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Abstract. In this paper, we first develop the mathematical modeling equations for
wave propagation in several transformation optics devices, including electromagnetic
concentrator, rotator and splitter. Then we propose the corresponding finite element
time-domain methods for simulating wave propagation in these transformation optics
devices. We implement the proposed algorithms and our numerical results demon-
strate the effectiveness of our modeling equations. To our best knowledge, this is the
first work on time-domain finite element simulation carried out for the electromagnetic
concentrator, rotator and splitter.
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1 Introduction

Due to its many interesting potential applications, electromagnetic (EM) metamateri-
als has been one of the hot research topics since year 2000 as evidenced by many re-
cently published papers (e.g., [1, 13, 21, 26, 32, 44]) and monographs on metamaterials
(e.g., [22, 29, 35, 37]). Metamaterials and transformation optics (TO) offer some new tech-
niques to tame the electromagnetic fields to achieve the desired applications in engineer-
ing and materials sciences [8,31]. In 2006, Pendry et al. [32] first presented the blueprints
for realizing the EM cloak with metamaterials by using the TO theory. Since then, TO
has attracted a great deal of attention [8, 10, 36, 37]. TO can be applied to design many
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interesting metamaterial devices, such as cloaking device, concentrator, rotator, and split-
ter, etc. In 2008, Jiang et al. [20] designed the arbitrarily shaped concentrators based on
the conformally optical transformation. In the same time, Chen and Chan [9] realized
the EM rotator and splitter by a layered structure of thin alternating layers of metal and
dielectrics based on the TO theory.

In order to understand the electromagnetic wave behavior in various media, we need
to solve the famous Maxwell’s equations:

Ampere′s law :
∂D

∂t
=∇×H− Js,

Faraday′ s law :
∂B

∂t
=−∇×E,

Gauss′s laws : ∇·D=ρ, ∇·B=0,

(1.1)

where E,H,D,B denote the electric field, magnetic field, electric flux density, magnetic
flux density, respectively, and Js,ρ denote the electric current and electric charge density,
respectively. To make the Maxwell’s equations well-posed, we often need to couple the
Maxwell’s equations with the constitutive equations for complex media:

D=ǫ0ǫE, B=µ0µH, (1.2)

where ǫ0 and µ0 are the permittivity and permeability of vacuum, and ǫ and µ are the
relative permittivity and permeability of the specific media.

There exist many excellent works on the analysis and applications of finite element
method (FEM) for solving the Maxwell’s equations in various media, such as in the free
space (e.g., papers [3,4,6,7,11,16,17,43], books [12,22,30] and references therein); in gen-
eral dispersive media (e.g., [2,19,28,34]); in negative index metamaterials [18,38,39]; and
in cloaking metamaterials [23–25, 41]. In recent years, we developed some mathematical
models and time-domain FEMs for simulating the invisibility cloaks [23–25]. Continuing
our previous efforts, here we develop some time-domain mathematical models and cor-
responding FEMs for simulating several transformation optics devices, including the EM
concentrator [20, 33, 36, 41], rotator and splitter [9, 10]. Transformation optics has become
a fantastic tool to design these devices with novel functionalities. Numerical simula-
tion plays a very important role in helping engineers and physicists demonstrating those
novel functionalities they expect and then constructing the real physical devices by using
the material parameters tested in the simulation. However, except [41] with self devel-
oped spectral-element solver to simulate the electromagnetic concentrators and rotators,
almost all simulations of EM concentrator, rotator and splitter are performed in the fre-
quency domain by using COMSOL, a popular commercial software in metamaterial com-
munity. As broadband devices are proposed and realized (e.g., broadband ground-plane
cloak [27], broadband light absorber [31] and broadband rotator [10]), the time-domain
simulation becomes more important and needed. To the best of our knowledge, devel-
oping these mathematical models and solving them by the time-domain FEMs is original
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and there is no existing work on this. The time-domain simulation is more interesting
since the simulation can demonstrate how the incident wave interacts with the materials
as it propagates, instead of just showing the steady state results obtained from frequency
domain simulation. But the time-domain simulation is more challenging due to the com-
plexity of the governing equations (with more unknowns and as a system of coupled dif-
ferential equations) compared to just one governing equation in the frequency-domain
modeling, and takes much longer computational time than the frequency-domain simu-
lation.

