auxiliary source problem: Find ûhk+1 ∈ Vhk+1
such that

a(ûhk+1 , vhk+1
) = (g, vhk+1

)−
(
f(x, uhk), vhk+1

)
, ∀vhk+1

∈ Vhk+1
. (4.1)

Perform the smoothing process (3.6) by parallel computing to obtain a new approximate

solution ũhk+1 ∈ Vhk+1
by

ũhk+1 = Smooth(Vhk+1
, g − f(x, uhk), uhk ,mk+1, Shk+1

). (4.2)

2. Define a new finite element space V
hk+1

H = VH + span{ũhk+1} and solve the following

semilinear elliptic equation: Find uhk+1 ∈ V
hk+1

H such that

a(uhk+1 , v
hk+1

H ) + (f(x, uhk+1), v
hk+1

H ) = (g, v
hk+1

H ), ∀v
hk+1

H ∈ V
hk+1

H . (4.3)

Assemble the stiffness matrix and right hand term on the finite element space V
hk+1

H

by parallel computing in every nonlinear iteration step. And then solve these low

dimensional matrix equations.

Summarize the above two steps by defining

uhk+1 = ParaSmoothCorrection(VH , Vhk+1
, uhk ,mk+1, Shk+1

).

Based on the parallel type one correction step, we can construct a parallel cascadic multigrid

method for semilinear elliptic equation as follows:
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Algorithm 4.2. Parallel Cascadic Multigrid Method

1. Solve the following semilinear elliptic equation by parallel technique in the initial finite

element space Vh1
: Find uh1 ∈ Vh1

such that

a(uh1 , vh1
) + (f(x, uh1), vh1

) = (g, vh1
), ∀vh1

∈ Vh1
.

2. For k = 1, · · · , n− 1, do the following iteration

uhk+1 = ParaSmoothCorrection(VH , Vhk+1
, uhk ,mk+1, Shk+1

).

End Do

Now we come to estimate the computational work for Algorithm 4.2.

Theorem 4.1. Assume the semilinear elliptic equation solving in the coarse spaces VH and

Vh1
need work MH and Mh1

, respectively. We use p computing-nodes in Algorithm 4.2, and

let ̟ denote the nonlinear iteration times when we solve the semilinear elliptic problem (3.10).

If ζ/α < d, the total computational work of Algorithm 4.2 can be bounded by O
(

1+̟
p Nn +

Mh1
+MH log(Nn)

)
and furthermore O((1+̟)Nn/p) provided MH and Mh1

is small enough.

While if ζ/α = d, the two bounds change to O(1+̟
p Nn log(Nn) + Mh1

+ MH log(Nn)) and

O((1 +̟)Nn log(Nn)/p), respectively.

Proof. Let W denote the whole computational work of Algorithm 4.2, wk denote the work

on the k-th level for k = 1, · · · , n. From the definition of Algorithms 4.1 and 4.2, (3.1), (3.34)

and (3.35), if follows that

W =
n∑

k=1

wk ≤ Mh1
+

n∑

k=2

mkNk

p
+

n∑

k=2

̟

p
Nk +MH logβ(Nn)

≤ Mh1
+ CMH log(Nn) +

m̄σ1/αNn

p

n∑

k=2

( 1

β

)(n−k)(d−ζ/α)

+
̟

p
Nn

n∑

k=2

( 1

β

)d(n−k)

≤ Mh1
+ CMH log(Nn) + C

̟

p
Nn +

m̄σ1/αNn

p

n∑

k=2

( 1

β

)(n−k)(d−ζ/α)

.

Thus, the computational work W can be bounded by O
(
Mh1

+MH log(Nn) + (1 +̟)Nn/p
)

when d − ζ/α > 0 and by O(Mh1
+ MH log(Nn) + (1 + ̟)Nn log(Nn)/p) when d − ζ/α = 0

respectively, and moreover, by O((1 +̟)Nn/p) and O((1 +̟)Nn log(Nn)/p) if MH and Mh1

are small enough. �

Remark 4.1. Since we have a good enough initial solution ũhk+1 in the second step of Algo-

rithm 3.2, solving the semilinear elliptic equation (3.10) always dose not need many nonlinear

iteration times.
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If we choose the conjugate gradient method as the smoothing operator, then α = 1 and the

computational work of Algorithm 3.2 can be bounded by O
(
(1+̟)Nn/p+Mh1

+MH log(Nn)
)

for both d = 2 and d = 3 when we choose 1 < ζ < d.

When the symmetric Gauss-Seidel, the SSOR, the damped Jacobi or the Richardson itera-

tion acts as the smoothing operator, we know α = 1/2. Then the computational work of Algo-

rithm 3.2 can be bounded byO
(
(1+̟)Nn/p+Mh1

+MH log(Nn)
)
only for d = 3 when we choose

1 < ζ < 3/2. In the case of α = 1/2 and d = 2, from Theorem 3.3 and its proof, we can only

choose ζ = 1 and then the final error has the estimate ‖uhn− ūhn
‖a ≤ Chn(1+CH)| log(hn)| and

the computational work can only be bounded by O
(
(1+̟)Nn log(Nn)/p+Mh1

+MH log(Nn)
)
.

