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Abstract. A branching random walk algorithm for many-body Wigner equations and

its numerical applications for quantum dynamics in phase space are proposed and ana-

lyzed in this paper. Using an auxiliary function, the truncated Wigner equation and its

adjoint form are cast into integral formulations, which can be then reformulated into

renewal-type equations with probabilistic interpretations. We prove that the first mo-

ment of a branching random walk is the solution for the adjoint equation. With the help

of the additional degree of freedom offered by the auxiliary function, we are able to

produce a weighted-particle implementation of the branching random walk. In contrast

to existing signed-particle implementations, this weighted-particle one shows a key ca-

pacity of variance reduction by increasing the constant auxiliary function and has no

time discretization errors. Several canonical numerical experiments on the 2D Gaussian

barrier scattering and a 4D Helium-like system validate our theoretical findings, and

demonstrate the accuracy, the efficiency, and thus the computability of the proposed

weighted-particle Wigner branching random walk algorithm.
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1. Introduction

Connection between partial differential equations (PDE) and stochastic processes is

an active topic in modern mathematics and provides powerful tools for both probability

theory and analysis, especially for PDE of elliptic and parabolic type [1, 2]. In the past

few decades, their numerical applications have also burgeoned with a lot of developments,

such as the ensemble Monte Carlo method for the Boltzmann transport equation [3–6], the

random walk method for the Laplace equation [7] and the diffusion Monte Carlo method

for the Schrödinger equation [8,9]. In particular, the diffusion Monte Carlo method allows
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us to go beyond the mean-field approximation and offer a reliable ground state solution

to quantum many-body systems. In this work, we focus on the probabilistic approach to

the equivalent phase space formalism of quantum mechanics, namely, the Wigner function

approach [10], which bears a close analogy to classical mechanics. In recent years, the

Wigner equation has been drawing growing attention [11–14] and widely used in nano-

electronics [15,16], non-equilibrium statistical mechanics [17], quantum optics [18], and

many-body quantum systems [19]. Actually, a branch of experiment physics in the commu-

nity of quantum tomography is devoting to reconstructing the Wigner function from mea-

surements [20, 21]. Moreover, the intriguing mathematical structure of the Weyl-Wigner

correspondence has also been employed in the deformation quantization [22].

In contrast to its great theoretical advantages, the Wigner equation is extremely dif-

ficult to be solved because of the high dimensionality of the phase space as well as the

highly oscillating structure of the Wigner function due to the spatial coherence [12, 21].

Although several efficient deterministic solvers, e.g., the conservative spectral elemen-

t method (SEM) [23] and the third-order advective-spectral-mixed scheme (ASM) [24],

have enabled an accurate transient simulation in 2D and 4D phase space, they are still

limited by data storage and increasing computational complexity. One possible approach

to solving the higher dimensional problems is the Wigner Monte Carlo method, which dis-

plays N−
1

2 convergence (N is the number of samples), regardless of the dimensionality,

and scales much better on parallel computing platforms [19,25].

This work is motivated by a recently developed stochastic method, termed the signed-

particle Wigner Monte Carlo method (spWMC) [26–28]. A particle carrying a signed

weight, either −1 or +1, is called a signed particle. This method utilizes the branching

of signed particles to capture the quantum coherence, and the numerical accuracy has

been validated in 2D situations [29–31]. Very recently, it has been also validated theo-

retically by exploiting the connection between a piecewise-deterministic Markov process

and the weak formulation of the Wigner equation and a random cloud (RC) method was

presented [32]1. In this work, we use an alternative approach to constructing the mathe-

matical framework for spWMC from the viewpoint of computational mathematics, namely,

we focus on the probabilistic interpretation of the mild solution of the (truncated) Wigner

equation and its adjoint correspondence. In particular, we would like to point out that the

resulting stochastic model, the importance sampling and the resampling are three compo-

nents of a computable scheme for simulating the many-body Wigner quantum dynamics.

Our first objective is to explore the inherent relation between the Wigner equation and

a stochastic branching random walk model, as sketched by the diagram below.

Wigner equation
integral form
−−−−−−→

γ(x )
Renewal-type equation

moment
←−−−− Branching random walk (1.1)

With an auxiliary function γ(x ), we can cast the Wigner equation (as well as its adjoint

equation) into a renewal-type integral equation and prove that its solution is equivalent to

1We started this work and finished the first version of the manuscript [33] without being aware of the research

in [32]. As a consequence, we adopt different mathematical treatments for the Wigner equation and thus

propose a different stochastic algorithm the variance of which can be systematically reduced.



A Branching Random Walk Method for Many-Body Wigner Quantum Dynamics 23

the first moment of a stochastic branching random walk. In this manner, we arrive at the

stochastic interpretation of the Wigner quantum dynamics, termed the weighted-particle

Wigner branching random walk (wpWBRW) in this paper. In particular, the wpWBRW

method based on the y-truncated Wigner equation (see Section 3.2) may recover the pop-

ular spWMC method when a special choice of the auxiliary function is adopted. Here

a particle taking a real-valued weight continuously from −1 to +1 is called a weighted

particle. We will demonstrate that wpWBRW with γ(x ) ≡ γ0 possesses a key capacity of

variance reduction by increasing γ0 and has no time discretization errors.

Although the probabilistic interpretation of the Wigner equation naturally gives rise

to a statistical method, in practice we may encounter two major problems. First, such

numerical method is point-wise in nature and not very efficient in general unless we are

only interested in the solution at specified points [34]. Second, the number of particles

in a branching system will grow exponentially in time [35], indicating that the complexity

increases dramatically for a long-time simulations. Thus, our second objective is to discuss

how to overcome these two obstacles. As for the first, we introduce a dual system of

the Wigner equation and derive an equivalent form of an inner product problem, which

allows us to draw weighted samples according to the initial Wigner distribution. Besides,

by exploiting the principle of importance sampling, we can give a sound interpretation to

several fundamental concepts in spWMC, such as particle sign and particle weight. For

the second problem, we firstly derive the exact growth rate of branched particles, which

behaves like e2Mγ0 t in time t, with M pairs of potentials and a constant auxiliary function

γ(x ) ≡ γ0 and then use the idea of resampling to control the particle number within a

reasonable size. Roughly speaking, we make a histogram statistic of the weighted particles

and resample from it in the next loop. Such a self-consistent scheme allows us to evolve the

Wigner quantum dynamics in a time-marching manner and choose appropriate resampling

frequencies to control the computational complexity.

The paper is organized as follows. In the rest of this section we will highlight the

motivation and significance of the present work as well as the main differences from ex-

isting researches in stochastic Wigner simulations. Section 2 reviews briefly the Wigner

formalism of quantum mechanics. From both theoretical and numerical aspects, it is more

convenient to discuss the truncated Wigner equation, instead of the Wigner equation it-

self. Thus in Section 3, we illustrate two typical ways to truncate the Wigner equation,

termed the k-truncated and the y-truncated models. Section 4 manifests the equivalence

between the k-truncated Wigner model and a renewal-type integral equation, where an

auxiliary function γ(x ) is used to introduce a probability measure. In addition, a set of

adjoint equation renders an equivalent representation of an inner product problem. In

Section 5, we will prove that the first moment of a branching random walk is exactly the

solution of the adjoint equation. This probabilistic approach not only validates the branch-

ing process treatment, but also allows us to study the mass conservation and exponential

growth of particle number, rigorously. After some theoretical analysis, we turn to discuss

the importance sampling and the resampling procedure. Section 6 investigates the perfor-

mance of wpWBRW. The paper is concluded in Section 7 where a discussion on the time

discretization issue is detailed.
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1.1. Contributions of this paper

Numerical simulations of the Wigner quantum dynamics have attracted considerable

attention in the past two decades and different kinds of algorithms emerge probably for dif-

ferent purposes. Whichever kind of numerical scheme one uses, it should offer confidence

that the resulting numerical solution must converge to the solution of the same Wigner

function (2.7), the sole starting point for any possible numerical discretization. This is the

first criterion we should obey in designing a reliable algorithm. However, most existing

work on spWMC relies heavily on the numerical results without providing detailed param-

eter settings, and give only a brief word on the mathematical details about the derivation

of the method, except for [26] on the time-independent Wigner equation, and [28] which

starts from the semi-discrete model (i.e., the y-truncated version here) instead of Eq. (2.7).

Therefore, it is hard for a practician or computational researcher to get a feeling of the w-

hole picture, particularly on when and where the approximation happens and what kind of

approximations are applied, which are fundamental issues in evaluating spWMC and must

be explicitly stated. The aim of this work is to fill in the gap between the original Wigner

function (2.7) and spWMC, and two major contributions are listed below.

(I) Build the bridge between the Wigner equation and the branching random walk in a

rigorous manner and lay out all related mathematical details step by step, which will

give a complete view of the resulting stochastic algorithm.

Our mathematical framework spans several different branches of mathematics and

statistics, some standard terminology from which we borrow to describe the result-

ing stochastic algorithm, such as renewal-type integral equation, branching random

walk, importance sampling, resampling, etc. Definitely, this is not just a change of

notations, but using standard mathematical language instead of the pictorial descrip-

tion like ‘creation of particle’, ‘annihilation’. Just because of the rigorous connection,

this mathematical description leaves us much more space for further understanding

the stochastic algorithm with the help of all existing results and techniques from di-

fferent branches of mathematics and statistics. Once different numerical schemes

have the same starting point, whatever being deterministic or stochastic algorithms,

we are able to make a thorough distinction between them. For instance, a highly ac-

curate spectral solver can be used to generate the reference solution for the stochastic

one in the accuracy check. Actually, a 4D accuracy check for the stochastic Wigner

simulations is performed here for the first time. In addition, a clear and complete

mathematical derivation of the stochastic algorithm directly from the original Wign-

er equation prevents any vague expression in the implementation and thus unfold

the ‘blackbox’ of coding wpWBRW.

(II) Propose the use of constant auxiliary functions and point out for the first time that

the resulting weighted-particle implementation shows a key capacity of variance re-

duction by increasing the constant auxiliary function and has no time discretization

errors in contrast to all existing signed-particle ones.
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As shown in the diagram (1.1), the auxiliary function γ(x ) is introduced at the first

place in our theoretical framework to produce an exponential distribution for branch-

ing in time in the renewal-type equation, which exactly plays the role of bridge be-

tween the Wigner function and the branching random walk. Our results show that

increasing the auxiliary function reduces the variance systematically, which is very

important for accurate large-scale simulations. This freedom in choosing the aux-

iliary function is hidden in the so-called signed-particle implementation. All other

existing signed-particle stochastic methods should implicitly adopt a special choice

of non-constant γ(x ) and thus lose the property of variance reduction. This is also

the case for the method introduced in [32], though the author also built the con-

nection between a stochastic process and the weak form of the Wigner equation in

a different way. More interestingly, accompanied with the chosen constant auxiliary

function, the resulting weighted-particle implementation of the Wigner branching

random walk has no time discretization errors, which has two consequences (see

Section 7 for more details): one is the life-time of particle is analytically calculated;

and the other is the branching process is hardly affected by the prescribed time steps.

2. The Wigner equation

In this section, we briefly review the Wigner representation of quantum mechanics.

The Wigner function f (x , k, t) living in the phase space (x , k) ∈ R2d for position x and

wavevector k,

f (x , k, t) =

∫

R
d

dy e−ik·yρ�x + y

2
, x −

y

2
, t

�
(2.1)

is defined by the Weyl-Wigner transform of the density matrix

ρ(x1, x 2, t) =
∑

i

piΨi(x 1, t)Ψ
†
i
(x2, t), (2.2)

where pi gives the probability of occupying the i-th state, 2 d denotes the degree of free-

dom (2×particle number×dimensionality). Although it could possibly have negative val-

ues, the Wigner function serves the role as a density function due to the following proper-

ties [11,13]

• f (x , k, t) is a real function.

•
∫∫
R

d×Rd f (x , k, t)dxdk = 1.

• The average of a quantum operator Â can be written in a form

〈Â〉t =

∫∫

R
d×Rd

A(x , k) f (x , k, t)dxdk (2.3)

with A(x , k) the corresponding classical function in phase space.
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In particular, we can define the Wigner (quasi-) probability WD on a bounded domain

D by taking A(x , k) = 1D(x , k)

WD(t) =

∫∫

D

f (x , k, t)dx dk. (2.4)

To derive the dynamics of the Wigner function, we evaluate its first derivative through the

Schrödinger equation (or the quantum Liouville equation)iħh ∂
∂ t
Ψi(x , t) = −

ħh2

2m
∇2

xΨi(x , t) + V (x , t)Ψi(x , t) (2.5)

combine with the Fourier completeness relation

δ(k − k′) =
1

(2π)d

∫

R
d

dy ei(k−k′)·y , (2.6)

and then obtain the Wigner equation

∂

∂ t
f (x , k, t) +

ħhk

m
· ∇x f (x , k, t) = ΘV

�
f
�
(x , k, t), (2.7)

where

ΘV

�
f
�
(x , k, t) =

∫

R
d

dk′ f (x , k ′, t)VW (x , k − k ′, t), (2.8a)

VW (x , k, t) =
1iħh(2π)d ∫

R
d

dye−ik·y DV (x , y , t), (2.8b)

DV (x , y , t) = V

�
x +

y

2
, t

�
− V

�
x −

y

2
, t

�
. (2.8c)

Here the nonlocal pseudo-differential term ΘV[ f ](x , k, t) contains the quantum informa-

tion, DV (x , y , t) denotes a central difference of the potential function V (x , t), the Wigner

kernel VW (x , k, t) is defined through the Fourier transform of DV (x , y , t), ħh is the reduced

Planck constant and m is the particle mass (for simplicity, we assume all particles have the

same mass throughout this work). Equivalently, we can first perform the integration in

k′-space and arrive at another way to formulate the pseudo-differential term

ΘV

�
f
�
(x , k, t) =

1iħh ∫
R

d

dyDV (x , y , t)bf (x , y , t)e−ik·y , (2.9a)

bf (x , y , t) =
1

(2π)d

∫

R
d

dk′ f (x , k ′, t)eik ′·y :=F−1
�

f
�
(x , y , t). (2.9b)

Actually, bf (x , y , t) is just another notation for ρ
�

x +
y

2
, x − y

2
, t
�

.