The rest of the paper is organized as follows. In Section 2, we develop the time-
domain mathematical governing equations for the TO devices such as the EM wave con-
centrator, rotator and splitter. In Section 3, we propose the fully discrete finite element
schemes for solving our models. Then in Section 4, some interesting numerical results are
presented to justify our model’s effectiveness for describing the interesting wave propa-
gation phenomena in these TO devices. Finally, we conclude our paper in Section 5.

2 Mathematical models of three transformation optics devices

In this section, we develop the time-domain mathematical model of some transformation
optics (TO) devices, including electromagnetic concentrator, rotator and splitter. Firstly,
we introduce how to obtain the physical parameters of these devices by mathematical
transformation, then the dispersion properties of the TO metamaterials are clearly ana-
lyzed, finally we obtain the mathematical model by the mapping lossless Drude model
to the dispersive physical parameters. The mathematical principle of these TO devices is
based on the form invariant property of the Maxwell’s equations.

Let us denote E(x)= (E1,E2)′ and H(x) for the electric and magnetic fields, the 2×2
tensor ǫ and the scalar µ for the permittivity and permeability of the underlying material,
respectively, and 2D curls

∇×E=
∂E2

∂x
− ∂E1

∂y
, ∇×H=

(∂H

∂y
,−∂H

∂x

)′
.

Theorem 2.1 ([22]). Under a coordinate transformation x′=x′(x), the 2D time-harmonic Max-
well’s equations

∇×E(x)+ jωµH(x)=0, ∇×H(x)− jωǫE(x)=0, (2.1)

keep the same form in the transformed coordinate system:

∇′×E′(x′)+ jωµ′H′(x)=0, ∇′×H′(x′)− jωǫ′E′(x)=0, (2.2)

where ω is the wave frequency, all variables in the old and new coordinate systems are related by

E′(x′)= J−TE(x), H′(x′)=H(x), ǫ′=
JǫJT

det(J)
, µ′=

µ(x)

det(J)
, (2.3)

where J=(∂x′i/∂xj) denotes the Jacobian transformation matrix.
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Figure 1: Coordinate transformation for cylindrical concentrator: (left) the original space; (right) the transformed
space.

2.1 Electromagnetic concentrator

For the cylindrical concentrator, the ideal material parameters in the polar coordinate
system can be derived from the coordinate transformation [33]:

r′=

{
a
b r, 0≤ r≤b,

c−a
c−b r− b−a

c−b c, b≤ r≤ c,

θ′= θ, 0≤ θ≤2π,

(2.4)

which compresses the circle r ≤ b into a smaller circle r′ ≤ a, and stretches the annulus
b ≤ r ≤ c to a ≤ r′ ≤ c. Because the stretch and compression are mutually compensated,
which results in the consistency of the original space and the transformed space. The
function of this transformation is to concentrate the energy in the inner area r′≤ a.

In Cartesian coordinate system, the transformation (2.4) can be written as
{

x′= r′cosθ′= a
b x,

y′= r′sinθ′= a
b y,

0≤ r′≤ a,





x′= r′cosθ′=
(

c−a
c−br− b−a

c−b c
)

cosθ′= c−a
c−b x− c(b−a)

c−b · x
r ,

y′= r′sinθ′=
(

c−a
c−br− b−a

c−b c
)

sinθ′= c−a
c−b y− c(b−a)

c−b · y
r ,

a≤ r′≤ c,

(2.5)

from which we can derive the Jacobian transformation matrix:

J=

(
∂x′
∂x

∂x′
∂y

∂y′

∂x
∂y′

∂y

)
=





(
a
b 0
0 a

b

)
, 0≤ r′≤ a,




c−a
c−b−

c(b−a)sin2 θ′

(c−b)r
c(b−a)sinθ′cosθ′

(c−b)r

∗ c−a
c−b −

c(b−a)cos2 θ′

(c−b)r


, a≤ r′≤ c.

(2.6)
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Here and below we denote ”∗” for the symmetric part.
It is easy to check that

det(J)=





(
a
b

)2
, 0≤ r′≤ a,

(c−a)r′

(c−b)r
, a≤ r′≤ c.