5. Numerical Example

In this section, four numerical experiments are presented to verify the theoretical analysis

and efficiency of Algorithm 4.2. We will check different nonlinear terms including polynomial,

exponential function and the function that only has a bounded first order derivative. Here, we

choose the conjugate-gradient iteration as the smoothing operator (α = 1) with the number of

iteration steps

mk = ⌈m̄σβζ(n−k)⌉ for k = 2, · · · , n

with m̄ = 2, σ = 2, β = 2, ζ = 2.8 and ⌈r⌉ denoting the smallest integer which is not less than

r.

5.1. Example 1

We consider the following semilinear elliptic problem:

{
−∆u+ u3 = g, in Ω,

u = 0, on ∂Ω,
(5.1)

where Ω = (0, 1)3. We choose the right hand side term g such that the exact solution is given

by

u = sin(πx) sin(πy) sin(πz). (5.2)

Fig. 5.1. The initial mesh for Example 1.
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Fig. 5.2. Errors of Algorithm 4.2 for Example 1.
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Fig. 5.3. CPU time (in seconds) of cascadic multigrid method in the parallel computing way for

Example 1.

We give the numerical results for the approximate solutions obtained by Algorithm 4.2.

Figure 5.1 shows the initial triangulation. Figure 5.2 shows the error estimates. It is shown

in the Figure 5.2 that the approximate solution produced by Algorithm 4.2 has the optimal

convergence order which coincides with the theoretical results in Corollary 3.2.

Here we present the parallel efficiency of Algorithm 4.2 for (5.1) and the corresponding

boundary value problem in Figure 5.3. And the boundary value problem is solved by software

package PHG. From these two tables we can find that the parallel cascadic multigrid method

for semilinear elliptic problem can derive nearly the same parallel efficiency as parallel AFM

for the boundary value problem.

5.2. Example 2

In the second example, we solve the following semilinear elliptic problem:

{
−∆u− e−u = 1, in Ω,

u = 0, on ∂Ω,
(5.3)

where Ω = (0, 1)3. Since the exact solution is not known, we choose an adequate accurate

approximate solution on a fine enough mesh as the exact one.

Algorithm 4.2 is applied to this example. Figure 5.1 shows the initial mesh. Figure 5.4

gives the corresponding numerical results which also show the optimal convergence rate of

Algorithm 4.2. Figure 5.5 shows the parallel efficiency of Algorithm 4.2 for problem (5.3)
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Fig. 5.4. Errors of Algorithm 4.2 for Example 2.
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Fig. 5.5. CPU time (in seconds) of cascadic multigrid method in the parallel computing way for

Example 2.

and the corresponding boundary value problem, which indicate the good scalability of parallel

cascadic multigrid method.

5.3. Example 3

In the third example, we solve the following semilinear elliptic problem:

{
−∆u+ f(x, u) = g, in Ω,

u = 0, on ∂Ω,
(5.4)

with

f(x, u) =

{
u3/2, if u ≥ 0,

−u3/2, if u < 0,
(5.5)

where Ω = (0, 1)3. We choose the right hand side term g such that the exact solution is given

by

u = sin(100πx) sin(100πy) sin(100πz). (5.6)

In this example, the nonlinear term f(x, v) has the bounded first order derivative ∂f(x, v)/∂v

but unbounded second order derivative ∂2f(x, v)/∂2v. Then the methods given in [15, 19] can

not be used for this example.

Algorithm 4.2 is applied to this example. Figure 5.1 shows the initial mesh. Figure 5.6 gives

the corresponding numerical results which also show the optimal convergence rate of Algorithm
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Fig. 5.6. Errors of Algorithm 4.2 for Example 3.
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Fig. 5.7. CPU time (in seconds) of cascadic multigrid method in the parallel computing way for

Example 3.

4.2. And Figure 5.7 shows the parallel efficiency of Algorithm 4.2 for problem (5.4) and the

corresponding boundary value problem, which indicate the good scalability of Algorithm 4.2.

5.4. Example 4

In order to show the advantage of Algorithm 4.2 more clearly, we apply its serial version as

well as the Full Approximation Scheme (FAS) [8], standard Newton multigrid method [25] and

a multilevel successive iteration method [15] to Example 1-3 and compare their computational

time.

In the test, we set the same number of degrees of freedom (2146689) for all examples. The

computational time (in seconds) of Example 1 and 2 are provided in Table 5.1. From the

result,we can find that they have very similar efficiency. But Algorithm 4.2 and multilevel

successive iteration method work slightly better since we do not need to solve the linearized

boundary value problem directly for these two schemes.

For the Example 3, the other methods fail to work due to the big truncation errors caused

by the unbounded second order derivatives of the nonlinear term, but our method works, which

shows the advantage of Algorithm 4.2.

Table 5.1: The computational time for Example 1 and 2.

Algorithm 4.2 Newton MG FAS Multilevel successive iteration

Example 1 157.7136 168.9674 163.4874 154.5857

Example 2 110.1138 117.8412 114.3251 108.6365
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6. Concluding Remarks

In this paper, we present a type of parallel cascadic multigrid method for semilinear elliptic

equation based on the combination of the cascadic multigrid, multilevel correction scheme and

parallel computing. The optimal convergence rate and optimal computational work have been

demonstrated by theoretical analysis and numerical examples. Compared with the existing

multigrid methods which require bounded second order derivatives of the nonlinear terms, the

proposed method only requires a bounded first order derivative of the nonlinear term.
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