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Abstract. This paper studies on the dimensions of spline spaces over some given T -
meshes. Using the smoothing cofactor-conformality method, we study the instability
in the dimensions of the spline spaces over T-meshes with 2-nested and 3-nested T-
cycles. We define a singularity factor of each simple T-cycle, the instability and the
structure’s degeneration are associated with the singularity factors. In order to get a
stable dimension formula over T-mesh with a N-nested T-cycle, a constraint on the
T-mesh is introduced. Finally, a possible degeneration for a case of parallel T-cycles is
illustrated.
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1. Introduction

As an industry standard, the Non-Uniform Rational B-spline (NURBS) is commonly
used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE).
However, NURBS models suffer from a major weakness that they contain a large number
of superfluous control points [1,2]. To overcome this limitation, the T-spline, a point-
based spline defined on T-mesh, was invented by Sederberg et al. [1]. It facilitates local
refinement and makes the representation of free-form surfaces more flexible. In addition,
a class of T-splines called Analysis-suitable T-splines has been proposed, for which basis
functions are linearly independent and form a partition of unity [3,4]. Scott et al. [4] also
gave a greedy algorithm to achieve the local refinement for Analysis-suitable T-splines.

Besides, there is another way to obtain local modification on the tensor-product B-
splines over rectangular meshes. The spline space over a T-mesh, denoted by S(m,n, a, 3,
T), was firstly introduced in [5], which is a bi-degree (m,n) piecewise polynomial s-
pline space over T-mesh & with smoothness order a along x direction and f in y di-
rection. By using the B-net method, Deng et al. [5] calculated the dimension of spline
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space S(m,n, a, 3,7) with constraints of m > 2a + 1 and n > 23 + 1 when the T-mesh
has no T-cycle. Huang et al. [6] derived an equivalent dimension formula in a different
form by the smoothing cofactor-conformality method [7,8]. Li et al. [9, 10] improved the
dimension formula in the same spline space by using the smoothing cofactor-conformality
method with a constraint depending on the order of the smoothness, the degree of the s-
pline functions and the structure of the T-mesh as well. Further, Li et al. [11] discussed the
stability of the dimensions of general spline spaces based on the analysis of the conformal-
ity condition at one interior vertex. Mourrain [12] defined the weighted T-meshes, over
which the dimension could be computed in an explicit formula by using the homological
techniques. Li et al. [13] introduced a class of T-meshes, diagonalizable T-meshes, over
which the dimensions of spline spaces are stable. Wang et al. [14] proposed a de Boor like
algorithm to evaluate PHT-splines—polynomial splines over hierarchical T-meshes with sta-
ble dimensions. However, the case of instable dimension of the spline space over T-mesh
was discussed insufficiently.

As we known, for the Morgan-Scott triangulation, the dimension of spline space de-
pends on not only the topological information of the partition but also the geometry struc-
ture of the partition [15]. Recently, Li et al. [16] and Berdinsky et al. [17] found the
instability of the dimensions of spline spaces over some certain T-meshes. In 2015, Guo
et al. [18] discovered the instability of the dimension for the T-mesh with an independent
simple T-cycle. However, if several T-cycles are connected to each other or to say depen-
dent to each other; it is difficult to determine the associated dimension. In this paper, we
study on the dimensions of spline spaces over some given T-meshes with nested T-cycles
and parallel T-cycles which are composed of several connected T-cycles. We find some
very interesting results on the dimensions of the corresponding spline spaces. For the cases
of 2-nested and 3-nested T-cycles, the instability is associated with corresponding singu-
larity factor of each T-cycle. In addition, we give a stable dimension formula over T-mesh
with a N-nested T-cycle by a constraint on the T-mesh.