Then from Theorem 2.1, we can obtain the relative permittivity and permeability for the
concentrator:

ǫ′=





(
1 0
0 1

)
, 0≤ r′≤ a,




1
K2

− K1
r

(
2√
K2

− K1
r

)
sin2 θ′

K2−
K1
√

K2
r

K1
r

(
2√
K2

− K1
r

)
sinθ′cosθ′

K2−
K1
√

K2
r

∗
1

K2
− K1

r

(
2√
K2

− K1
r

)
cos2 θ′

K2−
K1
√

K2
r




, a≤ r′≤ c,

µ′=
{

b2/a2, 0≤ r′≤ a,

K2(r′+K1)/r′, a≤ r′≤ c,

(2.7)

where we denote constants

K1=
(b−a)c

c−b
, K2=

(
c−b

c−a

)2

.

For the real symmetric matrix ǫ′, we can diagonalize of the permittivity matrix of the
concentrator [24, 42]:

ǫ′(r′)=
(

cosθ −sinθ
sinθ cosθ

)(
ǫr 0
0 ǫθ

)(
cosθ sinθ
−sinθ cosθ

)

=

(
ǫr cos2 θ+ǫθ sin2 θ (ǫr−ǫθ)sinθcosθ

∗ ǫr sin2θ+ǫθ cos2 θ

)
, a≤ r′≤ c, (2.8)

where

ǫr =
r′+K1

r′
, ǫθ =

r′

r′+K1
. (2.9)

From (2.9), we can see that

a+K1

a
≥ǫr ≥

c+K1

c
>1,

a

a+K1
≤ǫθ ≤

c

c+K1
<1,

i.e., the physical parameters of concentrator are bounded below and above, which are
different from the cloaking metamaterials that are unbounded [22]. Note that ǫθ < 1,
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which is nonphysical and is often mapped by a dispersive medium model in numerical
simulation [15]. Here we adopt the lossless Drude model:

ǫθ =ǫmax−
ω2

e

ω2
, (2.10)

where ǫmax = c/(c+K1) is the maximum value of ǫθ , and ω>0 and ωe >0 are the source
wave and plasma frequencies, respectively. Following our previous work [24], substitut-
ing (2.8) into the constitutive equation D=ǫ0ǫ′E, we obtain

ǫ0ǫrǫθE=

(
ǫr sin2 θ+ǫθ cos2θ (ǫr−ǫθ)sinθcosθ

∗ ǫr cos2θ+ǫθ sin2θ

)
D. (2.11)

Then substituting (2.10) into (2.11), we have

ǫ0ǫr

(
ǫmax−

ω2
e

ω2

)
E=


 ǫr sin2 θ+

(
ǫmax− ω2

e

ω2

)
cos2 θ

(
ǫr−

(
ǫmax− ω2

e

ω2

))
sinθcosθ

∗ ǫr cos2θ+
(

ǫmax− ω2
e

ω2

)
sin2 θ


D.

Changing the above equation into time domain by using rules

jω→ ∂

∂t
, ω2→− ∂2

∂t2
, (2.12)

we obtain
ǫ0ǫr(ǫmaxEtt+ω2

e E)=McaDtt+McbD, (2.13)

where

Mca=

[
ǫr sin2φ+ǫmaxcos2φ (ǫr−ǫmax)sinφcosφ

∗ ǫr cos2φ+ǫmaxsin2φ

]
, Mcb=ω2

e

[
cos2φ sinφcosφ

∗ sin2 φ

]
.

Lemma 2.1. The relative permeability µ′(r′)=K2
r′+K1

r′ of EM concentrator is smaller than one
at some points in the domain r′∈ [a,c].

Proof. Let r′0=c−δ for some δ∈(0,c−a). To guarantee µ′(r′0)<1, we need make sure that
there exists some parameter δ such that

µ′(r′0)=K2

(
1+

K1

c−δ

)
<1.

By simple algebra, we obtain

δ<
c−K2c−K1K2

1−K2
=

c(c−a)

2c−a−b
, (2.14)

which means that such δ indeed exists. For example, taking

δ=
c−a

2
<

c(c−a)

2c−a−b
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leads to

r′0=
a+c

2
∈ (a,c), and µ′(r′0)=

(c−b)(c+b)

(c−a)(c+a)
<1.