One of the most important properties of the Wigner equation lies in the anti-symmetry

of the Wigner kernel

VW (x , k, t) = −VW (x ,−k, t), (2.10)
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then a simple calculation yields

∫

R
d

dk

∫

R
d

dk′ f (x , k ′, t)VW (x , k − k ′, t) = 0, (2.11)

which corresponds to the conservation of the zeroth moment (i.e., total particle number or

mass)

d

dt

∫∫

R
d×Rd

f (x , k, t)dxdk = 0. (2.12)

Although the Wigner equation is completely equivalent to the Schrödinger equation in the

full space, we would like to point out that such an equivalence is not necessarily true

for the truncated Wigner equation (see, e.g. [36]), since for example the truncation of

y-domain may break the Fourier completeness relation (2.6). Therefore, we must be

careful when doing benchmark tests for stochastic Wigner simulations by adopting the

Schrödinger wavefunction as the reference [28, 30, 31], because the underlying models

may not be the same. This also gives rise to the need for highly accurate deterministic

algorithms, such as SEM [23] and ASM [24], which can be used to produce a reliable

reference solution [29].

3. The truncated Wigner equation

In order to numerically solve the Wigner equation, we need to discuss the truncated

Wigner equation on a bounded domain. It should be noted that the double integrations

with respect to k ′ and y in the pseudo-differential operator (see Eq. (2.8a) or (2.9a))

involves the infinite domain due to the Fourier transform, posing a formidable challenge

in seeking numerical approximations. Intuitively, an feasible way is either truncating k-

space first or truncating y-space first, denoted below by the k-truncated and y-truncated

models, respectively. It is worth noting that no matter what kind of truncation we choose,

the mass conservation (2.12) should be maintained in the resulting model as the physical

requirement, which may produce additional constraints.

3.1. The k-truncated Wigner equation

A feasible way to formulate the Wigner equation in a bounded domain is to exploit the

decay of the Wigner function when |k| → ∞. Thus we only need to evaluate the Wigner

function f (x , k, t) in a finite domain K = [−L1, L1]× [−L2, L2] · · · × [−Ld , Ld] (Li > 0)

and a simple nullification can be adopted outside K , that yields the k-truncated Wigner

equation

∂

∂ t
f (x , k, t) +

ħhk

m
· ∇x f (x , k, t) =

∫

K

dk′ f (x , k ′, t)VW (x , k − k ′, t). (3.1)
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Combining with the anti-asymmetry of the Wigner kernel Eq. (2.10), it naturally yields

that ∫

2K

VW (x , k, t)dk = 0, (3.2)

and thus
d

dt

∫

R
d

∫

K

f (x , k, t)dxdk = 0. (3.3)

It should be noted that the domain of integration in Eq. (3.2) must be 2K since k − k ′ ∈
2K in Eq. (3.1) when both k and k′ belong to K .

Despite its simplicity, Eq. (3.1) preserves the definition of the Wigner kernel and avoids

the artificial periodic extension of DV as in the y-truncated model (see below). In fact, such

formulation paves a rigorous way to connect the deterministic equation with a stochastic

process and consequently will be adopted hereafter. In addition, we would like to list two

advantages of Eq. (3.1):

• The k-truncated Wigner equation is defined over the continuous k-space and thus a

continuous momentum sampling can be allowed.

• When the Weyl-Wigner transform of V (x ) has a close form, we can obtain the explicit

formula of the Wigner kernel and avoid the artificial periodic extension of VW in k-

space.

3.2. The y-truncated Wigner equation

The other way, used in [28], is based on the fact that the inverse Fourier transformed

Wigner function bf (x , y , t) defined in Eq. (2.9b) decays when |y | →∞. Thus, we can focus

on bf (x , y , t) on a bounded domain Y = [−L1, L1]×[−L2, L2] · · ·×[−Ld , Ld](Li > 0), and

define the truncated pseudo-differential operator as

ΘT
V

�
f
�
(x , k, t) =

1iħh ∫Y dyDV (x , y , t)bf (x , y , t)e−ik·y . (3.4)

With the assumption that it decays at yi > Li , we can evaluate bf (x , y , t) at a finite band-

width through the Poisson summation formula

bf (x , y , t) ≈
1

(2π)d

∑

m∈Zd



� d∏

i=1

∆ki

�
f (x , m∆k, t)eiy ·m∆k


 , y ∈ Y , (3.5)

where m∆k = (m1∆k1, m2∆k2, · · · , md∆kd) with ∆ki being the spacing, mi ∈ Z , i =

1,2, · · · , d .

Substituting Eq. (3.5) into Eq. (3.4) leads to

ΘT
V

�
f
�
(x , k, t) ≈
∑

m∈Zd

f (x , m∆k, t)ṼW (x , k −m∆k, t), (3.6a)

ṼW (x , k, t) =
1iħh 1

|Y |

∫

Y

dy DV (x , y , t)e−iy ·k . (3.6b)
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Here we have let |Y |= 2L1 × 2L2 · · · × 2Ld and used the constraint

2Li∆ki = 2π, i = 1,2, · · · , d , (3.7)

which serves as the sufficient and necessary condition to ensure the semi-discrete mass

conversation
d

dt

∫

R
d

dx
∑

n∈Zd

f (x ,n∆k, t)∆k = 0. (3.8)

Suppose the Wigner function at discrete samples k = n∆k are wanted, then we immedi-

ately arrive at the y-truncated (or semi-discrete) Wigner equation [37–39]

∂

∂ t
f (x ,n∆k, t) +

ħhn∆k

m
· ∇x f (x ,n∆k, t)

=
∑

m∈Zd

f (x , m∆k, t)ṼW (x ,n∆k −m∆k, t), (3.9)

which indeed provides a straightforward way for stochastic simulations as used in the

spWMC method, and possesses the following properties.

• The modified Wigner kernel ṼW in Eq. (3.6b) can be treated as the Fourier coeffi-

cients of DV (x , y , t) (with a periodic extension), and can be recovered by the inverse

Fourier transform (possibly by the inverse fast Fourier transform).

• The continuous convolution is now replaced by a discrete convolution (see Eqs.

(2.8a) and (3.6a)), so that sampling from the Wigner kernel can be simply realized in

virtue of the cumulative distribution function. However, calculating the cumulative

distribution is very time-consuming, especially when the dimension d increases.

Although both truncated models approximate the original problem in some extent,

their range of applicability is different. In fact, the modified Wigner potential ṼW in y-

truncated model is not a trivial approximation to the original Wigner potential (one can

refer to the difference between the Fourier coefficients and continuous Fourier transforma-

tion). The convergence ṼW → VW is only valid when |Y | → ∞, or the potential V (x , t)

decays rapidly at the boundary of the finite domain (but this condition is not satisfied for,

e.g., the Coulomb-like potential, especially for the Coulomb interaction between two par-

ticles). By contrast, the k-truncated model is based on relatively milder assumption, and

it is not necessary to change the definition of the Wigner kernel. Thus we would like to

stress that the k-truncated Wigner equation is more appropriate for simulating many-body

quantum systems.

Remark 3.1. The spatial coherence leads to a highly oscillating Wigner function in momen-

tum space [12,23], which is hard to be captured accurately by any quantized momentum

method because of unknown size of the mesh size ∆k needed, though there exist many

publications starting from the semi-discrete Wigner equation as well as the quantized mo-

mentum (see [19] and references therein). That is, it is not an easy task to guarantee a
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converged numerical solution to the original Wigner equation (2.7) for the quantized mo-

mentum methods. Now we can see that this semi-discrete model is nothing but one type

of truncation, i.e., the y-truncated model, and other truncations are also available.

4. Renewal-type integral equations

In order to connect the deterministic partial integro-differential equation (3.1) to a

stochastic process, we cast the deterministic equation into a renewal-type integral equa-

tion. For this purpose, the first crucial step is to introduce an exponential distribution

in its integral formulation via an auxiliary function γ(x ). The second one is to split the

Wigner kernel into several positive parts [26], such that each part can be endowed with

a probabilistic interpretation. More importantly, to make the resulting branching random

walk computable, we derive the adjoint equation of the Wigner equation and obtain an e-

quivalent representation of the inner product (2.3), which explicitly depends on the initial

Wigner distribution. Therefore, it provides a much more efficient way to draw samples,

and naturally gives rise to several important features of spWMC, such as the particle sign

and particle weight.

4.1. Integral formulation with an auxiliary function

The first step is to cast Eq. (3.1) into a renewal-type equation. To this end, we can

introduce an auxiliary function γ(x ) and add the term γ(x ) f (x , k, t) on both sides of

Eq. (3.1), yielding

∂

∂ t
f (x , k, t) +

ħhk

m
· ∇x f (x , k, t) + γ(x ) f (x , k, t)

=

∫

K

dk′ f (x , k ′, t)
�

VW (x , k − k′, t) + γ(x )δ(k − k′)
�

. (4.1)

At this stage, we only consider a nonnegative bounded γ(x ), though a time-dependent

γ(x , t) can be also introduced if necessary and analyzed in a similar way. In particular, we

strongly recommend the readers to choose a constant γ(x ) ≡ γ0 in real applications, for the

convenience of both theoretical analysis and numerical computation (vide post). Formally,

we can write down its integral formulation through the variation-of-constant formula

f (x , k, t) =etA f (x , k, 0) +

∫ t

0

e(t−t ′)A �B(x , k, t′) + γ(x )
�

f (x , k, t′)dt′, (4.2)

where etA denotes the semigroup generated by the operator

A = −ħhk/m · ∇x − γ(x ), (4.3a)

B(x , k, t) f (x , k, t) =

∫

K

dk′ f (x , k ′, t)VW (x , k − k′, t) (4.3b)
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is the convolution operator which is assumed to be a bounded operator throughout this

work.

When γ(x ) is bounded, it only imposes a Lyapunov perturbation on a hyperbolic sys-

tem, so that the operator etA is still a C0-semigroup [40]. To further determine how the

operator etA acts on a given function u(x , k, t) ∈ C1
�

L2(R2d), [0, T]
�

, we need to solve

the following evolution system

∂

∂ t
u(x , k, t) +

ħhk

m
· ∇x u(x , k, t) + γ(x )u(x , k, t) = 0, (4.4)

the solution of which readsetA u(x , k, 0) = e−∫ t0 γ(x (t−s))dsu(x (t), k, 0), (4.5)

where

x (∆t) = x − ħhk∆t/m (4.6)

is termed the backward-in-time trajectory of (x , k) with a positive time increment ∆t. In

fact, Eq. (4.5) can be verified by a simple coordinate conversion

∂ u

∂ t
−A u= 0

x ′(t)=x− ħhk t

m−−−−−−−→
∂

∂ t
u(x ′(t), k , t) = −γ(x ′(t), t)u(x ′(t), k, t)

integration in [t ′, t]
−−−−−−−−−−→ u(x ′(t), k , t) = e−∫ tt′ γ(x ′(s))dsu(x ′(t′), k, t′)

x ′(s)→x− ħhk(t−s)

m−−−−−−−−−→ u(x , k, t) = e−∫ tt′ γ(x (t−s))dsu(x (t − t′), k, t′).

After a simple variable substitution (s + t′ → s), the integral formulation of the Wigner

equation becomes

f (x , k, t) =e−∫ t0 γ(x (t−s))ds f (x (t), k, 0) +

∫ t

0

dt′ e−∫ tt′ γ(x (t−s))ds

×
�
B(x (t − t′), k, t′) + γ(x (t − t′))

�
f (x (t − t′), k, t′). (4.7)

Let

H (t′; x , t) =

∫ t

t ′
γ(x (t −τ))e−∫ tτ γ(x (t−s))ds dτ, (4.8)

and assume the auxiliary function satisfies

γ(x )≥ 0, lim
t ′→−∞

∫ t

t ′
γ(x (t − s))ds = +∞, ∀ x ∈ Rd , (4.9)

then we have

dH (t′; x , t) ≥ 0,

∫ t

−∞

dH (t′; x , t) = 1 (4.10)
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implying that H (t′; x , t) is a probability measure with respect to t′ for a given (x , t)

on t′ ≤ t, characterized by the auxiliary function γ(x ). Substituting this measure into

Eq. (4.7) gives

f (x , k, t) = [1−H (0; x , t)] f (x (t), k, 0) +

∫ t

0

dH (t′; x , t)

∫

K

dk′ f
�
x (t − t′), k ′, t′
�

·

¨
VW (x (t − t′), k − k ′, t′)

γ(x (t − t′))
+ δ(k − k ′)

«
, (4.11)

which can be regarded as a kind of renewal-type equation in the renewal theory [35,41].

Next we turn to consider the Wigner kernel VW , which cannot be regarded as a transi-

tion kernel directly due to possible negative values. Nevertheless, we can regard it as the

linear combination of positive semidefinite kernels. In general, the Wigner kernel VW is

composed of M parts

VW = VW,1 + VW,2 + · · ·VW,M , (4.12)

that corresponds to the potential V = V1 + V2 + · · ·+ VM , then the Wigner kernel can be

split into M pairs

VW = V+W − V−W , V±W =

M∑

m=1

V±W,m, (4.13a)

V+W,m(x , k, t) =
1

2

��VW,m(x , k, t)
��+

1

2
VW,m(x , k, t), (4.13b)

V−W,m(x , k, t) =
1

2

��VW,m(x , k, t)
��−

1

2
VW,m(x , k, t). (4.13c)

Such a splitting of VW is rather important in dealing with many-body systems since combin-

ing it with the Fourier completeness relation (2.6) helps to reduce the Wigner interaction

term (2.8a) into lower dimensional integrals.