The remainder of this paper is organized as follows. We review on some definitions and
notations regarding the T-meshes and give the definition of N-nested T-cycle in Section 2.
In Section 3, we discuss the instability on the dimensions of spline spaces over T-meshes
with 2-nested and 3-nested T-cycles respectively. Moreover, we show that the instability
of the dimension and the degeneration of the corresponding structure of the T-mesh are
related to a geometric condition which is defined as singularity factor and we introduce a
constraint on the T-mesh in order to obtain a stable dimension formula for T-mesh with a
N-nested T-cycle. In Section 4, a case of parallel T-cycles on the degeneration of T-mesh
is presented. Finally, conclusions are drawn in the last section.

2. Preliminaries

In this section, we briefly review some definitions and notations of T-mesh as in [9],
then give some prior work on the instability in the dimension of spline space.

A T-mesh is a modified rectangular grid that allows T-junctions arising from T -spline.
For a given T-mesh as shown in Fig. 1(a), its interior mesh segments are divided into three
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Figure 1: A T-mesh and its T-connected components.

kinds as follows:

a) cross-cut: both of its endpoints lie on the boundary of the mesh, e.g. v;v, in Fig. 1(a);
b) ray: only one of its endpoints lies on the boundary of the mesh, e.g. v3v;; in Fig. 1(a);
c) T-segment: both of its endpoints are interior vertices, e.g. v4V1g in Fig. 1(a).

According to the three kinds of mesh segments above, interior vertices are also divided
into three kinds:

1) free-vertex: the intersection point of cross-cuts or rays, €.g, Vo1, Vag, Vo7 in Fig. 1(a).

2) mono-vertex: the intersection point of one T-segment and one cross-cut or one ray,
e.g. Vs, Vg, V16 in Fig. 1(a).

3) multi-vertex: the intersection point of two T-segments, e.g, Vg, V15, V1g in Fig. 1(a).
In this case, we say the two T-segments are T-connected, e.g, Vsvy and v4v;g are T-
connected at vg.

For a given T-mesh 7, the spline space is denoted by S(m,n,a, 3,7 ). By the re-
sults in [9], for each interior vertex v; € &, there exists a conformality factor d;(x,y) €
Pp—_g—1,n—p—1, Where Pp_,_; ,_pg_1 is the bi-degree polynomial space. The dimension of
spline space is determined by the degrees of freedom of all the conformality factors. How-
ever, those factors need satisfying some conformality conditions along each T-segment. For
example, denote x5, xg, X7, Xg, X9 by the x-coordinates of the vertices vs,vg, v, Vg, Vo On
the same T-segment in Fig. 1(a). The corresponding conformality condition along this
horizontal T-segment is

ds (¢, y)(x = x5) "+ do(x, y)(x = x6)“H 4+ + do (o6, ¥)(x — x9)* 1 =0,

A T-connected component is defined as the union of all T-connected T-segments and
their vertices since the corresponding conformality conditions are coupled. E.g. the union



190 C.J. Li and P X. Wang

8
4 E_; 3 7
€, €,
s 1 € 2
6
(a) A T-cycle (b) The binary tree of (a)

Figure 2: A T-cycle with its binary tree.

of V415, VsVg, V7V19, V12V13, V14V16, V17V20 i Fig. 1(b), which must be regarded as a local
structure. Then the corresponding conformality conditions for different T-connected com-
ponents can be solved individually. By decomposing the T-mesh into several T-connected
components without intersections (as shown in Fig. 1(b)), the dimension formula can be
proved in [9].

A T-connected component is a connected component with T-junctions. If the vertex
is an endpoint of one T-segment, which lies on one cross-cut or one ray, then we call it
as boundary vertex of the T-connected component. Referring to [9], a kind of binary tree
for a given T-connected component is described. Selecting an interior vertex as root, its
two child nodes are the two end vertices of the T-segment where the root lies. If the
node is a boundary vertex of the T-connected component, it has no child. Specially, there
exists a case that the procedure is a recurrence when one node becomes to be one of its
descendants, which is defined by T-cycle as follows.

Definition 2.1 (T-cycle). We build a binary tree structure for a T-connected component in a
given T-mesh. If one node appears to be one of its descendants, then we call the T-connected
component as a T-cycle. And we call the boundary vertices of the T-cycle as the leaf nodes of
its corresponding binary tree.