This completes our proof.

Lemma 2.1 shows that the permeability µ′(r′)< 1 at some points and hence it needs
to be mapped by a dispersive medium model. We choose the following Drude model:

µ′(x′)=µmax−
ω2

m

ω2
, (2.15)

where

µmax=
K2(a+K1)

a
=

b(c−b)

a(c−a)

is the maximum value of µ′(x′), and ωm > 0 is magnetic plasma frequency, respectively.
Substituting (2.15) into the constitutive equation B = µ0µ′H, and using rules (2.12), we
have

µ0(µmaxHtt+ω2
mH)=Btt. (2.16)

Coupling Eqs. (2.13) and (2.16) with Faraday’s and Ampere’s law, we can obtain the time-
domain governing equations for electromagnetic concentrator:

Dt=∇×H,

ǫ0ǫr(ǫmaxEtt+ω2
e E)=McaDtt+McbD,

Bt=−∇×E,

µ0(µmaxHtt+ω2
mH)=Btt.

(2.17)

2.2 Electromagnetic rotator

In this subsection, we consider a 2D cylindrical EM rotator. This device is formed by two
regions: the shell region Ω2={(r,θ) :R1≤r≤R2,0≤θ≤2π} is used to change the direction
of wave propagation, and the core region Ω1 = {(r,θ) : 0≤ r ≤ R1,0≤ θ ≤ 2π} is used to
rotate the incoming EM wave by an angle θ0 when it leaves this region (cf., Fig. 2). For
the cylindrical EM rotator, the exact material parameters in the polar coordinate system
can be obtained by the transformation [9]:

r′= r, 0≤ r≤R2,

θ′=
{

θ+θ0, 0≤ r≤R1,

θ+ξ, R1≤ r≤R2,

(2.18)

where ξ = θ0(R2−r)/(R2−R1). It is easy to see that the transformation (2.18) rotates the
incoming wave by an angle θ0 in the core region Ω1, and then gradually reduces the
rotated angle θ0 to 0 in the shell region.
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Figure 2: Coordinate transformation of a cylindrical EM rotator.

In the Cartesian coordinate system, the transformation (2.18) can be written as

{
x′= r′cosθ′= r′cos(θ+θ0)= xcosθ0−ysinθ0,
y′= r′sinθ′= r′sin(θ+θ0)= xsinθ0+ycosθ0,

0≤ r′≤R1,

{
x′= r′cosθ′= rcos(θ+ξ)= xcosξ−ysinξ,
y′= r′sinθ′= rsin(θ+ξ)= xsinξ+ycosξ,

R1≤ r′≤R2,

(2.19)

from which we can obtain the Jacobian transformation matrix:

J=




∂x′
∂x

∂x′
∂y

∂y′

∂x
∂y′

∂y


=





(
cosθ0 −sinθ0

sinθ0 cosθ0

)
, 0≤ r′≤R1,


 cosξ− ∂ξ

∂x y′ −sinξ− ∂ξ
∂y y′

sinξ+ ∂ξ
∂x x′ cosξ+ ∂ξ

∂y x′


, R1≤ r′≤R2,

(2.20)

where

∂ξ

∂x
=

−θ0

R2−R1
· ∂r

∂x
=−m

x

r2
,

∂ξ

∂y
=

−θ0

R2−R1
· ∂r

∂y
=−m

y

r2
, m=

θ0r′

R2−R1
.

It is easy to check that det(J) = 1 for all 0 ≤ r′ ≤ R2. By the TO theory, the relative
permittivity and permeability for the EM rotator can be obtained as follows:

ǫ′(x′)=





(
1 0
0 1

)
, 0≤ r′≤R1,

(
a(x′) b(x′)
b(x′) c(x′)

)
, R1≤ r′≤R2,

(2.21)

µ′(x′)=1, 0≤ r′≤R2, (2.22)
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where

a(x′)=1+2m
x′y′

r2
+m2 (y

′)2

r2
,

b(x′)=−m
( (x′)2

r2
− (y′)2

r2

)
−m2 x′y′

r2
,

c(x′)=1+
(x′)2

r2
m2−2m

x′y′

r2
.