Due to the anti-symmetry of VW (see Eq. (2.10)), it can be easily verified that

V+W,m(x , k, t) = V−W,m(x ,−k, t). (4.14)

Thus, it suffices to define a function Γ on t ≥ t′, composed of three terms

Γ
�
x (t − t′), k, t; x ′, k ′, t′

�

=V+W
�
x (t − t′), k − k′, t′

�
·δ(x (t − t′)− x ′)− V−W (x (t − t′), k − k′, t′)

·δ(x (t − t′)− x ′) + γ(x (t − t′)) · δ(k − k ′) · δ(x (t − t′)− x ′). (4.15)

Finally, the k-truncated Wigner equation (3.1) can be cast into a Fredholm integral equa-

tion of the second kind

f (x , k, t) = f0(x , k, t) +S f (x , k, t), 0≤ t ≤ T, (4.16)
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where

f0(x , k, t) = e−∫ t0 γ(x (t−s))ds f (x (t), k, 0), (4.17a)

S f (x , k, t) =

∫ t

0

dt′
∫

R
d

dx ′
∫

K

dk′ K(x , k, t; x ′, k ′, t′) f (x ′, k ′, t′), (4.17b)

K(x , k, t; x ′, k ′, t′) = e−∫ tt′ γ(x (t−s))dsΓ(x (t − t′), k, t; x ′, k ′, t′), t ≥ t′. (4.17c)

Before discussing the probabilistic approach to the integral equation (4.16), we would like

first to derive its adjoint equation and attain an equivalent representation of 〈A〉T , which

serves as the cornerstone of wpWBRW.

4.2. Dual system and adjoint equation

In quantum mechanics, it is usually more important to study macroscopically observes

〈Â〉t , such as the averaged position of particles, electron density, etc., than the Wigner

function itself. In this regard, we turn to consider the inner product problem

〈g0, f 〉 =

∫ T

0

dt

∫

R
d

dx

∫

K

dk g0(x , k, t) f (x , k, t) (4.18)

on the domain Rd × K and a finite time interval [0, T]. For instance, to evaluate the

average value 〈Â〉T at a given final time T , we should take

g0(x , k, t) = A(x , k)δ(t − T ), (4.19)

then

〈Â〉T = 〈g0, f 〉. (4.20)

The main goal of this section is to give the explicit formulation of the adjoint equation,

starting from Eqs. (4.16) and (4.19). For brevity, we will assume that the potential is

time-independent, and thus the kernels becomes

K(x , k, t; x ′, k ′, t′) = e−∫ tt′ γ(x (t−s))dsΓ(x (t − t′), k; x ′, k ′), t ≥ t′, (4.21a)

Γ(x , k; x ′, k ′) =
�

V+W (x , k − k ′)− V−W (x , k − k′) + γ(x )δ(k − k ′)
�
δ(x − x ′). (4.21b)

Suppose the kernel K(x , k, t; x ′, k ′, t′) is bounded, then it is easy to verify that S is a

bounded linear operator. Accordingly, we can define the adjoint operator T = S ∗ by

〈g,S f 〉 = 〈S ∗g, f 〉 = 〈T g, f 〉, (4.22)

Applying Theorem 4.6 in [42] directly into the Fredholm integral equation of the second

kind (4.16) yields

T g(x ′, k ′, t′) =

∫ T

t ′
dt

∫

R
d

dx

∫

K

dk K(x , k, t; x ′, k ′, t′)g(x , k, t), t ≥ t′. (4.23)
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Formally, it suffices to define

g(x ′, k ′, t′) = T g(x ′, k ′, t′) + g0(x
′, k ′, t′), 0≤ t′ ≤ T. (4.24)

Since

〈g, f 〉 = 〈g,S f + f0〉= 〈T g, f 〉+ 〈g, f0〉 = 〈g, f 〉 − 〈g0, f 〉+ 〈g, f0〉, (4.25)

we have

〈g0, f 〉 = 〈g, f0〉, (4.26)

namely

〈Â〉T =

∫ T

0

dt′
∫

R
d

dx ′
∫

K

dk′ f (x ′(t′), k ′, 0)e−∫ t′0
γ(x ′(t ′−s))ds g(x ′, k ′, t′) (4.27)

due to Eq. (4.17a). After performing the coordinate conversion r 0 = x ′(t′) = x ′−ħhk′ t′/m,

Eq. (4.27) becomes

〈Â〉T =

∫ T

0

dt0

∫

R
d

dr 0

∫

K

dk0 f (r 0, k0, 0)e−∫ t00
γ(r 0(s))ds g(r 0(t0), k0, t0), (4.28)

where we have introduced a forward-in-time trajectory (in contrast to the backward-in-time

trajectory x (∆t) given in Eq. (4.6)) as follows

r 0(∆t) = r 0 + ħhk0∆t/m (4.29)

with ∆t ≥ 0 being the time increment. Actually, Eq. (4.28) motivates us to combine the

exponential factor with g and define a new function ϕ(r , k, t) as

ϕ(r , k, t) =

∫ T

t

dt′e−∫ t′t
γ(r (s−t))ds g(r (t′ − t), k , t′). (4.30)

Please keep in mind that, it is required t′ ≥ t for convenience in the definition (4.30),

before which t′ ≤ t is always assumed, for example, see Eq. (4.23). Consequently, from

Eq. (4.28), the inner product (4.20) can be determined only by the ‘initial’ data, as stated

in the following theorem.

Theorem 4.1 (Representation of inner product). The average value 〈Â〉T of a macroscopic

quantity A(x , k) at a given final time T can be evaluated by

〈Â〉T =

∫

R
d

dr

∫

K

dk f (r , k, 0)ϕ(r , k, 0), (4.31)

where ϕ is defined in Eq. (4.30).



A Branching Random Walk Method for Many-Body Wigner Quantum Dynamics 35

According to Eq. (4.31), in order to evaluate 〈Â〉T , the remaining task is to calculate

ϕ(r 0, k0, 0). To this end, we need first to obtain the expression of g(r 0(t0), k0, t0) from

the dual system (4.24).

Replacing (x ′, k ′, t′) by (r 0(t0), k0, t0) and performing the coordinate conversion x (t−
t′)→ r 1, k → k1, t → t1 in Eq. (4.24) yield

g(r 0(t0), k0, t0) = g0(r 0(t0), k0, t0) +

∫ T

t0

dt1

∫

R
d

dr 1

∫

K

dk1 e−∫ t1t0
γ(r 1(s−t0))ds

× Γ(r 1, k1; r 0(t0), k0)g(r 1(t1 − t0), k1, t1), (4.32)

where the trajectory r 1(∆t) reads

r 1(∆t) = r 1 + ħhk1∆t/m, ∆t ≥ 0, (4.33)

which is not the same as r 0(∆t) given in Eq. (4.29) due to the disparity in the displace-

ments. By substituting Eq. (4.32) into Eq. (4.28), it yields

〈Â〉T = 〈Â〉T,0 +

∫ T

0

dt0

∫

R
d

dr 0

∫

K

dk0 f (r 0, k0, 0)e−∫ t00
γ(r 0(s))ds

∫ T

t0

dt1

∫

R
d

dr 1

·

∫

K

dk1e−∫ t1t0
γ(r 1(s−t0))ds

Γ(r 1, k1; r 0(t0), k0)g(r 1(t1 − t0), k1, t1), (4.34)

where

〈Â〉T,0 =

∫

R
d

dr 0

∫

K

dk0 f (r 0, k0, 0)e−∫ T0 γ(r 0(s))dsA(r0(T ), k0). (4.35)

From the dual system (4.24), we can also obtain a similar expression to Eq. (4.32) for

g(r 1(t1 − t0), k1, t1), and then corresponding time integration with respect to t1 in Eq.

(4.34) becomes

∫ T

t0

dt1 e−∫ t1t0
γ(r 1(s−t0))ds

g(r 1(t1 − t0), k1, t1)

=e−∫ Tt0 γ(r 1(s−t0))ds
A(r 1(T − t0), k1) +

∫ T

t0

dt1 e−∫ t1t0
γ(r 1(s−t0))ds

·

∫ T

t1

dt2

∫

R
d

dr 2

∫

K

dk2 g(r 2(t2 − t1), k2, t2)

· e−∫ t2t1
γ(r 2(s−t1))ds

Γ(r 2, k2; r 1(t1 − t0), k1), (4.36)

where

r 2(∆t) = r 2 + ħhk2∆t/m, ∆t ≥ 0. (4.37)

Combining Eq. (4.36) and the definition (4.30) directly gives the adjoint equation for ϕ as

stated in Theorem 4.2.
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Theorem 4.2 (Adjoint equation). The function ϕ(r , k, t) defined in Eq. (4.30) satisfies the

following integral equation

ϕ(r , k, t) = e−∫ Tt γ(r (s−t))dsA(r (T − t), k) +

∫ T

t

dt′
∫

R
d

dr ′
∫

K

dk ′ϕ(r ′, k ′, t′)

· e−∫ t′t
γ(r (s−t))dsΓ(r ′, k ′; r (t′ − t), k). (4.38)

We call Eq. (4.38) the adjoint equation of Eq. (4.7) mainly because f (r , k, 0) and

ϕ(r , k, 0) constitute a dual system in the bilinear form (4.31) (denoted by 〈·, ·〉0) for deter-

mining 〈Â〉T . Combining the formal solution f (r , k, T ) = eT(A+B) f (r , k, 0) of the Wigner

equation (3.1) as well as Eqs. (2.3) and (4.31) directly yields

〈Â〉T = 〈 f (r , k, 0),ϕ(r , k, 0)〉0 = 〈 f (r , k, T ),A(r , k)〉0

= 〈eT(A+B) f (r , k, 0),A(r , k)〉0 = 〈 f (r , k, 0),e−T(A+B)A(r , k)〉0. (4.39)

As a consequence, we formally obtain ϕ(r , k, 0) = e−T(A+B)A(r , k) with e−T(A+B) be-

ing the adjoint operator of eT(A+B), indicating that Eq. (4.38), in some sense, can be

treated as an inverse problem of Eq. (4.16), which produces a quantity ϕ(r , k, 0) from the

observation A(r , k) at the ending time T .

Moreover, for given (r , t) on t′ ≥ t, we can similarly introduce a probability measure

with respect to t′ like

G (t′; r , t) =

∫ t ′

t

γ(r (τ− t))e−∫ τt γ(r (s−t))ds dτ, (4.40)

because of

dG (t′; r , t) ≥ 0,

∫ +∞

t

dG (t′; r , t) = 1 (4.41)

under the assumption that the auxiliary function satisfies

∀r ∈ Rd , γ(r )≥ 0, lim
t ′→+∞

∫ t ′

t

γ(r (t − s))ds = +∞. (4.42)

Substituting the measure (4.40) into Eq. (4.38) also yields a renewal-type equation

ϕ(r , k, t) =[1−G (T ; r , t)]A(r(T − t), k)

+

∫ T

t

dG (t′; r , t)

∫

R
d

dr ′
∫

K

dk ′
Γ(r ′, k ′; r (t′ − t), k)

γ(r (t′ − t))
ϕ(r ′, k ′, t′). (4.43)
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Figure 1: Flow chart of the weighted-particle Wigner branching random walk (wpWBRW).

5. Weighted-particle Wigner branching random walk

This section is devoted to the probabilistic interpretation of the adjoint equation (4.43)

and its numerical counterpart. A complete loop of wpWBRW consists of three components:

the importance sampling according to the Wigner function, the branching random walk

and the resampling, as shown in the following flow chart.

The pivotal issue is to establish the probabilistic interpretation of the Wigner equation.

Here we adopt the following approach. First, we prove that the expectation of a branching

random walk equals to the strong solution of Eq. (4.43). Second, the probabilistic inter-

pretation of the weak solution of the Wigner equation can be formulated by an extension

of probability space, and the particle sign function is naturally introduced by exploiting the

principle of importance sampling.

After the theoretical analysis, we turn to discuss the mathematical formulation of re-

sampling, which is aimed at suppressing the exponential growth of particle number. It

is closely linked to the non-parameter density estimation [43] and presents several chal-

lenges in high dimensional cases, as also found in the statistical learning and classification.

To sum up, we will outline the procedures of the stochastic algorithm.

5.1. A branching particle system

To illustrate the main theorem more clearly, we first introduce a probabilistic model,

a branching particle system associated with an exit system, to describe the wpWBRW in a

picturesque language. An exit system means that a particle in the branching system will be

frozen when its life-length exceeds the final time T . All related rigorous analysis is left for

the next subsection.

Consider a system of particles, carrying initial weights 1, and moving in Rd×K ×[t, T].

Without loss of generality, the particle, starting at time t at state (r , k), having a random
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life-length τ and carrying a weight w, is marked. The chosen initial data corresponds to

those adopted in the renewal-type equation (4.43).

Rule 1 The motion of each particle is described by a right continuous Markov process.

Rule 2 The particle at (r , k) dies in the age time interval (t, t′) with probability G (t′; r , t),

which depends on its position r and the time t (see Eq. (4.40)). In particular, when

using the constant auxiliary function γ(r )≡ γ0, the particle dies during time interval

(t, t′) with probability 1−e−γ0(t
′−t), which is totally independent of both its position

and age.