As shown in Fig. 2, the T-connected component formed by four T-segments e;, e,, €3, e4 is
a T-cycle, the leaf nodes vs, vg, V7, vg are boundary vertices of the T-cycle.

Definition 2.2 (Simple T-cycle). For a T-cycle including N T-segments ey, - , ey, by Defi-
nition 2.1, if they can be arranged in an order as

€1 — €y "€y €y €y,

such that only one of the end vertices of e; is an interior vertex of ej 1, j=1,---,N, the other
end vertex is not the interior vertex of other T-segments of the T-cycle, where ey, = e;. Then
the T-cycle is called a simple T-cycle. As shown in Fig. 3, the T-connected component formed
by ey,es, + ,eq is a simple T-cycle.
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Figure 3: A T-mesh with a simple T-cycle. Figure 4: A T-mesh with a pair of parallel T-
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Figure 5: A T-mesh with a 2-nested T-cycle. Figure 6: A T-mesh with a N-nested T-cycle.

In many cases, there is not only one simple T-cycle in a T-mesh. Fig. 4 and Fig. 5 are
two different cases.

In Fig. 4, there are two simple T-cycles Tc; = {V5V3, VgVq, V771, VgVa} and Tcy = {V1,V124,
V1gV1s5, V1oV1ie, Va0V13}. A boundary vertex vg of Tc; is an interior vertex of Tc,, and a
boundary vertex vy, of Tc, is an interior vertex of Tc;. We call this case by a pair of
parallel T-cycles.

In Fig. 5, there are also two simple T-cycles Tc; = {V5Vy,VgV3, V7Vs, VgV7} and Tcy =
{V12V14, VoV1s, V1igV1e, V11V13}- But in this case, all boundary vertices vg, v1g, 11, V12 Of Ty
are interior vertices of Tc;. We call this case by a 2-nested T-cycle. In general, we can
define N-nested T-cycle as follows.

Definition 2.3 (N-nested T-cycle). We nest N — 1 simple T-cycles Tc,, Tcs,- -, Tcy layer by
layer inside of a simple T-cycle Tcy, if they can be arranged in an order as

TCl - TC2 —> e TCN_]_ - TCN,

such that all the boundary vertices of Tc;, i = 2,---,N are interior vertices of Tc;_;. Then
this structure is called a N-nested T-cycle as showed in Fig. 6.

For arbitrary T-mesh, the structure may be very complicated, we only discuss the above
two cases in this paper.
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Figure 7: The Morgan-Scott's partition A .

3. The dimensions of spline spaces over proper T-meshes with N-nested
T-cycles

3.1. Improvement on the singularity condition of dim S(2,2,1,1,%;)

Let us review some results on the singularity of space Sé(A wms) firstly. The dimension of
spline space with degree 2 and smoothness order 1 over the triangulation shown in Fig. 5
heavily depends on the geometric property of the partition. Shi [19] and Diener [20]
obtained independently that the necessary and sufficient condition of dim S;(A ms) =7 is
that Aa, Bb, Cc are concurrent. From the algebraic geometry viewpoint, Du [21] obtained
equivalent condition: if the six quasi-inner edges are regarded as six points in the projective
plane, then they lie on a conic. Obviously, the equivalence of the results obtained by Shi
and Du is sustained by Pascal’s Theorem: If a hexagon is inscribed in a conic in the project
plane, then the opposite sides of the hexagon meet in collinear points.

For the Morgan-Scott triangulation, the dimension of S%(AMS) can also be solved via
the Generator Basis method by Luo [22]. let

ll =au + /51\/ 13 = agv + /53W and 15 = asw + [5511
L=au+ By ° | ly=a4v+psw lg =agw+ PBgu
It has the following conclusion in algebraic form:
Theorem 3.1. ([22])The spline space is singular (dim S%(AMS) =7) if and only if
PiB BsBs BsPs_
a1Qy Q304 A50g

where the value of BiBa , BsPa . Psbo js ¢he characteristic number of a conic.
ajy A3y A5Qg

1,

For the case of T-mesh, Guo et al. [18] gave a necessary and sufficient condition of the
singularity of dim S(2,2,1,1,%;) over T-mesh Z; with a T-cycle given in Fig. 8 by using
the smoothing cofactor-conformality method as follows.