(2.23)

Through simple algebra, we can obtain the eigenvalues of relative permittivity ǫ′(x′)
on the shell region R1≤ r′≤R2:

0<λr1=
2+m2−

√
(2+m2)2−4

2
<1, λr2=

2+m2+
√
(2+m2)2−4

2
>1,

and diagonalize the real symmetric matrix ǫ
′

(cf. [25]):

ǫ′(x′)=P

[
λr1 0
0 λr2

]
PT, P=

[
p1 p2

−p2 p1

]
,

where

p1=

√
λr2−a(x′)
λr2−λr1

, p2 =sgn
(
b(x′)

)
√

a(x′)−λr1

λr2−λr1
.

Here sgn represents the standard sign function.

Because the eigenvalue λr1∈(0,1), which is nonphysical and we map in by the lossless
Drude dispersive medium model λr1 = 1−ω2

re/ω2, where ωre > 0 is the electric plasma
frequency.

Following the similar derivations in Subsection 2.1, we can obtain the time-domain
governing equations for the EM rotator in subdomain Ω2:

Dt=∇×H,

ǫ0λr2(Ett+ω2
reE)=MraDtt+MrbD,

µ0Ht=−∇×E,

(2.24)

where the matrices Mra and Mrb are given as

Mra=

[
p2

1λr2+p2
2 p1 p2−p1 p2λr2

∗ p2
1+p2

2λr2

]
, Mrb=ω2

re

[
p2

2 p1 p2

∗ p2
1

]
.

Because the relative permittivity and permeability in Ω1 are one, the governing equa-
tions in Ω1 are the standard Maxwell’s equation in free space.
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2.3 Electromagnetic splitter

In this subsection, we consider the time-domain mathematical model of an EM splitter.
The EM splitter is made of two parts: a lifting device and a moving down device. The
lifting medium is designed by the following transformation [9] (cf. Fig. 3):

x′= x, y′=y, for x< x1,

x′= x, y′=y+k(x−x1), for x1≤ x≤ x2,

x′= x, y′=y+k(x2−x1), for x> x2,

(2.25)

where the constant k > 0 is called ”moving parameter”. In transformation (2.25), we
can control the propagation direction of the incoming EM wave. The wave moves up
k(x2−x1) along the y direction after the wave passes through the region x1< x< x2.

Figure 3: Coordinate transformation for the EM lifting device (left), and splitter (right).

By Theorem 2.1, we can obtain the relative permittivity and permeability:

ǫ′(x′)=
[

1 k
k 1+k2

]
, µ′(x′)=1, for x1≤ x′≤ x2,

ǫ′(x′)=
[

1 0
0 1

]
, µ′(x′)=1, for x′≤ x1, or x′≥ x2.

(2.26)

It is easy to obtain the eigenvalues of relative permittivity ǫ′(x′) in Ω2 as follows:

0<λs1=
2+k2−

√
(2+k2)2−4

2
<1, λs2=

2+k2+
√
(2+k2)2−4

2
>1.

Following similar steps to Subsection 2.2 and using the following Drude model for
λs1:

λs1=1−ω2
se

ω2
,
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we can obtain the time-domain governing equations for the EM lifting device in Ω2:

Dt=∇×H,

ǫ0λs2(Ett+ω2
seE)=MsaDtt+MsbD,

µ0Ht=−∇×E,

(2.27)

where

Msa=

[
p2

s1λs2+p2
2 ps1ps2−ps1ps2λs2

∗ p2
s1+p2

s2λs2

]
, Msb=ω2

se

[
p2

s2 ps1 ps2

∗ p2
s1

]
,

with

ps1=

√
k+

√
k2+4

2
√

k2+4
, ps2=

√√
k2+4−k

2
√

k2+4
.

The governing equations in Ω1 and Ω4 (cf. Fig. 3) are the standard Maxwell’s equation
in free space.

Choosing the moving parameter k<0 in the transformation (2.25), we obtain the mov-
ing down device. The governing equations for the moving down device are the same as
the lifting device except

ps2=−
√√

k2+4−k

2
√

k2+4
.