Rule 3 If t+τ < T , the particle dies at age t′ = t+τ at state (r (τ), k), and produces 2M+

1 new particles at states
�
r ′
(1)

, k ′
(1)

�
,
�
r ′
(2)

, k ′
(2)

�
, · · · ,
�
r ′
(2M+1)

, k ′
(2M+1)

�
, endowed

with updated weights w′
(1)

, w′
(2)

, . . ., w′
(2M+1)

, respectively. All these parameters can

be determined by the kernel function in Eq. (4.43):

Γ(r ′, k ′; r (τ), k)

γ(r (τ))
=

M∑

m=1

ξm(r
′)

γ(r (τ))
·

V−W,m(r
′, k − k′)

ξm(r
′)

· δ(r (τ)− r ′)

−
M∑

m=1

ξm(r
′)

γ(r (τ))
·

V+W,m(r
′, k − k′)

ξm(r
′)

· δ(r (τ)− r ′)

+ 1 · δ(k − k′) · δ(r (τ)− r ′), (5.1)

and thus for 1≤ m ≤ M

r ′
(1)
= r ′

(2)
= · · ·= r ′

(2M+1)
= r (τ), (5.2a)

k − k ′
(2m−1)

∝
V−W,m(r (τ), k)

ξm(r (τ))
, k − k′

(2m)
∝

V+W,m(r (τ), k)

ξm(r (τ))
, (5.2b)

k ′
(2M+1)

= k, (5.2c)

w′
(2m−1)

= w · ζ2m−1(r (τ))1{k′2m−1∈K }
, (5.2d)

w′
(2m)
= w · ζ2m(r (τ))1{k′2m∈K }

, w′
(2M+1)

= w · ζ2M+1(r (τ)) = w, (5.2e)

where the function ξm(r ) is the normalizing function for both V+W,m and V−W,m, i.e.,

ξm(r ) =

∫

2K

V+W,m(r , k)dk =

∫

2K

V−W,m(r , k)dk, (5.3)

because of the mass conservation (3.2), and

ζ2m−1(r ) =
ξm(r )

γ(r )
, ζ2m(r ) = −

ξm(r )

γ(r )
, ζ2M+1(r ) = 1. (5.4)
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Rule 4 If t+τ ≥ T , say, the life-length of the particle exceeds T− t, so it will migrate to the

state (r (T − t), k) and be frozen. This rule corresponds to the first right-hand-side

term of Eq. (4.43), and the related probability is

Pr(τ ≥ T − t) = 1−G (T ; r , t) = e−∫ Tt γ(r (s−t))ds. (5.5)

Rule 5 The only interaction between the particles is that the birth time and state of off-

springs coincide with the death time and state of their parents.

In spWMC, it is suggested that the Wigner kernel VW is split into positive and negative

parts, namely, M = 1, and the auxiliary function is chosen to be the normalizing function

γ(r ) ≡ ξ(r ), resulting in a multiplicative factor ζ(r ) being either +1 or −1 according

to Eq. (5.4) [27, 28]. This is how we have a signed-particle implementation. Generally,

in order to ensure the L1-boundedness stated in Theorem 5.1, the bounded weights are

required, i.e.,
��ζm(r )
��≤ 1, see Eqs. (5.15) and (5.17), and thus the proposed implementa-

tion in this work is based on weighted particles, i.e., wpWBRW. In particular, the constant

auxiliary function γ(r ) ≡ γ0 we suggest to use (please refer to Section 7 for more details)

should satisfy

γ0 ≥ ξ̌ := max
1≤m≤2M+1

sup
r∈Rd

ξm(r ). (5.6)

Remark 5.1. Eqs. (5.2b) and (5.3) manifest the importance of the k-truncated model

for the Wigner equation because V+W and V−W can not be necessarily normalized when

|K | → ∞. Nevertheless, such a problem can be readily surmounted if only a finite k-

domain K is taken into account. Notice that one needs to be careful about the domain of

integration for the normalizing function ξm(x ) as k − k ′ ∈ 2K .

5.2. Stochastic interpretation

In the theory of branching process, all the moments of an age-dependent branching

processes satisfy renewal-type integral equations [35], where the term ‘age-dependent’

means the probability that a particle, living at t, dies at (t, t+∆t) might not be a constant

function of t. In this regard, it suffices to define a stochastic branching Markov process

(continuous in time), corresponding to the branching particle system as described earlier.

The random variable of a branching particle system is the family history, a denumerable

random sequence corresponding to a unique family tree. First, we need a sequence to

identify the objects in a family. Beginning with an ancestor, denoted by 〈0〉, and we can

denote its m-th children by 〈m〉. Similarly, we can denote the j-th child of i-the child by

〈i j〉, and thus 〈i1i2 · · · in〉 means in-th child of in−1-th child of · · · of the i2-child of the i1-

th child, with in ∈ {1,2, · · · , 2M + 1}. The ancestor 〈0〉 is omitted here and hereafter for

brevity.

Our branching particle system involves three basic elements: the position r (or x ),

the wavevector k and the life-length τ, and each particle will either migrate to r (τ) =

r +ħhkτ/m, then be killed and produce three offsprings, or be frozen when hitting the first
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exit time T . Now we can give the definition of a family history, starting from one particle

at age t at state (r , k). In the subsequent discussion we let (r 0, k0) = (r , k).

Definition 5.1. A family history ω stands for a random sequence

ω = ((τ0, r 0, k0); (τ1, r 1, k1); (τ2, r 2, k2); (τ3, r 3, k3); (τ11, r 11, k11); · · · ), (5.7)

where the tuple (τi, r i, k i) appears in a definite order of enumeration. τi, r i, k i denote the

life-length, starting position and wavevector of the i-th particle, respectively. The exact order

of (τi, r i, k i) is immaterial but is supposed to be fixed. The collection of all family histories is

denoted by Ω.

At this stage, the initial time t and the initial state (r 0, k0) of the ancestor particle 〈0〉
are assumed to be non-stochastic. In addition, we denote Q i = (r i , k i) and Q = Q0 =

(r 0, k0) = (r , k) for brevity.

Definition 5.2. For each ω = {(τ0,Q); (τ1,Q1); (τ2,Q2); (τ3,Q3); (τ11,Q11) · · · }, the sub-

family ωi is the family history of 〈i〉 and its descendants, as defined by

ωi = {(τi,Q i); (τi1,Q i1); (τi2,Q i2), (τi3,Q i3); · · · }.

The collection of ωi is denoted by Ωi.

The following definition characterizes the freezing behavior of the particle.

Definition 5.3. Suppose the family history ω starts at time t and define the arrival time t i

of a branching-and-jump event recursively as

t0 = t, t i1
= t +τ0, t i1 i2···in = t i1 i2···in−1

+τi1i2···in−1
. (5.8)

Then a particle 〈i1i2 · · · in〉 is said to be frozen at T if the following conditions hold

t i1 i2···in < T and t i1 i2···in +τi1i2···in ≥ T. (5.9)

In particular, when t + τ0 ≥ T, the ancestor particle 〈0〉 is frozen. Sometimes the particle

〈i1i2 · · · in〉 is also called alive in the time interval [t, T]. The collection of frozen particles is

denoted by E (ω).

Example 5.1. The family history ω uniquely determines a family history tree, as shown in

Fig. 2.

ω ={(τ0,Q0); (τ1,Q1); (τ2,Q2); (τ3,Q3); (τ21,Q21); (τ22,Q22);

(τ23,Q23); (τ231,Q231); (τ232,Q232); (τ233,Q233)}.

And ω2 is a subfamily history describing the family history of Q2 and its descendants,

ω2 = {(τ2,Q2); (τ21,Q21); (τ22,Q22); (τ23,Q23); (τ231,Q231); (τ232,Q232); (τ233,Q233)}.

We haveω= {(τ0,Q0);ω1;ω2;ω3}. The collection of frozen particles is E (ω) = {〈1〉, 〈21〉,
〈22〉, 〈231〉, 〈232〉, 〈233〉, 〈3〉}.
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Figure 2: An example of family history tree.

Hereafter, we assume that all particles in the branching particle system will move until

reaching the frozen state, and still use Ω to denote the collection of the family history of all

frozen particles. Now we need to define a probability measure ΠQ,t on Ω, corresponding

to the branching process started from state Q = (r , k) at time t.

For the Borel sets Ti ⊂ [0,+∞) (i = 0,1, · · · , n) , Ri ×Ki (i = 1,2, · · · , n) on Ω, let

E = {τ0 ∈ T0, (τi1
,Q i1
) ∈ T1 ×R1 ×K1, · · · , (τi1 i2···in ,Q i1 i2···in) ∈ Tn ×Rn ×Kn}, then the

probability of the event E is

Pr(E) =

∫

T0

dG (t +τ0; r , t)

∫

R1

dr i1

∫

K1

dk i1
pi1

�
r i1

, k i1
; r (τ0), k
�
× · · ·

×

∫

Tn−1

dG
�

t i1···in−1
+τi1···in−1

; r i1···in−1
, t i1···in−1

�

×

∫

Rn

dr i1···in

∫

Kn

dk i1···in pin

�
r i1···in , k i1···in ; r i1···in−1

(τi1···in−1
), k i1···in−1

�

×

∫

Tn

dG
�

t i1···in +τi1···in ; r i1···in , t i1···in

�
(5.10)

with il ∈ {1,2, · · · , 2M+1} (l = 1,2, · · · , n). Here G (t′; r , t) has been defined in Eq. (4.40)

and the transition densities pil
(for l = 1, · · · , M) are given by

pil
(r , k; r ′, k ′) =





V−W,m(r
′, k − k ′)

ξm(r
′)

· δ(r ′ − r ), il = 2m− 1,

V+W,m(r
′, k − k ′)

ξm(r
′)

· δ(r ′ − r ), il = 2m,

δ(k − k ′) · δ(r ′ − r ), il = 2M + 1.

(5.11)

Combining with the independence assumption in Rule 5, we are able to define a probability

measure ΠQ,t on BΩ, the Borel extension of the cylinder sets on Ω [35],

ΠQ,t(1E) =

∫

Ω

1E(ω)ΠQ,t(dω) = Pr(E), (5.12)
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as well as a stochastic branching process on the probability space (Ω,BΩ,ΠQ,t ). Since ω ∈
Ω corresponds to a denumerable random sequence, the Kolmogorov extension theorem

(see Theorem 6.16 in [41]) ensures the existence and uniqueness of such process.

Moreover, from Eq. (5.10), one can easily verify the Markov property of the stochastic

process on the probability space (Ω,BΩ,ΠQ,t )

ΠQ,t(X Y ) = ΠQ,t (XΠQi ,t+τ0
Y )

=

∫

Ω

X (ω)

(∫

Ωi

Y (ωi)ΠQi ,t+τ0
(dωi)

)
ΠQ,t (dω) (5.13)

for any measurable function X on the space Ω and Y on Ωi ⊂ Ω. That is, events observable

before and after time t +τ0 are conditionally independent.

Next we need to define a signed measure valued function µ : (Rd×K ,B)→ R through

the particle weights and the frozen states, where B ∈ BΩ. According to Rule 4, the frozen

state of a particle 〈i1i2 · · · in〉 is (r i1 i2···in(T − t i1 i2···in), k i1i2···in) with t i1 i2···in = t + τ0 + · · ·+
τi1i2···in−1

, and the frozen state of 〈0〉 is (r 0(T − t), k0).

Definition 5.4. Suppose (r i, k i) is the starting state of a frozen particle i in a given family

history ω, w0 = 1 is the initial weight and let δ(r ,k) mean the unit measure concentrated at

state (r , k). Then we define the exit measure as follows

µ =
∑

i∈E (ω)

wi · δ(r i(T−ti ), k i)
, (5.14)

where wi is the cumulative weight of particle i. For an object i = 〈i1i2 · · · in〉, wi is given by

wi = w0 · ζi1
(r i1
) · ζi2

(r i1i2
) · · ·ζin−1

(r i1 i2···in−1
) · 1�

k i1
∈K ,··· ,k i1 i2 ···in−1

∈K
	, (5.15)

and the function ζ(r ) has been defined in Eq. (5.4). Moreover, for given ω and function

A(r , k), we can further define a random integral on the point distribution

µA(ω) =

∫
A(r , k)µ(dr × dk,ω) =

∑

i∈E (ω)

wi · A(r i(T − t i), k i). (5.16)

To ensure a bounded weight, we require

��ζi(r )
��≤ 1, ∀ r ∈ Rd , ∀ i ∈ {1, . . . , 2M + 1}. (5.17)

The first moment of random function µA(ω) is denoted by ψ(r , k, t) which reads

ψ(r , k, t) = ΠQ,t(µA) =

∫

Ω

µA(ω)ΠQ,t(dω). (5.18)
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Example 5.2. Suppose the ancestor starts at t = 0 carrying the initial weight w = 1. For

the family history ω displayed in Fig. 2, the random integral µA(ω) is

µA(ω) = ζ(r 1)A(r 1(T −τ0), k1) + ζ(r 2)ζ(r 21)A(r21(T −τ0 −τ2), k21)

+ ζ(r 2)ζ(r 22)A(r 22(T −τ0−τ2), k22)

+ ζ(r 2)ζ(r 23)ζ(r 231)A
�
r 231(T −τ0 −τ2−τ23), k231

�

+ ζ(r 2)ζ(r 23)ζ(r 232)A
�
r 232(T −τ0 −τ2−τ23), k232

�

+ ζ(r 2)ζ(r 23)ζ(r 233)A
�
r 233(T −τ0 −τ2−τ23), k233

�

+ ζ(r 3)A
�
r 3(T −τ0), k3

�
. (5.19)

In order to study the particle number in the branching particle system with the family

history ω starting from time t, we use a random function Z(ω, T − t) to stand for the

total number of frozen particles at the final instant T . In consequence, the first moment of

Z(ω, T − t) is

EZT−t =

∫

Ω

Z(ω, T − t)ΠQ,t (dω), (5.20)

which also gives the expectation of the total number of alive particles in time interval

[t, T], and should be finite (see Theorem 5.1). This further means that Z(ω, T− t) is finite

almost surely. As the easier case, the finiteness of EZT−t for the constant auxiliary function

is directly implied from Theorem 13.1 and its corollary of Chapter VI in [35].