Theorem 3.2. ([18])The necessary and sufficient condition of singularity of dim S(2,2,1,1,

. _ _ 851554523526 t51l54 ta3loe _ _ _
T1) is Gg; = 1, where G, = Sr1es savsat Tanas tagtag? Shi = Xi T Xjp tii=Yi— Y- If G =1,

the dimension of S(2,2,1,1,7;) is 30; otherwise the dimension of S(2,2,1,1,7;) is 29.
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Figure 8: A T-mesh with a T-cycle 7;.
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Figure 9: Alternant segments of red and blue color in 7.

Since the instability of the dimension depends on the value of G;;, we call the number
by the singularity factor of the T-cycle. The meaning of the singularity factor can be
explained in two viewpoints.

It is easy to verify that the singularity factor G, is equal to the product of four associ-
ated cross ratios on the given points along the x-axis and y-axis as follows.

Gy = (x4X3, X5%2) - (%1X6, X5X2) - (¥Y4Y3, ¥5¥2) - (V1Y65 Y5¥2);
where (P;P,,P;P,) is the cross ratio of the points Py, Py, P3, P, and

(P, —P3)(P, — Py)
(Py —P3)(Py — Py)

(P1Py,P3P,) =

In addition, it has the following geometric meaning.

Theorem 3.3. The necessary and sufficient condition of the singularity of dimS(2,2,1,1,7;)
is that the ratio between the product of 8 red segment lengths and the product of 8 blue
segment lengths is 1 in Fig. 9.

Since the red segments and blue segments are alternant in Z;, we call the ratio between
the product of 8 red segment lengths and the product of 8 blue segment lengths as an
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Figure 10: A T-mesh with a 2-nested T-cycle Z,.

alternative product ratio. This geometric condition is the same as singularity factor of
the T-cycle. In the following, we discuss the case of T-mesh with a N-nested T-cycle as
shown in Fig. 6. Similar to Theorem 3.2, there exists an corresponding singularity factor
for each simple T-cycle, denoted by a; (i =1, - ,N). We will see that the dimension of the
spline space is instable due to different values of the singularity factors a; (i =1,---,N).

3.2. The dimension of the spline space on a T-mesh with a 2-nested T-cycle

Example 3.1. Now we consider the case of one T-cycle nested inside of another T-cycle
as showed in Fig. 10 (same as Fig. 5). Assume that x = (xi)?zo and y = (y; ?,:0 are two
ascending sequences. The two T-cycles are Tc¢; and Tc,, where Tc; = {es = V5Vy, €5 =
VeV3, €7 =V7Vy, €g =VgV1}, Tcy = {eg =ViaV1y, €2 =VgV1s, €3 =VigV16, €4 = V11V13}

According to Theorem 3.2, the two singularity factors a; and a, corresponding to Tc;
and Tc, are

_ 557517528524 L5717 Lo glog (3.1a)

al -_ b
$1,282,5 57,8547 L1260 5 L7847

85,6526 53,753,4 Ls6l26 L37834 (3.1b)

a, = )
$2,353,5 S6,754,6 L2335 Lg7l46

Theorem 3.4. The dimension of spline space S(2,2,1,1,%,) over T-mesh I, shown in Fig. 10
is unstable. The T-mesh’s degeneration of two different cases are shown in Fig. 11.

dimS(2,2,1,1,%)

29, ifa; #1anday, #1 (Both Tcy and Tc, are degenerated from ),
=4 30, ifa; =1 and for any a, (Tc, is degenerated from %,),
30, ifa; #1anda, =1 (None degeneration),

where a; and a, are defined by (3.1a) and (3.1b).