We can obtain a wave splitter by coupling the lifting and moving down devices together
(cf. Fig. 3).

3 Time-domain finite element schemes for TO devices

To design the finite element method for modelling TO devices, we partition the physical
domain Ω by a family of regular meshes Th with maximum mesh size h. To accommo-
date the complicated geometric domain, we use rectangles in the perfectly matched layer
(PML) region, and triangles elsewhere.

For simplicity, we only implement the lowest-order Raviart-Thomas-Nédélec’s mixed
finite element spaces Uh and Vh given as follows: on any rectangular element e∈Th, we
choose

Uh={ψh ∈L2(Ω) : ψh|e is a constant ∀e∈Th},

V h ={φh∈H(curl;Ω) : φh|e ∈Q0,1×Q1,0 ∀e∈Th},

where Qi,j denotes polynomials whose degrees are less than or equal to i and j in variables
x and y, respectively; while on a triangular element, we choose

Uh={ψh ∈L2(Ω) : ψh|e is a constant ∀e∈Th},

V h={φh ∈H(curl;Ω) : φh|e ∈ span{φi∇φj−φj∇φi}, i, j=1,2,3 ∀e∈Th},
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where φi denotes the barycentric coordinates of element e. To impose the perfect con-
ducting boundary condition n×E=0, we introduce the subspace

V0
h ={φh∈V h : n×φh=0, on ∂Ω},

where n is the unit normal vector on ∂Ω.

To define a fully-discrete scheme, we divide the time interval I=[0,T] into N uniform
subintervals Ii=[ti−1,ti] by points ti= iτ,i=0,1,··· ,N, where τ=T/N. For time solutions
En, we introduce backward difference operators:

δτEn+ 1
2 =

En+ 1
2 −En− 1

2

τ
, δ2

τEn+ 1
2 =

En+ 1
2 −2En− 1

2 +En− 3
2

τ2
,

and average operators:

Ē
n+ 1

2 =
En+ 1

2 +2En− 1
2 +En− 3

2

4
, Ê

n+ 1
2 =

En+ 1
2 +En− 1

2

2
.

With the above preparations, now we can construct our time-domain finite element
schemes for solving those TO modeling equations.

EM concentrator: Given initial approximations E
− 3

2

h ,E
− 1

2

h ,D
− 3

2

h ,D
− 1

2

h ,H0
h , for any n≥0,

find D
n+ 1

2

h ∈V0
h, E

n+ 1
2

h ∈V0
h, Hn+1

h ∈Uh such that

(δτD
n+ 1

2

h ,vh)=(Hn
h ,∇×vh),

ǫ0ǫmax(ǫrδ2
τE

n+ 1
2

h ,φh)+ǫ0(ω
2
e ǫr MĒ

n+ 1
2

h ,φh)=(Mcaδ2
τD

n+ 1
2

h ,φh)+(McbD̄
n+ 1

2

h ,φh),

µ0µmax(δ
2
τ Hn+1

h ,ψh)+µ0(ω
2
mH̄n+1

h ,ψh)=−(∇×δτÊ
n+ 1

2

h ,ψh),

hold true for any vh ∈V 0
h, φh∈V0

h, ψh∈Uh.

EM rotator: Given initial approximations E
− 3

2

h ,E
− 1

2

h ,D
− 3

2

h ,D
− 1

2

h ,H0
h , for any n≥ 0, find

D
n+ 1

2

h ∈V0
h, E

n+ 1
2

h ∈V0
h, Hn+1

h ∈Uh such that

(δτD
n+ 1

2

h ,vh)=(Hn
h ,∇×vh),

ǫ0(λr2δ2
τE

n+ 1
2

h ,φh)+ǫ0(λr2ω2
reĒ

n+ 1
2

h ,φh)=(Mraδ2
τD

n+ 1
2

h ,φh)+(MrbD̄
n+ 1

2

h ,φh),

µ0(δτ Hn+1
h ,ψh)=−

(
∇×E

n+ 1
2

h ,ψh

)
,

hold true for any vh ∈V 0
h, φh∈V0

h, ψh∈Uh.
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EM splitter: Given initial approximations E
− 3