Theorem 5.1 (L1-boundedness). Suppose the family history ω starts at time t at state at

state Q = (r , k), and ends at T . Then EZT−t <∞ and as a consequence Pr({Z(ω, T − t) <

∞}) = 1.

Proof. We define a random function 1i1i2···in(ω) = 1 when the particle 〈i1i2 · · · in〉 ap-

pears in the family history ω, otherwise 1i1 i2···in(ω) = 0. From Eq. (5.12) and Defini-

tion 5.3, we have

ΠQ,t(1i1i2···in) =

∫

Ω

1i1i2···in(ω)ΠQ,t(dω) = Pr
�
{t +τ0+ · · ·+τi1i2···in−1

< T}
�

. (5.21)

Let

Z̄(ω, T − t) = 1+

∞∑

n=1

2M+1∑

i1,··· ,in=1

1i1i2···in(ω), (5.22)

that corresponds to the number of particles born up to the final time T . It is obvious that

Z(ω, T − t) ≤ Z̄(ω, T − t). (5.23)

For constant γ0, we introduce an exponential distribution

G(t′) = 1− e−γ0(t
′−t), t′ ≥ t, (5.24)
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and define its n-th convolution by

G0(t
′) = G(t′), Gn(t

′) =

∫ t ′

0

Gn−1(t
′ − u)dG(u). (5.25)

It can be readily verified that

dG (t′; r ,u)

dt′
≤

k

2M + 1
·

dG(t′)

dt′
, ∀ t′ ∈ [u, T], ∀ r ∈ Rd , ∀u ∈ [0, T] (5.26)

holds for a sufficiently large integer k, e.g., k > (2M + 1)eγ0T .

We first show by the mathematical induction that there exists a sufficient large integer

k and a sufficient large constant γ0 > 0 such that

Pr
�
{t +τ0+ · · ·+τi1i2···in−1

< T − u}
�

≤
�

k

2M + 1

�n−1

Gn−1(T − u), ∀u ∈ [0, T − t]. (5.27)

For n= 1, we only need γ0 ≥max{γ(r )} and then have

Pr({t +τ0 < T − u}) =
dG (t′; r , t)

dt′

���
t ′=T−u

=1− e−∫ T−u

t
γ(r (s−t))ds ≤ 1− e−γ0(T−u−t) = G0(T − u). (5.28)

Assume Eq. (5.27) is true for n. Direct calculation shows

Pr
�
{t +τ0+ · · ·+τi1i2···in < T − u}

�
= ΠQ,t

�1{t+τ0+···+τi1 i2···in<T−u}

�

=

∫ T−t−u

0

ΠQ,t

�1{t+τ0+···+τi1 i2 ···in−1
<T−u−v}1{τi1 i2 ···in<v}

�
dv

=

∫ T−t−u

0

ΠQ,t

�1{t+τ0+···+τi1 i2 ···in−1
<T−u−v} ·ΠQi1 ···in ,ti1 ···in

(1{τi1 i2···in<v})
�

dv

≤

∫ T−t−u

0

�
k

2M + 1

�n−1

Gn−1(T − u− v) ·
k

2M + 1
dG(v)

=

�
k

2M + 1

�n
Gn(T − u), (5.29)

which implies that Eq. (5.27) holds for n+ 1.

Finally, using Eqs. (5.21) and (5.27) yields
∫

Ω

Z̄(ω, T − t)ΠQ,t (dω)

=1+

∞∑

n=1

2M+1∑

i1,··· ,in=1

ΠQ,t (1i1i2···in)≤ 1+ (2M + 1)

∞∑

n=1

kn−1Gn−1(T ), (5.30)
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and implies
∫
Ω

Z̄(ω, T − t)ΠQ,t (dω) is bounded for the infinite series is convergent (see

Lemma 1 of the Appendix to Chapter VI in [35]). Hence the proof is completed according

to Eq. (5.23).

Moreover, according to Definition 5.4 and Theorem 5.1, we can directly show that µA

is integrable, say, ∫

Ω

|µA(ω)|ΠQ,t(dω)<∞ (5.31)

provided that A(r , k) is essentially bounded. That is, both µA in Eq. (5.16) and ψ in

Eq. (5.18) are well defined.

With the above preparations, we begin to present the main theorem.

Theorem 5.2 (Stochastic interpretation of the strong solution). The first momentψ(r , k, t)

defined in Eq. (5.18) equals to the solution of the adjoint equation (4.38).

Proof. Let E =
�
τ0 : t +τ0 ≥ T
	
∩Ω correspond to the case in which the particle travels

to (r (T − t), k) and then is frozen. The probability of such event is 1−G (T ; r , t) by Rule

4. Then the remaining case is denoted by Ec =
�
τ0 : t +τ0 < T
	
∩ Ω. Accordingly, from

Eq. (5.18), we have

ψ(r , k, t) =

∫

E

µA(ω)ΠQ,t(dω) +

∫

Ec

µA(ω)ΠQ,t(dω), (5.32)

and a direct calculation gives

∫

E

µA(ω)ΠQ,t(dω) = e−∫ Tt γ(r (s−t))dsA(r (T − t), k), (5.33)

which recovers the first right-hand-side term of Eq. (4.38). When event Ec occurs, it indi-

cates that 2M + 1 offsprings are generated. Notice that ω = (Q0;ω1;ω2; · · · ;ω2M+1) and

thus we have

µA(ω) =

2M+1∑

i=1

wi ·µA(ωi) =

2M+1∑

i=1

ζi(r (τ0)) · 1K (k i) ·µA(ωi), (5.34)

where we have applied Rule 3.

Substitute Eq. (5.34) into the second right-hand-side term of Eq. (5.32) leads to

∫

Ec

µA(ω)ΠQ,t(dω)

=

2M+1∑

i=1

∫

Ec∩{k i∈K }

ζi(r (τ0))

(∫

Ωi

µA(ωi)ΠQi ,t+τ0
(dωi)

)
ΠQ,t(dω), (5.35)

where we have used the Markov property (5.13) as well as the mutual independence

among the subfamilies inherited in Rule 5.
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Finally, by the definition (5.18), we have

∫

Ωi

µA(ωi)ΠQi ,t+τ0
(dωi) =ψ(r i, k i, t +τ0), i = 1, · · · , 2M + 1. (5.36)

Then the first right-hand-side term of Eq. (5.35) becomes

∫

Ec∩{k1∈K }

ζ1(r (τ0))ψ(r1, k1, t +τ0)ΠQ,t(dω)

=

∫ T

t

dt1e−∫ t1t
γ(r (s−t))ds

∫

K

dk1

¦
V−w (r (t1 − t), k − k1)

©
ψ(r 1, k1, t1), (5.37)

where we have let t +τ0→ t1 and used Eqs. (5.4) and (5.11). The remaining right-hand-

side term of Eq. (5.35) terms can be treated in a similar way, and putting them together

recovers the second right-hand-side term of Eq. (4.38). The proof is completed. 2

So far we have proven the existence of the solution of the adjoint equation (4.38),

while its uniqueness can be deduced by the Fredholm alternative.

Our next goal is to show that the probabilistic interpretation of the weak solution

of the Wigner equation is readily established by an extension of the probability space

(Ω,BΩ,ΠQ,t). Intuitively speaking, it is motivated by the randomization of the initial sta-

te Q. To overcome the problem induced by the negative values of f (r , k, 0), we define an

instrumental probability density function fI as

fI (r , k) =
| f (r , k, 0)|∫∫

R
d×Rd | f (r , k, 0)|drdk

, (5.38)

which gives a probability measure λI on Rd ×Rd as dλI = fI (r , k)drdk.

Definition 5.5. The extension (Ω̂, B̂Ω, Π̂t) of the probability space (Ω,BΩ,ΠQ,t ) is

Ω̂ = Rd ×Rd ×Ω, B̂Ω = R
d ⊗R

d ⊗BΩ, Π̂t = λI ⊗ΠQ,t . (5.39)

For any measurable function X on Ω, the extended probability measure Π̂t reads

Π̂t X = λI ⊗ΠQ,t(X ) =

∫∫

R
2d

fI (r , k)

¨∫

Ω

X (ω)ΠQ,t(dω)

«
drdk. (5.40)

The following theorem characterizes the probabilistic interpretation of the inner prod-

uct 〈Â〉T and serves as the mathematical foundation of wpWBRW. Its numerical counterpart

will be discussed in Section 5.3.

Theorem 5.3 (Stochastic interpretation of the weak solution). Suppose A (r , k) has a com-

pact support in K and define

s(r , k) = f (r , k, 0)/ fI (r , k), (5.41)
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then the inner product 〈Â〉T is represented as

〈Â〉T = λI ⊗ΠQ,0(s ·µA) =

∫∫

R
2d

s(r , k)

¨∫

Ω

µA(ω)ΠQ,0dω

«
drdk. (5.42)

Proof. Combining Eq. (4.31) and Theorem 5.2, it is readily verified that

λI ⊗ΠQ,0(s ·µA) =

∫∫

R
2d

fI (r , k)

¨
s(r , k)

∫

Ω

µA(ω)ΠQ,0(dω)

«
drdk

=

∫∫

R
2d

fI (r , k)

¨
f (r , k, 0)

fI (r , k)

∫

Ω

µA(ω)ΠQ,0(dω)

«
drdk

=

∫∫

R
2d

f (r , k, 0)ϕ(r , k, 0)drdk = 〈Â〉T . (5.43)

The proof is finished. 2

5.3. Importance sampling and the particle sign

Hereto we have shown the connection between the average 〈Â〉T and a stochastic pro-

cess in Theorem 5.3. Naturally, 〈Â〉T can be evaluated through the sequential importance

sampling [44]. By exploiting the Markovian property of the linear evolution system, it

suffices to divide the total time [0, t f in] into n steps, denoted by 0 = t0 ≤ t1 ≤ t2 · · · ≤
tn−1 ≤ tn = t f in and we investigate the time interval [t l , t l+1] and set f (r , k, t l) as the

initial condition, without loss of generality.

Regarding of the fact that the Wigner function may take negative value, we have to

introduce an instrumental probability distribution fI as in Eq. (5.38)

fI (r , k, t) =
1

H(t)

��� f (r , k, t)

���, (5.44)

where H(t) is the normalizing factor (we assume f ∈ L1(Rd ×K ))

H(t) =

∫∫

R
d×K

��� f (r , k, t)

���drdk. (5.45)

Now the inner product problem can be evaluated by the following estimator

〈A〉tl+1
≈

∑
α sα(t l) ·ΠQα,tl

(µA)∑
α sα(t l)

=

∑
α sα(t l) ·ΠQα ,tl

(µA)∑
α sα(t l)

, (5.46)

where Qα = (rα, kα) are draws from fI and the particle sign function sα reads

sα(t) =
f (rα, kα, t)

fI (rα, kα, t)H(t)
(5.47)
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being either −1 or 1 due to Eq. (5.44). Here sα(t) can be regarded as the numerical

counterpart of Eq. (5.41). In fact, the estimator adopted in Eq. (5.46) implicitly utilizes

the strong law of large number

1

Nα

∑

α

H(t)sα(t)→ 1 as Nα→ +∞, a.s, (5.48)

Furthermore, according to Theorem 5.2, ΠQα ,tl
(µA) can be estimated by

ΠQα,tl
(µA)≈
∑

i∈E (ωα)

wi,α(t l) · A(r i,α, k i,α), (5.49)

where {(r i,α, k i,α)} are frozen particles starting from the ancestor (rα, kα). Then substi-

tuting Eq. (5.49) into Eq. (5.46) yields

〈A〉tl+1
≈
D

A,
1

Nα

∑

α

∑

i∈Eα

sα(t l) ·wi,α(t l) · δ(r i,α,k i,α)

E
0
, (5.50)

where the inner product 〈·, ·〉0 is the same as in Eq. (4.39) and Nα =
∑
α sα is the sample

size, that is a conserved quantity. In this manner, 〈Â〉 is evaluated by a purely particle-based

scheme in which every super-particle, carrying a weight and a sign, is moving according to

several specific rules in the branching particle system.

Notice that the sample size Nα is the numerical counterpart of the total mass in Eq. (3.2),

instead of the particle number. The following theorem presents that Nα is a conserved

quantity after branching, so does the total mass.