Proof. See Appendix A. O
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Figure 11: The two degenerations of T-mesh 7.

We see that the dimension and structure’s degeneration are related to the value of sin-
gularity factor of each T-cycle. Fig. 11 shows two different cases on T-mesh’s degeneration
and we give the following examples in different cases.

Remark 3.1. (i) We set (xq,xq,-+,X%9) =(—1, 0, 1, 2, %, g, 3, 4, 5, 6) and (¥¢, y1,
,¥9)=(-1,0,1, 2, %, g, 3, 4, 5, 6) in Fig. 10. By computing, a; # 1 and a, # 1,
hence dimS(2,2,1,1,%,) = 29 and two T-cycles are totally degenerated from 7.

(i) We set (xq, X1, ,X9) =(—=12,-11, 1, %, %, %, 3,4, 16,17) and (¥g, Y1, "+, Y9) =
(-12,-11, 1, %, %, %, 3, 4, 16, 17) in Fig. 10. By computing, a; = 1 and a5 # 1,

hence dimS(2,2,1,1,%,) = 30 and the inner T-cycle Tc, is degenerated from .

(lll) We set (xOJxly'” ,XQ) = (_125_11) 1) 2: %J g: 3: 4) 16)17) and (.yO).yl)“' :}’9) =
(-12,-11, 1, 2, £, £, 3, 4, 16, 17) in Fig. 10. By computing, a; = 1 and a, = 1,

hence dimS(2,2,1,1,%,) = 30 and the inner T-cycle Tc, is degenerated from 7.

(iv) We set (xg, X1, ,x9) = (=1, 0, 1, 2, %, %, 3, 4,5, 6)and (yg, Y1,**»Y9) =
(-1,0, 1, 2, %, g, 3, 4, 5, 6) in Fig. 10. By computing, a; # 1 and a, = 1, hence
dimS(2,2,1,1,%,) = 30 and &, is non-degenerate.

We next provide another case of T-mesh with a 2-nested mixed T-cycle that the dimen-
sion of spline space is unstable, which is an extension to the structure of .

Example 3.2. In this example, we consider the spline space S(2,2,1, 1,92’ ) over the T-
mesh 7, with a four-segments’ T-cycle that nested inside of a simple T-cycle with six
segments as shown in Fig. 12. And we assume that x = (xi)ilio andy = (yi);lzo are two
ascending sequences.
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Figure 12: A T-mesh with a 2-nested mixed T-cycle 7.

The two singularity factors a; and a, corresponding to Tc; and Tc, are

0= 57,10 $2,852,4 55,951,9 t1,6 [7,9l59 L210l24 (3.22)
1= T , :
54,7 59,1058,9 52,551,2 L6,7 t2,5t1,2 L4989 10

S5,652,6 53,7534 L5860 t3 9834
a — b il t E k] 'y k] k) (3.2b)

$3,552,3 S4.656,7 t3,5t03 L4 glgg

Theorem 3.5. The dimension of spline space S(2, 2,1,1,92’ ) over T-mesh 92’ shown in
Fig. 12 is unstable. The T-mesh’s degeneration of two different cases are shown in Fig. 13.

dim$(2,2,1,1,7;)

32, ifa; #1anda, #1 (Both Tc; and Tc, are degenerated from 7)),
={ 33, ifa; =1 and for any a, (Tc, is degenerated from 7,),
33, ifa; #1anda, =1 (None degeneration),

where a; and a, are defined by (3.2a) and (3.2b).
Here we omit this proof since it is similar to the proof of Theorem 3.4.

Fig. 13 shows two different cases on T-mesh’s degeneration and we give the following
examples in different cases.