2

h ,E
− 1

2

h ,D
− 3

2

h ,D
− 1

2

h ,H0
h , for any n≥0, find

D
n+ 1

2

h ∈V0
h, E

n+ 1
2

h ∈V0
h, Hn+1

h ∈Uh such that

(δτD
n+ 1

2

h ,vh)=(Hn
h ,∇×vh),

ǫ0(λs2δ2
τE

n+ 1
2

h ,φh)+ǫ0(λs2ω2
seĒ

n+ 1
2

h ,φh)=(Msaδ2
τD

n+ 1
2

h ,φh)+(MsbD̄
n+ 1

2

h ,φh),

µ0(δτ Hn+1
h ,ψh)=−

(
∇×E

n+ 1
2

h ,ψh

)
,

hold true for any vh ∈V0
h, φh∈V 0

h, ψh∈Uh.

To simulate the wave propagation in the TO devices, we surround the physical do-
main by a PML, which was originally introduced by Berenger [5] to reduce the EM wave
propagation in unbounded domains to bounded domains. Here we adopt a 2D unsplit
PML tested in our previous work [18]:

ǫ0
∂E

∂t
+

(
σy 0
0 σx

)
E=∇×H,

µ0
∂H

∂t
+(σmx+σmy)H+∇×E+σmxσmyQ+σmy

∂Py

∂x
−σmx

∂Px

∂y
=0,

µ0
∂P

∂t
=E, µ0

∂Q

∂t
=H,

where σi,σm,i, i=x,y, are the electric and magnetic conductivities in the x and y directions,
respectively, and P=(Px,Py)′ and Q are auxiliary variables.

To couple the PML equations with the schemes proposed above for solving the TO
device equations, we design a similar leap-frog scheme to solve the PML equations as

follows: Given proper initial approximations E
− 1

2

h , P0
h, H0

h , for any n ≥ 0, find E
n+ 1

2

h ∈
V0

h, Pn+1
h ∈V 0

h, Hn+1
h , Q

n+ 1
2

h ∈Uh such that

ǫ0(δτE
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2

h ,φh)+
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σy 0
0 σx

)
Ê

n+ 1
2

h ,φh

)
=(Hn
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µ0(δτPn+1
h ,vh)=(E

n+ 1
2

h ,vh),

µ0(δτQ
n+ 1

2

h ,uh)=(Hn
h ,uh),

µ0(δτ Hn+1
h ,ψh)+

(
(σmx+σmy)Ĥn+1

h ,ψh

)
+

(
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n+ 1
2

h ,ψh

)

+

(
σmxσmyQ

n+ 1
2

h ,ψh

)
+

(
σmy

P̂n+1
h,y

∂x
,ψh

)
−
(

σmx

∂P̂n+1
h,x

∂y
,ψh

)
=0,

(3.1)

hold true for any vh ∈V0
h, φh∈V 0

h, uh∈Uh, ψh ∈Uh.
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4 Numerical results

In this section, we provide some numerical simulations showing the effectiveness of our
time-domain mathematical models and the corresponding FETD schemes. In our simu-
lations, we fix the physical domain Ω= [−0.8,0.8]m×[−0.8,0.8]m discretized by an un-
structured triangular meshes with mesh size h=0.008, and impose the plane wave source
by the function Hz=0.1sin(ωt), where ω=2π f and the source wave operating frequency
f =1.0GHz. Furthermore, we surround the physical domain by a perfectly matched layer
with 12 uniform rectangular cells in all directions.

Example 4.1. Simulation of EM concentrator. In this example, we consider a cylindrical
electromagnetic concentrator with a=0.1m, b=0.3m, c=0.4m. Our computational mesh
contains 159638 total edges, 93696 total triangular elements, and 9360 total rectangular
elements. We choose time step size τ = 8×10−13s, and the total number of time steps
N=15000. To see how wave propagates in the concentrator device, we plot the Ey fields at
different times in Fig. 4, which show clearly how wave gets distorted in the metamaterial
region. From Fig. 4, we can see that the structure has little scattering across the medium
interfaces and it has the electromagnetic concentration effect.