Theorem 5.4 (Mass conservation). Suppose that the ancestor particle starts at t = 0 and

carries a weight w0 = 1 and two particles carrying the same weight but opposite sign are

generated in pair, then we have

Pr(E) =

∫

Ω

1E(ω)ΠQ,0(dω) = 1, (5.51)

where the event E is given by

E=
n
ω ∈ Ω :
∑

i∈E (ω)

wi = 1
o

. (5.52)

Proof. Since Z(ω, T − t) only takes odd values, it suffices to take

En =
n
ω ∈ Ω :
∑

i∈E (ω)

wi = 1; Z(ω, T − t) ≤ 2n+ 1
o

, (5.53a)

E∗n = {ω ∈ Ω : Z(ω, T − t) ≤ 2n+ 1}, (5.53b)

and it is easy to see Pr(E0) = Pr(E∗0). In the remaining part of the proof, we will omit

ω ∈ Ω for brevity. Assume that the statement that Pr(Ek) = Pr(E∗
k
) is true for 0 ≤ k ≤ n,

∀t ∈ [0, T]. We show below by the mathematical induction that it still holds for k = n+1.
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From ω = (Q0;ω1; · · · ;ω2M+1), it can be easily verified that

Z(ω, T − t) =

2M+1∑

l=1

Z(ωl , T − t −τ0), (5.54)

thus we have

Z(ωl , T − t −τ0)< Z(ω, T − t), ∀ l ∈ {1,2, · · · , 2M + 1} (5.55)

implying

E∗n+1 ⊂ {Z(ωl , T − t −τ0)≤ 2n+ 1}, ∀ l ∈ {1,2, · · · , 2M + 1}. (5.56)

Furthermore, since ζ2m−1(r ) = −ζ2m(r ), it yields

∑

i∈E (ω)

wi =

M∑

m=1

ζ2m−1(r (τ0)) ·
n ∑

i∈E (ω2m−1)

wi −
∑

i∈E (ω2m)

wi

o
+
∑

i∈E (ω2M+1)

wi , (5.57)

we obtain
2M+1⋂

l=1

n ∑

i∈E (ωl )

wi = 1
o
⊂
n ∑

i∈E (ω)

wi = 1
o

. (5.58)

Combining Eqs. (5.56) and (5.58) with the conditionally independence of ωl yields

Pr(En+1)

Pr(E∗n+1)
≥ Pr




2M+1⋂

l=1

n ∑

i∈E (ωl )

wi = 1
o��E∗n+1


 =

2M+1∏

l=1

Pr



n ∑

i∈E (ωl )

wi = 1
o��E∗n+1




=

2M+1∏

l=1

Pr({
∑

i∈E (ωl )

wi = 1, Z(ω, T − t) ≤ 2n+ 3})/Pr(E∗n+1) = 1,

where the induction hypothesis is applied in the last line, and thus Pr(En+1) ≥ Pr(E∗n+1).

Accordingly, we have Pr(En+1) = Pr(E∗n+1) for it is obvious that Pr(En+1)≤ Pr(E∗n+1).

Finally, according to the fact that E0 ⊂ E1 ⊂ · · ·En ⊂ En+1 · · · ⊂ E, we have

Pr(E) = lim
n→+∞

Pr(En) = 1, (5.59)

due to the monotone convergence theorem. Hence we complete the proof by setting t = 0.

By taking A= 1
R

d×K , one is readily to verify that
∫

R
d

dr

∫

K

dk f (r , k, T ) ≈
1

Nα

∑

α

∑

i∈Eα

sα(t l) ·wi,α(t l) =
1

Nα

∑

α

sα(t l) = 1, (5.60)

and then it further implies
∫

R
d

dr

∫

K

dk f (r , k, T ) =

∫

R
d

dr

∫

K

dk f (r , k, 0), ∀ T ≥ 0, (5.61)

due to Eqs. (4.20) and (4.31), which is nothing but the mass conservation (3.3).
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5.4. Resampling

Apart from the probabilistic interpretation and the importance sampling, the resam-

pling is another major component for a computable wpWBRW. Before discussing the basic

idea of resampling, we first need to clarify its necessity.

It starts by estimating the growth rate of particles in the branching system. For the

constant auxiliary function γ(r ) ≡ γ0, the random life-length τ of a particle starting at

time t is characterized by an exponential distribution

G(t′) = Pr(τ < t′ − t) = 1− e−γ0(t
′−t), t′ ≥ t. (5.62)

In this case, the growth of particle number has been thoroughly studied in the literature

[35, 45] and we are able to obtain a simple calculation formula of the particle number as

shown in Theorem 5.5.

Theorem 5.5 (Exponential growth of particle number). Suppose the family history ω starts

at t = 0 and the constant auxiliary function γ(r ) ≡ γ0 is adopted. Then the expectation of

the total number of frozen particles in time interval [0, T] is

EZT = e2Mγ0T . (5.63)

Proof. According to Theorem 15.1 of Chapter VI in [35], the expectation EZt ′ satisfies

the following renewal integral equation

EZt ′ = 1− G(t′) + (2M + 1)

∫ t ′

0

EZt ′−udG(u), EZ0 = 1. (5.64)

We substitute Eq. (5.62) into Eq. (5.64) and then can easily verify that EZt ′ = e2Mγ0 t ′ is

the solution. The proof is finished. 2

Considering the fact that randomly generated k ′ may be rejected in numerical applica-

tion according to the indicator function in Eq. (5.15), we can modify Eq. (5.64) by replac-

ing 2M + 1 with 2α0M + 1, with α0 the average acceptance ratio of k′. In consequence,

the modified expectation of total particle number is EZT = e2α0Mγ0T .

Theorem 5.5 also provides an upper bound of EZT when the variable auxiliary function

satisfies γ(r ) ≤ γ0. Whatever the auxiliary function is, it is clear that the particle number

will grow exponentially. In order to suppress the particle number, we can either decrease the

parameter γ0 or choose a smaller final time T .

Finally, suppose we would like to evolve the branching particle system until the final

time T and there are two typical ways. One is to evolve the system until each particle is

frozen at the final time T in a single step. The other is to divide T into 0= t0 < t1 < · · ·<
tn−1 < tn = T with tn = n∆t and ∆t being the time step, and then we evolve the system

successively in n steps. The latter is usually adopted to measure quantum observables at

instants tn. However, the following theorem tells us that both ways produce the same EZT .
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Theorem 5.6 (Markovian character of the particle number, Theorem 11.1 of Chapter VI

in [35]). Suppose G(t) = 1−e−γ0 t . Then Z(ω, t) is a Markov branching process. In addition,

Z(ω,∆t), Z(ω, 2∆t), · · · is a Galton-Watson process.

We recall that for a Galton-Watson model, if EZ∆t = β , then EZn∆t = β
n. From

Eq. (5.63), we know that β = e2Mγ0∆t , so that EZn∆t = e2Mγ0T . Therefore, we cannot

expect to reduce the particle number by simply dividing T into several steps and evolve

the particle system successively, which also manifests the indispensability of resampling.

Theorem 5.5 has uncovered an embarrassing situation that the particle number in the

branching particle system will grow exponentially in time, which have also been observed

in numerical simulations [46]. The naive splitting of time, say, dividing T into n intervals,

fails to save the efficiency according to Theorem 5.6. In this regard, the particle resampling

is performed every few steps to both reduce the particle number and suppress the stochastic

errors [46–48]. Mathematically speaking, the resampling is consisted of two procedures:

the reconstruction of the Wigner function from the weighted empirical measure (density

estimation) and the generation of new particles from the reconstructed Wigner function

(sampling).

The reconstruction, formulated by Eq. (5.65), is also termed the density estimation in

statistical terminology.

D
A,

1

N0

∑

α

∑

i∈Eα

si(t l) ·wi,α(t l) ·δ(r i,α,k i,α)

E
0
≈ 〈A, p(t l+1)〉0. (5.65)

The pivotal issue in the density estimation is to choose an appropriate form of p(r , k,

t l+1). In general, one can pick up two basis {φµ(r ),µ ∈ Z
n} and {ψν (k),ν ∈ Z

n} in

x -space and k-space, respectively, and set

p(r , k, t l+1) =
∑

µ∈Zn

∑

ν∈Zn

βµ,ν(t l+1)φµ(r )ψν(k). (5.66)

The basis can be either orthogonal or not orthogonal, such as the piecewise constant func-

tion, the Fourier basis [48] and the Gaussian wave packets [43]. Here we only concern

the most ubiquitous choice: the piecewise constant function

φµ(r )ψν(k) =
��Dµ,ν

��−1
· 1Dµ,ν

(r , k), (5.67)

where the domain Rd ×K =
⋃
µ,ν Dµ,ν and Dµ,ν are mutually disjoint. One can readily

verify the orthogonality.

〈φµψν ,φµ̃ψν̃〉0 =

¨
1, µ= µ̃,ν = ν̃ ,

0, otherwise.
(5.68)

Such an approximation borrows the idea of the histogram statistics. In other fields, it is

also termed the particle cancelation or annihilation as the particles in the same cell with

opposite signs will be cancelled out. This choice is the simplest, but perhaps the most
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attractive. It has been widely used in the Direct simulation of Monte Carlo method for the

Boltzmann equation [47] and the signed-particle Wigner Monte Carlo method [28,29,31].

The coefficients βµ,ν(t l+1) are estimated by the Wigner probability on the domain Dµ,ν

βµ,ν(t l+1) =WDµ,ν
(t l+1)≈

1

N0

1

|Dµ,ν |

∑

α

∑

i∈Eα(ω)

si(t l) ·wi,α(t l) ·1Dµ,ν
(r i,α, k i,α). (5.69)

Once p(r , k, t l) is obtained, it can be used as the initial state for the next step, with the

corresponding instrumental distribution function taking the form as

fI (r , k, t l+1) =
1

H(t l+1)

∑

µ∈Zn

∑

ν∈Zn

|βµ,ν(t l+1)|φµ(r )ψν(k). (5.70)

For more details, one can refer to [46].

When a uniform partition is adopted, the approach is quite attractive for d = 1 and

d = 2 as it can reduce the particle number effectively, whereas its efficiency deteriorates

apparently as the dimension d increases. The possible reason is that dimension of the

feature space (the number of bins), that grows exponentially in d , becomes too much

higher than the sample size, leading to a non-sparse structure and severe over-fitting [34,

43, 49]. A promising way to resolve this problem is the adaptive partitioning of phase

space.

Resampling in a higher dimensional space is a complicated issue and beyond the scope

of this paper, and thus left for our future work. In Section 6, we focus on several typical

tests for d = 1,2 and show the accuracy of wpWBRW and the histogram statistics by

comparing with two deterministic solvers: SEM [23] and ASM [24].

5.5. Outline of wpWBRW

In summary, the outline of wpWBRW is illustrated below from t l to t l+1 with the time

step∆t, l = 1,2, · · · , n−1. It suffices to take r = rα, k = kα, t = t l as the initial state, and

r ′ = r ′α, k ′ = k′α, t′ = t′α for the offsprings in Eq. (4.43).

Step 1: Sample from fI (r , k, t l) The first step is to sample Nα ancestor particles accord-

ing to the instrumental distribution fI (r , k, t l) (see Eq. (5.44)). Each particle has a

state (rα, kα) and carries an initial weight w0,α = 1 and a sign sα.

Step 2: Evolve the particles The second step is to evolve super-particles according to the

rules of branching particle systems. Suppose a particle is born at t′α ∈ [t l , t l+1] at

state (r ′α, k ′α) with weight wα, and it has a random life-length τ′α satisfying

τ′α ∝
dG (t′; r ′α, t′α)

dt′

���
t ′=t ′α+τ

′
α

= γ(r ′α(τ
′
α))e−∫ t′α+τ′αt′α

γ(r ′α(s−t ′α))ds
. (5.71)

For the ancestor particle, we have t′α = t l , (r
′
α, k ′α) = (rα, kα), w′α = wα.
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If τ′α ≥ t l+1 − t′α, the particle is frozen at the state (r ′α(t l+1 − t′α), k
′
α) and the

probability of this event is

Pr(τ′α ≥ t l+1 − t′α) = 1−G (t l+1; r ′α, t′α) = e−∫ tl+1

t′α
γ(r ′α(s−t ′α))ds

. (5.72)

Otherwise, the particle travels to a new position r ′α(τ
′
α) and dies at time t′α + τ

′
α at

state (r ′α(τ
′
α), k

′
α), and meanwhile, several new particles are generated according to

Rule 3, the probability of which is G (t′α +τ
′
α; r ′α, t′α).

Step 3: Resampling Once all particles in the branching system are frozen, one can record

their positions, wavevectors, and weights. Let Eα denote the index set of all frozen

particles with the same ancestor initially at state (rα, kα), {(r i,α, k i,α), i ∈ Eα} the

collection of corresponding frozen states, and wi,α the updated weight of the i-th

particle. Accordingly, 〈Â〉tl+1
can be estimated as

〈Â〉tl+1
≈
∑

α

∑

i∈Eα

sα(t l) ·wi,α(t l) · A(r i,α, k i,α). (5.73)

Particularly, plugging into A(r , k) = 1D(r , k), we obtain WD(r , k). Based on a good

partition of phase space: Rd×K =
⋃
µ,ν Dµ,ν , we are able to update the instrumental

density function fI (r , k, t l+1) by the histogram (5.66).

6. Numerical experiments

In order to investigate the performance of the wpWBRW algorithm as well as to verify

the theoretical predictions as we discussed earlier such as the effect of constant γ0, the

increasing behavior of the particle number and the effect of the time step and the anni-

hilation frequency, we simulate a one-body Gaussian barrier scattering in 2D phase space

and a two-body Helium-like system in 4D phase space. The relative L2 error is adopted to

study the accuracy. Here f ref(x , k, t) denotes the reference Wigner function (wf), which

could be the exact solution or the numerical solution produced by ASM or SEM on a fine

grid mesh, and f num(x , k, t) is the numerical solution produced by wpWBRW. Then, the

relative errors are written as

errw f (t) =

√√√√
∫
X×K

(∆ f (x , k, t))2dxdk
∫
X×K

( f ref(x , k, t))2dxdk
, (6.1)

where ∆ f (x , k, t) = | f num(x , k, t) − f ref(x , k, t)|, and the integrals above are evaluated

using a simple rectangular rule over a uniform mesh. Under the same sample size Nα, the

relative L2 error in fact measures both the variance of the stochastic algorithm and the

errors induced by resampling. To obtain a more complete view of the accuracy, we also

measure corresponding relative errors for physical quantities, e.g., the spatial marginal

(sm) probability distribution and the momental marginal (mm) probability distribution in

a similar way, denoted by errsm(t) and errmm(t), respectively.
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Figure 3: Partial reflection by the Gaussian barrier: Numerical Wigner functions at different time instants
t = 5, 20, 15, 20fs. The reference solution by SEM is displayed in the left-hand-side column, while the
right-hand-side column shows the numerical solution obtained by wpWBRW with the auxiliary function
γ(x) = 3ξ̌ as well as ∆t = 1fs and TA = 1fs.
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Figure 4: Partial reflection by the Gaussian barrier: Growth rates of particle number within different
annihilation periods for wpWBRW with ∆t = 0.008fs and TA = 1fs. The curve of theoretical prediction
can be described analytically by e2γ0 t when using a constant auxiliary function γ0. Here we set the
constant auxiliary function γ0 = ξ̌ and the variable one γ(x) = ξ(x).