. 51 13 20 41 22 29
Remark 3.2. (i) We set (xg,x, - ,x31)=(-1,0, 3, 33 e 38 5, 10)

and (_yo’yl,...,)’ll):(_l, O’ g’ %5 1_97, %, %, 59_0, %, %, %, 9) 111 Flg. 12 By
computing, a; # 1 and a, # 1, hence dimS(2,2, 1, 1,92’) = 32 and two T-cycles are

totally degenerated from 7.
(ll) Weset(x05x1> xll)_( 1 O 4) 12: 13: 230: 4 7: 3) ) 3:10)and(y05y1: T
y]_].):(_]-) OJ 5) %) 1975 2935 %J 5905 591: 593) 77 9) n Flg 12. Bycomputlng) a]. =1
and a, # 1, hence dim$(2,2,1,1,7,) = 33, Tcz is degenerated from 7, .
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Figure 13: The two degenerations of T-mesh 7.

43 13 20 34 22 29
(111) We SEt(xO’xly'” ’xll):(_ly O’ 4’ 10° 3’ 3° 5 7, 3 8, 3 10) and (}’0,}’1,---,

= (= 5 174433 1 17 23 25 50 253 53 77 in Fi
yi)=(=10, 3, 5000 ~ameg V04183089, -, T, T, T, G5 5, 5, 9)inFig. 12,
By computing,a; = 1 and a, = 1, hence dimS(2,2,1,1,7,) = 33, Tc, is degenerated

from 7.

(IV) We set (xOJxly"' Jxll):(_]-) 0) 1) 2: %: %: 3: 4) 5: 6: 7) 8) and (.yO).yla"' :}’11)
=(-1,0,1, 2, %, %, %, %, 3, 4, 5, 6) in Fig. 12. By computing, a; # 1and a, =1,

hence dimS$(2,2,1,1,7,) = 33 and 7, is non-degenerate.

Comparing the structure of 7, with that of 7, similar results on the instability and
structure’s degeneration are derived. However, for other cases of more general nested T
cycles, such perfect results does not usually available due to its complexity of the structure.
In fact, it is hard to discuss the dimension of spline spaces over some more general T-meshes
with complex structure.

3.3. The dimension of the spline space on a T-mesh with a 3-nested T-cycle

Example 3.3. Fig. 14 shows a T-mesh with a 3-nested T-cycle &5, which is directly added
a new T-cycle outside of the above 2-nested T-cycle in Z,. In this case, we rename the

three T-cycles:

Te, = {39 = VagV26, €10 = V3oV27, €11 = V31V2g, €12 = V32V25} )
Tcy= { €5 =VsVy, €g=VgV3, €7 =7VyVy, €g= V8V1} s

Tez = {61 =V12V14, €3 =VgVi5, €3 =VioV1e, €4 = V11V13}-

The three singularity factors a;, a, and as corresponding to Tc;, Tc, and Tcy are
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Figure 14: A T-mesh with a 3-nested T-cycle 7.

_ S5850,8 51,951,4 ts8lo,8 L1,9t1,4

a = , (3.32)
$1,550,1 54,858,9 t1,5%0,1 L4,8l8,9
0 = $5,751,7 $2,852,4 Us,7t1,7 taglog (3.3b)
2= ’ .
$1,282,5 57,8547 t12t25 t78l47
55,652,6 53,753,4 L5 6t2,6 L3,7L34
a5 = (3.30)

$2,353,5 56,7546 L2335 L 7l46

Conjecture 3.1. The dimension of spline space S(2,2,1,1,73) over T-mesh I3 shown in
Fig. 14 is unstable. The T-mesh’s degeneration in three different cases are showed in Fig. 15.

dimsS(2,2,1,1, %)
29, ifa;#1,a,#1and az # 1 (All of Tcq, Tcy and Ty are degenerated
from F3),
30, if a; =1 and for any a, and as (Both Tc, and Tcs are degenerated
from 73),
30, ifa; #1,a, =1 and for any as (Tcs is degenerated from 7),
30, ifa; #1, ay, #1 and a; =1 (None degeneration),

where a,, a, and a5 are defined by (3.3a), (3.3b) and (3.3¢).
Analysis. See Appendix B. O

We give the following examples in different cases of the T-mesh with a 3-nested T-
cycle.