Figure 4: Snapshots of electric fields Ey for the simulation of EM concentrator: Top left: 2000 time steps (top
left); 3000 steps (top middle); 4000 steps (top right); 8000 steps (bottom left); 10000 steps (bottom middle);
15000 steps (bottom right).

Example 4.2. Simulation of EM rotator. In this example, we consider a time-domain
cylindrical rotation cloak. We choose R1=0.2m, R2=0.4m,θ= π

2 , and our final mesh yields
159094 total edges, 92160 total triangular elements, and 10224 total rectangular elements.
In our simulation, we choose the time step size τ=2.5×10−13 s, and the total number of
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Figure 5: Snapshots of electric fields Ex for the simulation of the EM rotator: 12000 steps (top left); 18000
steps (top middle); 20000 steps (top right); 30000 steps (bottom left); 40000 steps (bottom middle); 60000
steps (bottom right).

Figure 6: Snapshots of electric fields Ey for the simulation of the EM rotator: 12000 steps (top left); 18000
steps (top middle); 20000 steps (top right); 30000 steps (bottom left); 40000 steps (bottom middle); 60000
steps (bottom right).

time steps N =60000, i.e., the final simulation time becomes T=15 nanosecond (ns). To
see how wave propagates in the rotator, we plot the E=(Ex,Ey) fields at different time
steps in Figs. 5 and 6, which show clearly how wave gets distorted in the metamaterial
region. From those pictures, we can see that the structure has very little scattering and it
has the clearly rotation effect as obtained in [9, Fig. 4].
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Example 4.3. Simulation of EM splitter. In this example, we consider a time-domain
EM wave splitter. We choose the metamaterial region Ω=[−0.1,0.1]×[−0.8,0.8], which is
partitioned by a mesh with 160646 total edges, 92672 total triangular elements, and 10608
total rectangular elements. In our simulation, we choose the time step size τ=2×10−13

s, and the total number of time steps N=40000, i.e., the final simulation time T=8 ns.
First, we simulate the EM wave shifter with a parameter k = 2. To see how wave

propagates in this shifter structure, we plot the Ey fields at different time steps in Fig. 7,
which clearly show how wave gets shifted up in the metamaterial region. Fig. 7 shows
clearly that the structure has very little scattering and shifts up the incoming EM wave.

Then we simulate the EM wave shifter with parameter k=−2. Snapshots of Ey fields
are plotted in Fig. 8, which clearly show how the incoming wave gets shifted down in the
metamaterial region with little scattering.

Finally, we simulate the EM wave splitter. The moving parameter is chosen as k= 2
in domain Ω2 = [−0.1,0.1]×[0,0.8], and k=−2 in domain Ω3 = [−0.1,0.1]×[−0.8,0]. To
see how wave propagates in the shifter structure, we plot the Ey fields at different time
steps in Fig. 9, which clearly show how wave gets shifted up and down in metamaterial
regions with k=2 and k=−2, respectively.

Figure 7: Snapshots of electric fields Ey for the simulation of the EM wave shifter with parameter k=2: 15000
steps (top left); 18000 steps (top middle); 20000 steps (top right); 28000 steps (bottom left); 30000 steps
(bottom middle); 40000 steps (bottom right).

5 Conclusions

In this paper, we propose the explicit FETD method for simulating EM transformation
optics devices, including the EM concentrator, rotator and splitter. We first use trans-
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Figure 8: Snapshots of electric fields Ey for the simulation of the EM wave shifter with parameter k=2: 15000
steps (top left); 18000 steps (top middle); 20000 steps (top right); 28000 steps (bottom left); 30000 steps
(bottom middle); 40000 steps (bottom right).

Figure 9: Snapshots of electric fields Ey for the simulation of EM wave splitter: 12000 steps (top left); 18000
steps (top middle); 20000 steps (top right); 25000 steps (bottom left); 30000 steps (bottom middle); 40000
steps (bottom right).

formation optics to derive the device’s permittivity and permeability, then establish the
time-domain mathematical modeling equations, and finally we develop the fully discrete
FETD method for solving these modeling equations. Numerical results are presented to
demonstrate the effectiveness of our models and the corresponding FETD scheme. De-
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tailed mathematical analysis of these modeling equations will be investigated in our fu-
ture work. More efficient numerical schemes will be explored in the future too.
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