In order to output the quantum observable 〈Â〉, e.g., the Wigner functions and the

marginal distributions, at different instants, we adopt an equidistant partition of the time

interval [0, t f in]

0= t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn = t f in, t j+1 − t j =∆t,

and evolve wpWBRW for n steps. Once wpWBRW starts, the number of particles increases

exponentially with time, then necessary annihilation operations are required to ensure

the simulation to continue. In this work, we perform these annihilation operations at a

constant frequency, say 1/TA. That is, we divide equally the time interval [0, t f in] into nA

subintervals with the partition being

0= t0 < t1 < t2 < · · ·< tnA = t f in, nA= t f in/TA

with {t l}nA

l=1
⊂ {t j}

n
j=1

. The annihilations occur exactly at the time instant t i for 1 ≤

i ≤ nA − 1, at which the particle number decreases significantly from #b
P(t

i) to #a
P(t

i),

where #b
P (resp. #a

P) represents the particle number before (resp. after) the annihilation.
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Figure 5: Partial reflection by the Gaussian barrier: Particle number after resampling (annihilation).
The left plot shows the behavior for different auxiliary functions γ(x) with the same annihilation period
TA = 1fs. The right plot displays the behavior for different annihilation periods with the same constant
auxiliary function γ0 = 2ξ̌.

For convenience, we denote the particle number at t0 and tnA by #a
P(t

0) and #b
P(t

nA),

respectively. In each time period [t i−1, t i], the particle number increases from #a
P(t

i−1) to

#b
P(t

i) and corresponding multiple is denoted by

Mi = #b
P(t

i)/#a
P(t

i−1). (6.2)

For the k-truncated Wigner branching particle model with constant auxiliary function

γ(x) ≡ γ0, it has been proved in Theorem 5.5 that such increasing multiple only depends

on the time increment TA and γ0, which means the same increasing multiple exists for each

time period, i.e., Mi ≡ e2γ0TA for any i ∈ {1,2, · · · , nA}.
When the branching process evolves from t j−1 = ( j − 1)∆t to t j = j∆t for 1 ≤ j ≤

n, particle offspring will be generated. It should be emphasized here that, according to

Theorem 5.6, the time step∆t does not matter in wpWBRW from the theoretical point view

in the case of using a constant auxiliary function and whatever large or small∆t we choose

the numerical results should be the same. Actually, there is no time discretization error for

the weighted-particle implementation with a constant auxiliary function, see Eq. (7.9). The

only reason we need the time steps is we want to output numerical results at the instant

t j . On the contrary, in the case of using a variable auxiliary function, like γ(x ) = ξ(x )

in spWMC and γ(x ) = ξ(x )/2 in RC, one must be very careful in choosing ∆t, because,

on one hand, ∆t should be enough small due to the first-order time approximations (7.4)

and (7.8), and on the other hand, too small time step significantly reduces the probability

of branching, which is crucial to capture the quantum information in stochastic Wigner

simulations [29]. This is another reason why we suggest the constant auxiliary function.

All the numerical results are obtained with our own Fortran implementations of wpW-

BRW, SEM and ASM on the computing platform: Dell Poweredge R820 with 4× Intel Xeon

processor E5-4620 (2.2 GHz, 16 MB Cache, 7.2 GT/s QPI Speed, 8 Cores, 16 Threads) and

256GB memory.
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6.1. 2D Gaussian barrier scattering

Two Gaussian barrier scattering experiments are conducted in 2D phase space. The

first experiment is exactly the same as that adopted in [29], while the only change for

the second one is the barrier height is increased to 1.3eV. The readers are referred to [29]

for the details on the problem setting. As we pointed out earlier, both the k-truncated

(see Eq. (3.1), the model parameter is ∆y) and y-truncated (see Eq. (3.9), the model

parameter is∆k) branching particle models can be regarded as approximations of the same

Wigner equation in the unbounded domain, and thus comparable results are expected

on the same footing because both Gaussian wavepacket and Gaussian barrier possess a

very nice localized structure. Hence we only report numerical results for the k-truncated

model and those for the y-truncated model can be found in [29] as well as in an early

version of this work [33]. The initial particle number is fixed to be #a
P(t

0) = 1641810,

and the reference solutions are obtained by SEM, the spectral accuracy of which was well

demonstrated in [23,29].

In general, the calculation of the normalizing function ξ(x) in Eq. (5.3) and sampling

from V+W (x , k)/ξ(x) can be realized simultaneously, namely, we can calculate the normal-

ization factor through sampling. The Gaussian barrier potential reads

V (x) = HB exp

�
−
(x − xB)

2

2

�
, (6.3)

where HB and xB denote the barrier height and the barrier center, respectively, and the

explicit expression of corresponding Wigner kernel is

VW (x , k) =
2HB

ħh

r
2

π
e−2k2

sin(2k(x − xB)). (6.4)

It can be easily seen here that
Æ

2

π
e−2k2

in Eq. (6.4) is the probability density of the normal

distribution N (0,1/2), with which we can calculate the integral by the rejection sampling.

In actual simulations, the number of samples are chosen as 2× 108 for each x , and the

numerical ξ(x) is shown in Fig. 6 for HB = 0.3eV and xB = 30nm. We find there that the

normalization factor has a sharp decrease around x = 30, whereas it is very flat outside

the neighborhood of x = 30 (see Fig. 6).

Experiment 6.1. To be convenient for comparison, we first take the same experiment as

utilized before in [29], in which the barrier height is set to be H = 0.3eV so that the

Gaussian wavepacket will be partially reflected. Such partial reflection is clearly shown

in Fig. 3. Five groups of tests with different time steps and annihilation frequencies are

performed and related data are displayed in Table 1, from which we are able to find several

observations below concerning the accuracy.

(1) The idea of choosing constant auxiliary function γ(x) ≡ γ0 works very well. As we

expected, with the same ∆t and TA, the larger value γ0 takes, the more accurate

solution we obtain, which clearly manifests the reduction in variance.
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Table 1: Partial reflection by the Gaussian barrier: Numerical data for wpWBRW and spWMC. The
errors in the third, fourth and fifth columns are calculated at the final time t f in = 20fs. The particle
numbers in the sixth and seventh columns are measured in million. While using the constant auxiliary
function γ(x) ≡ γ0, the increasing multiple of particle number within an annihilation period is e2γ0TA .
Three kinds of constant auxiliary functions, γ0 = ξ̌, 2ξ̌, 3ξ̌, are tested, where ξ̌ = maxx∈X {ξ(x)} ≈
2.96E-01.

Method γ(x) errw f errsm errmm #̌b
P #̌a

P M e2γ0TA

∆t = 0.008fs, TA = 1fs

spWMC ξ(x) 9.15E-02 3.30E-02 3.19E-02 5.33 3.03 1.77 –

wpWBRW

ξ̌ 9.01E-02 3.16E-02 3.05E-02 5.44 3.02 1.80 1.81

2ξ̌ 7.95E-02 2.74E-02 2.46E-02 9.62 2.95 3.26 3.27

3ξ̌ 7.51E-02 2.52E-02 1.97E-02 17.25 2.93 5.89 5.91

∆t = 1fs, TA = 1fs

spWMC ξ(x) 1.60E-01 1.17E-01 1.40E-01 5.49 3.13 1.77 –

wpWBRW

ξ̌ 8.98E-02 3.32E-02 2.73E-02 5.44 3.02 1.80 1.81

2ξ̌ 7.94E-02 2.68E-02 2.21E-02 9.61 2.95 3.26 3.27

3ξ̌ 7.55E-02 2.51E-02 1.99E-02 17.26 2.93 5.89 5.91

∆t = 2fs, TA = 2fs

spWMC ξ(x) 2.00E-01 1.48E-01 2.01E-01 9.86 3.26 3.12 –

wpWBRW

ξ̌ 9.00E-02 3.45E-02 3.43E-02 10.07 3.10 3.25 3.27

2ξ̌ 6.32E-02 2.70E-02 2.36E-02 31.62 2.98 10.62 10.68

3ξ̌ 5.48E-02 2.45E-02 2.30E-02 102.25 2.94 34.71 34.88

∆t = 4fs, TA = 4fs

spWMC ξ(x) 2.47E-01 1.66E-01 2.36E-01 30.07 3.48 9.72 –

wpWBRW
ξ̌ 1.27E-01 4.93E-02 4.74E-02 33.19 3.21 10.46 10.68

2ξ̌ 6.69E-02 2.83E-02 2.79E-02 326.99 2.92 112.65 113.98

∆t = 0.1fs, TA = 0.1fs

spWMC ξ(x) 2.86E-01 8.12E-02 6.82E-02 2.73 2.58 1.06 –

wpWBRW

ξ̌ 2.87E-01 8.02E-02 6.53E-02 2.73 2.57 1.06 1.06

2ξ̌ 2.84E-01 8.01E-02 6.61E-02 2.87 2.55 1.13 1.13

3ξ̌ 2.84E-01 8.10E-02 6.60E-02 3.04 2.55 1.19 1.19

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

x

ξ
(
x
)

Figure 6: The normalizing function ξ(x) for the Gaussian barrier (6.3) with HB = 0.3eV and xB = 30nm
is utilized in the k-truncated Wigner simulations.
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Figure 7: Total reflection by the Gaussian barrier: Numerical Wigner functions at different time instants
t = 5, 20, 15, 20fs. The reference solution by SEM is displayed in the left-hand-side column, while the
right-hand-side column shows the numerical solution obtained by wpWBRW with the auxiliary function
γ(x) = 2ξ̌ as well as ∆t = 1fs and TA = 1fs.
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(2) When the time step ∆t is small, say ∆t = 0.008fs and 0.1fs, the accuracy of spWMC

is comparable to that of wpWBRW with γ(x)≡ ξ̌ under the same TA, but the former

becomes worse once∆t increases, like ∆t = 1fs, 2fs and 4fs. The larger∆t gets, the

worse the accuracy of spWMC becomes. On the contrary, the accuracy of wpWBRW

is barely affected by the choice of ∆t. While using the same annihilation frequency,

say TA = 1fs, smaller time step, e.g., ∆t = 0.008fs, cannot improve the accuracy,

as predicted by Theorem 5.6. In fact, the accuracy with ∆t = 0.008fs is almost

identical to that with ∆t = 1fs. Such observation directly reflects the fact that there

is no time discretization errors in wpWBRW with a constant auxiliary function. A

detailed discussion on this time discretization issue can be found in the end of this

paper.

(3) Highly frequent annihilation operations, e.g., TA = 0.1fs, destroy the accuracy, even

larger constant auxiliary function cannot save it. But this does not mean a low

annihilation frequency should be appreciated. Actually, when using TA = 4fs, the

accuracy becomes worse than that using TA = 1fs or 2fs, which may be due to the

accumulated numerical errors, such as the bias caused by the resampling. That is,

as we mentioned before, the annihilation adopted here is nothing but a kind of

resampling according to the histogram, and thus possibly cause some random noises

due to its discontinuous nature.

Next we focus on the efficiency. One of the main variables shaping the efficiency is the

particle number. Since the same initial particle distribution is employed for all runs, we

only need to consider the growth rate of particle number. Once choosing the constant aux-

iliary function γ0 and the annihilation frequency 1/TA, the increasing multiple of particle

number can be exactly determined by e2γ0TA from Theorem 5.5, and the ninth column of

Table 1 shows corresponding theoretical predictions. In our numerical simulations, within

every annihilation period [t i−1, t i] with 1≤ i ≤ nA, we record the starting particle number

#a
P(t

i−1), the ending particle number #b
P(t

i), and the related growth rate Mi in Eq. (6.2).

Let

#̌a
P = max

0≤i≤nA−1
{#a

P(t
i)}, #̌b

P = max
1≤i≤nA

{#b
P(t

i)}, M =
1

nA

nA∑

i=1

Mi.

Table 1 gives numerical values of above three quantities, see the sixth, seventh and eighth

columns. According to Table 1, we can figure out the following facts on the efficiency.

(1) Agreement between the mean value M and the theoretical prediction e2γ0TA is read-

ily seen in all situations. In this case, the average acceptance ratio α0 almost equals

to one due to the localized structure of the Wigner kernel (6.4). Actually, the growth

rates in the first five annihilation periods, e.g. for TA = 1fs and γ0 = 3ξ̌, are 5.92,

5.87, 5.88, 5.89, and 5.88, all of which are almost identical to the mean value of

5.89. When TA = 1,2,4fs, the former is a little less than the latter, because the par-

ticles moving outside the computational domain X ×K are not taken into account.

Within each annihilation period, the maximum travel distance of particles can be
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Figure 8: Total reflection by the Gaussian barrier: Spatial (left column) and momental (right) marginal
probability distributions at t = 5, 10, 15, 20fs.
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Table 2: Total reflection by the Gaussian barrier: Numerical data for wpWBRW and spWMC. Detailed
explanations are referred to Table 1, except for ξ̌≈ 1.28 here.