Remark 3.3. (i) We set (x_y, X, -+ ,x10) = (—13,-12,-11, 3, 2, 1, 3,3, 4, 16, 17,
18) and (y_1,¥0, "> ¥10) = (=13,-12,-11, 3, 2, 28 3 4, 16, 17, 18) in
Fig. 14. By computing, a; # 1,a, # 1 and a3 # 1, b; = 35401, hence dimS(2,2,1,1,
J3) = 29 and three T-cycles are totally degenerated from ;.
(i) We set (x_1, X, ,x10) = (—1092,-1091,-11, 3, 3, 2, 8,3, 4,16, 1096, 1097)
and (y_1,¥0, > ¥10) = (—=1092,-1091,-11, 3, 2, I, 2,3, 4, 16, 1096, 1097) in
Fig. 14. By computing, a; = 1,a, # 1 and a3 # 1, b; = 0.4016, hence dim S(2,2,1,1,
T3) =30, Tc,y and Tcq are degenerated from .



The I

nstability in the Dimensions of Spline Spaces Over T-Meshes 199

(a)

€12 f €12
Vs e

34

€6

€10| €10|

€5 21

2 EEE S ZRED -
Jo <o
) 1 ) 3 1 30

1 J1 Ja
XaXe X1 Xz X3 Xy Xs XNg X7 XgNoXio XaXoe X1 X2 Xz Xy X5 X6 X7 XgXoXio XaXe X1 X2 Xz Xy Xs X6 X7 NgXN9Xio

All of the T-cycles are degen- (b) The inner two T-cycles Tc, (c) The innermost T-cycle Tcs is

erated. and Tc, are degenerated. degenerated.

(iii)

(@iv)

)

Figure 15: The three degenerations of T-mesh ;.

We set (x_1, Xo, -+ ,x10) = (=1092,-1091,-11, 1, £, 2, 8,3, 4, 16, 1096, 1097)
and (y_1, 0, > ¥10) = (—=1092,-1091,-11, 1, £, Z, 3,3, 4, 16, 1096, 1097) in
Fig. 14. By computing, a; = 1,a, = 1 and a3 # 1, b; = 0.3957, hence dimS(2,2,1, 1,

J3) =30, Tc, and Tcq are degenerated from ;.

We set (x_y, %o, ,x10) = (=1092,-1091,-11, 1, 2, £, &3, 4, 16, 1096, 1097)
and (y_1, Y0, »¥10) = (=1092,-1091,-11, 1, 2, 2, 8,3, 4, 16, 1096, 1097) in
Fig. 14. By computing, a; = 1,a, = 1 and a3 = 1, b; = 0.3957, hence dim S(2,2,1, 1,
I3) =30, Tc, and Tcq are degenerated from .

We set (x_1,Xg," "+ ,X10) = (— 36 -35,0,1,2, 2 35 3, 3,4, 5,40, 41) and (y_1, Yo,
~,Y10)=(-36,-35, 0, 1, 2, L 3 %, 3, 4, 5, 40, 41) in Fig. 14. By computing, a; =
1,ay # 1 and as =1, b; = 1.8455, hence dimS(2,2,1,1,%;) = 30, Tc, and Tcq are
degenerated from ;.

(vi) We set {x_q,Xq,...,%10) =(—=13,-12,-11,1, 2, Z 8 3 4 16,17, 18) and (y_;,

(vii) We set (x_q,Xg,**,X19) =(—13,— 11, 1, 2

(viii) We set (x_1,Xxq," " ,X109) = (—1092,—-1091,—-10, 1, 2

5 2’ 3’ 3’
Yos--->Y10) = (—13,—-12,-11, 1, %, %, %, 3, 4, 16, 17, 18) in Fig. 14. By comput-
ing, a; #1,a5 =1 and a3 # 1, b; = 33029, hence dimS(2,2,1,1,%;) =30 and Tc;
is degenerated from ;.

s § 3, 3, 4,16, 17, 18)and (y_;,
Yo+ »Y10) = (—=13,—-12,-11, 1, 2, 3 3> 3,4, 16, 17, 18) in Fig.14. By comput-
ing, a; # l,ay,=1and a3 =1, b; = 33029, hence dimS(2,2,1,1,7;) = 30, Tcy is

degenerated from ;.