Method γ(x) errw f errsm errmm #̌b
P #̌a

P M e2γ0TA

∆t = 1fs, TA = 1fs

spWMC ξ(x) 2.6033E-01 6.8583E-02 9.3721E-02 48.72 3.95 12.46 -

wpWBRW
ξ̌ 2.5998E-01 6.7069E-02 8.4044E-02 49.58 3.94 12.71 13.04

2ξ̌ 1.3034E-01 3.1041E-02 5.5122E-02 479.96 2.87 167.36 170.12

∆t = 0.1fs, TA = 0.1fs

spWMC ξ(x) 3.4177E-01 1.1303E-01 1.9719E-01 3.22 2.50 1.29 –

wpWBRW

ξ̌ 3.4201E-01 1.0674E-01 1.9785E-01 3.23 2.50 1.29 1.29

2ξ̌ 3.3697E-01 1.0959E-01 1.9413E-01 4.05 2.43 1.67 1.67

3ξ̌ 3.4011E-01 1.1157E-01 1.9734E-01 5.18 2.40 2.16 2.16

calculated by
ħh

m
·max

k∈K
{|k|} · TA,

implying that, the larger value TA is, the more particles move outside the domain.

This explains the slight deviation between M and e2γ0TA increases from almost zero

to at most 1.33 as TA increases from 0.1fs to 4fs. Moreover, when TA = 1fs, the

increasing multiples for ∆t = 0.008fs are identical to those for ∆t = 1fs, i.e., M is

independent of∆t, which has been also already predicted by the theoretical analysis.

More details about the agreement of the growth rates of particle number with the

theoretical prediction for TA = 1fs and ∆t = 0.008fs can be found in Fig. 4.

(2) Not like using the constant auxiliary function, we do not have a simple calculation

formula so far for the growth rate of particle number when using the variable auxil-

iary function (i.e., depending both on time and trajectories) in spWMC. However, we

can still utilize the growth rate for the case of γ0 = ξ̌ to provide a close upper bound

for the case of γ(x) = ξ(x). As shown in the eighth column of Table 1, the variation

of the mean growth rate between them is about 0, 0.03, 0.13 and 0.74 for TA = 0.1fs,

1fs, 2fs and 4fs, respectively. Fig. 4 further compares the curves of growth rate for

TA = 1fs and ∆t = 0.008fs within four typical annihilation periods. By comparing

with the Wigner functions shown in Fig. 3, we find that the closer to the center the

Gaussian wavepacket lives, the larger the deviation between the curves for the con-

stant and variable auxiliary functions becomes. Such deviation in accordance with

the analysis of ξ(x) shown in Fig. 6 validates the proposed mathematical theory

again.

(3) During the resampling (annihilation) procedure, the main objective is to reconstruct

the Wigner distribution using less particles, which explores the cancelation of the

weights with opposite signs, see Eq. (5.47). The eighth column of Table 1 tells us that

the maximum particle numbers after resampling for TA = 1,2,4fs are all around 3.00

million, implying that there should be a minimal requirement of particle number to

achieve a comparable accuracy. Otherwise, the accuracy will decrease, for example,
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Figure 9: The Helium-like system: The history of relative errors and particle number after resampling.

the values of #̌a
P for TA = 0.1fs are around 2.55 million. Fig. 5 shows more clearly

the typical history of #a
P(t). We can find there that, no matter how huge the particle

number before the annihilation #b
P(t) (which depends on the choice of both the

auxiliary function and TA) is, the particle number after the annihilation #a
P(t) for

the simulations with comparable accuracy exhibits almost the same behavior, which

recovers and extends the so-called “bottom line" structure described in [29]. Such

behavior may depend only on the oscillating structure of the Wigner function. On

the other hand, highly frequent annihilations like TA = 0.1fs destroy this bottom line

structure and thus the accuracy, see Fig. 5(b), implying that there are no enough

particles to capture the oscillating nature.

Experiment 6.2. In this example, we increase the barrier height to H = 1.3eV so that

the Gaussian wavepacket will be totally reflected, see Fig. 7. Such augment of the bar-

rier height implies that the growth rate of particle number now is about 1.3/0.3 ≈ 4.33

times larger than that for Experiment 1, and thus it is more difficult to simulate accurate-

ly. Based on the observations in Experiment 1, we only test two groups of annihilation

periods, TA = 0.1,1fs. Table 2 summarizes the running data and confirms again that, the

larger constant auxiliary function improves the accuracy, whereas the higher annihilation

frequency destroys the accuracy. In order to get a more clear picture on this accuracy is-

sue, we plot both spatial and momental probability distributions at different time instants

t = 5,10,15,20fs in Fig. 8 against the reference solutions by SEM. We can easily see there

that, the loss of accuracy when using TA = 0.1fs is mainly due to that there are no enough

generated particles to capture the peaks reflecting off the barrier; while the increase of

accuracy when using a larger constant auxiliary function, e.g., γ0 = 2ξ̌, comes from the

smaller variation. Actually, similar phenomena also occur in Experiment 1.

6.2. A 4D Helium-like system

As a typical example, a one-dimensional two-body Helium-like system has been con-

sidered in testing deterministic Wigner solvers in 4D phase space [24]. Here we adopt the
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Figure 10: The Helium-like system: Numerical reduced Wigner functions at t = 2.5, 5, 7.5, 10. The left
column displays the reference solution by ASM, while the right column shows the numerical solution by
wpWBRW with the constant auxiliary function γ0 = 2, ∆t = 0.25 and TA = 0.5.
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potential:

V (x1, x2) = Vne(x1) + Vne(x2) + Vee(x1, x2) = −
2e−κ|x1−xA|

2κ
−

2e−κ|x2−xA|

2κ
+

e−κ|x1−x2 |

2κ
,

which is composed of the electron-nucleus and electron-electron interactions, where κ

expresses the screening strength, xA denotes the position of the nucleus, and x i(i = 1,2)

is the position of the i-th electron. In fact, e−κ|x1−x2|/2κ is Green’s function of the 1D

screened Poisson equation. The Wigner kernel of the electron-nucleus interaction reads

VW,ne(x i, ki) = −
2

ħhπ
·

sin(2(x i − xA))

4k2
i
+κ2

, i = 1,2,

and that of the electron-electron interaction

VW,ee(x1, x2, k1, k2) =
1

ħhπ
·

sin(2k1 x1+ 2k2 x2)

|k1− k2|2+ κ2
· δ(k1+ k2).

Therefore we can use a simple rejection method to draw samples from the target distri-

bution V+W (x , k)/ξ(x). Here we use the atomic unit, set xA = 0 and κ = 0.5 and adopt

the same initial data as used in [24]. The computational domain X ×K = [−10,10]2×
[−4,4]2 is divided into 1004 cells. The reference solution is obtained by ASM on a uniform

grid mesh with ∆t = 0.05 and ∆x1 = ∆x2 = 0.2, while the K -domain is divided into 8

cells and each cell contains 16 collocation points, and the Y -domain is [−22.5,22.5]2.

To monitor the accuracy, we record the relative errors of the reduced single-body

Wigner function as given in [24], and of corresponding marginal probability distributions.

Fig. 9(a) shows the history of those relative errors. We can see there that, although the

reduced Wigner function is comparatively less accurate, it can still yield a more accurate

estimation of macroscopically measurable quantities, such as the spatial and momental

marginal probability distributions. This also explains why we see more noise in Fig. 10 for

the reduced Wigner function than in Fig. 11 for the marginal distributions. The possible

reason may lie on the fact that if we wish to be able to estimate a function with the same

accuracy as a function in low dimensions, then we need the size of samples to grow ex-

ponentially as well. However, it can be readily observed in Figs. 10 and 11 that the main

features captured by wpWBRW are almost identical to those by ASM.

Finally, we would like to mention that the growth of particle number is closely related

to the number of cells (dimensionality of feature space). In this example, we use a 1004 =

108 uniformly distributed cells for the resampling and set the initial particle number to

be about 1.5 × 107 with the total weighted summation being 1 × 107. It is shown in

Fig. 9(b) that the particle number increases soon to 3× 108, which is comparable to the

cell number, and then approaches a stable value around 3.1× 108. So if we refine those

cells for the resampling, then the particle number will increase to a higher level. Actually,

for higher-dimensional problems like d ≥ 3, the number of cells is much higher than that

of samples and such a simple cell based resampling strategy cannot achieve an efficient

annihilation. Hence we have to resort to other advanced techniques to control the sample

size in higher-dimensional phase space.
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(c) t = 7.5.
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Figure 11: The Helium-like system: Spatial (left column) and momental (right column) marginal prob-
ability distributions at t = 2.5, 5, 7.5, 10.
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7. Conclusions and discussion

This paper is devoted to the mathematical foundation of the branching random walk

algorithm for the many-body Wigner quantum dynamics. Although several concepts, such

as the signed particle, the adjoint equation and the annihilation procedure, have already

been mentioned in previous work, unfortunately related mathematical results are some-

what fragmented or lack of systemic elaboration, and the crucial issues, such as the annihi-

lation of particles and the computational complexity, fall outside the scope of any current

available theory. Thus, our contribution is to provide a framework from the viewpoint of

computational mathematics within which all these problems can be fully addressed, and

interested readers may get a complete view of the weighted-particle Wigner branching ran-

dom walk (wpWBRW) algorithm accompanied with both derivation and implementation

details in a single reference. Only by this way can we analyze its accuracy, point out the

numerical challenge and make further improvements. We have shown that the signed par-

ticle is naturally introduced according to the principle of importance sampling, the motion

of particles is described by a probabilistic model, and the annihilation is nothing but the re-

sampling. Actually, a direct iterative treatment of the renewal-type integral equation leads

to the description based on the Neumann series for the signed-particle Wigner Monte Carlo

(spWMC) algorithm [28], but this series form may be not so rigorous because of possible

convergence issues. Moreover, we adopt a different approach from that shown recently in

the random cloud (RC) algorithm [32], while both approaches succeed in validating the

basis of the spWMC. The reason we prefer to the branching random walk model, a mixture

of the branching process and the random walk, is that the theory of branching process not

only provides a natural interpretation of growth of particles, but also allows us to calculate

the particle growth rate exactly and discuss the conservation property. These results are

extremely important in real simulations since it gives us a reasonable criterion to control

the computational complexity and allocate computational resources efficiently.

More importantly, the freedom in choosing the auxiliary function are fully revealed

here and the resulting wpWBRW algorithm shows a nice feature of variance reduction

by increasing the constant auxiliary function. This property is absent in other existing

implementations such as spWMC and RC. We will give a rigorous proof of such variance

reduction in a forthcoming publication. Besides this, wpWBRW with a constant auxiliary

function has no time discretization errors. This can be verified from another point on the

life-length τ and the time step ∆t, which is worthy of being paid attention to, but easily

being ignored. The life-length of each particle, initially at time t0, satisfies

τ∝
dG (t′; r , t0)

dt′

���
t ′=t0+τ

. (7.1)

To draw samples from such a distribution, we can draw a uniform random number u in

[0,1) such that

u = G (t0 +τ; r , t0), (7.2)
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and then a simple calculation yields

− ln(1− u) =

∫ t0+τ

t0

γ(r (s− t0))ds. (7.3)

However, solving Eq. (7.3) for τ is entirely not trivial as the explicit form of γ(x ) is un-

known. The spWMC algorithm uses an approximation like [27,28]

γ(r (s− t0))≈ γ(r ), (7.4)

and thus

τ ≈ τ̃ = −
ln(1− u)

γ(r )
. (7.5)

The approximate life-length τ̃ depends on the state of particle, and the approximation

(7.4) is usually reasonable when γ(r ) = ξ(r ) is very flat. But, for example, around the

neighborhood of x = 30nm as shown in Fig. 6, such approximation may be too rough to

be used and will give rise to additional numerical errors. This can be exactly quantified

through a simple fact:

dG (t′; r , t0)

dt′
= γ(r )e−γ(r )(t ′−t0) ·

γ(r (t′ − t0))e−∫ t′t0
γ(r (s−t0))ds

γ(r )e−γ(r )(t ′−t0)

=
dG̃ (t′; r , t0)

dt′
·η(r , t′ − t0), (7.6)

where

dG̃ (t′; r , t0)

dt′
= γ(r )e−γ(r )(t ′−t0), η(r ,τ) =

γ(r (τ))

γ(r )
· e−∫ t0+τt0

[γ(r (s−t0))−γ(r )]ds
.

Therefore, the above approximation (7.4) equals to taking G̃(t′; r , t0) as the instrumental

exponential distribution, yielding

τ̃ ∝
dG̃ (t′; r , t0)

dt′

���
t ′=t0+τ

. (7.7)

That is, spWMC ignores completely the bias introduced by η(r ,τ), and thus puts a severe

limitation on the time step ∆t, as η(r ,τ) ≈ 1 is only valid when τ ≤ ∆t ≪ 1 [29]. A

similar story happens to the RC algorithm [30,32], in which γ(r ) = ξ(r )/2 is chosen and

it is suggested to use the following first-order approximation

Pr(τ >∆t) = 1− G(t0 +∆t; r , t0) = e−∫ t0+∆t

t0
γ(r (s−t0))ds

≈ 1− γ(r )∆t + O (∆t2). (7.8)

When ∆t is sufficiently small, γ(r )∆t can be treated as the probability of the branching-

and-jump event. However, such approach still introduces additional errors and poses

formidable restriction on ∆t when γ(r ) is very large. By contrast, when choosing the
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constant auxiliary function γ(r ) ≡ γ0, the life-length τ of each particle is exactly deter-

mined only by γ0 as

τ = −
ln(1− u)

γ0

, (7.9)

which has nothing to do with the state of particle in contrast to τ̃ in Eq. (7.5), and the

constant auxiliary function directly leads to η(r ,τ) ≡ 1, thereby getting rid of the bias.

This is the first reason why we say that there is no time discretization error in the wpWBRW

method with the constant auxiliary function. The second one is the direct inference of

Theorem 5.6, implying that whatever large or small ∆t we choose, it does not produce

any impact on the expectation of the total particle number of the branching process with

a constant auxiliary function. Hence the importance of the flexibility on the choice of a

constant auxiliary function cannot be over-exaggerated.
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