, 3 3, 3, 4, 16, 1096, 1097)
and (y_1, Y0, »¥10) = (—1092,-1091,-10, 1, 2, Z, 2,3, 4, 16, 1096, 1097) in
Fig. 14. By computing, a; # 1,a, # 1 and as = 1, b; = 0.4145, hence dim S(2,2,1,1,
T3) = 30 and J; is non-degenerate.
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3.4. A sufficient condition for the stability of dimension over T-mesh with a
N-nested T-cycle

Further, for the case with a N-nested T-cycle, we need to modify a constraint on
the T-mesh similar to that in [18], in order to obtain the stable dimension formula of
S(m,n,a,f3,7y) over T-mesh with a N-nested T-cycle.

For the case of the T-mesh &, with a 2-nested T-cycle, as shown in Fig. 10, there are
four T-segments included in the innermost T-cycle Tc,. For each T-segment, there are only
one mono-vertex and one multi-vertex except two end vertices. As shown in Appendix A,
there is a conformality condition along each T-segment of Tc,. It is equivalent to the
equation of (A.2), which is determined by the singularity factor. That is the reason for the
instability in the dimension of spline space. According to the analysis in [9, 18], if there
is one more mono-vertex in at least one of the T-segment of the T-cycle, then there is
one more free conformality factor in (A.2). It implies there is no singularity factor for the
T-cycle, i.e., the dimension is stable. By this idea, we have the following results of the
stable dimension.

Theorem 3.6. Given a T-mesh Jy with a N-nested T-cycle, which includes Cj horizontal
cross-cuts, C, vertical cross-cuts, Tj, horizontal T-segments, T, vertical T-segments, and V

interior vertices. The j-th T-segment e; contains hg.l) mono-vertices and hgz) multi-vertices
except two end vertices. Suppose hg.l) + 2 > M, (where M, = z—fi) if e; is a horizontal T-
segment and hg.l) + 2 > N, (where N, = % if e; is a vertical T-segment. For each simple
T-cycle, if there is at least one of the horizontal T-segments satisfies hg.l) +1 > M, or one
of the vertical T-segments satisfies hgl) + 1 > N,. Then the dimension of the spline space
S(m,n,a,B,T)is
dimS(m,n,a,B,7)=(m+1)(n+ 1)+ (C, — T )(m+ 1)(n— B)
+(C,—T,)(n+1)(m—a)+V(m—a)n—pB). (3.4
Proof. By the conditions, there is no singularity factor for each T-cycle, since for each
simple T-cycle, there is at least one of the horizontal T-segments satisfies hg.l) +1> M, or
one of the vertical T-segments satisfies hg.l) +1 = Ny. Thus, all the T} T-segments in Jy
can be arranged in an order from inner to outer T-cycles of J showed in Fig. 16 as:

€r, —er—1 ey €,

then the rest proof is similar to that in [18]. Here we omit this proof. O

4. A case of T-mesh with a pair of parallel T-cycles

In this section, we discuss a case of T-mesh J, which contains a pair of parallel T-
cycles as shown in Fig. 17(a). It can be found that the dimension of spline space is stable,
but this may lead to structure’s degeneration.
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Figure 16: An order of T-segments in Jj.
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(a) A T-mesh with two parallel T- (b) ,’s degeneration

cycles F,

Figure 17: A T-mesh with a pair of parallel T-cycles J, and its degeneration.

Example 4.1. We consider the case of a given T-mesh with a pair of parallel T-cycles

as shown in Fig. 17(a). Assume that x = (xi)ilio and y = (yi)},lzo are two ascending

sequences. There are two simple T-cycles

Tcy = {V5V3, VeVa, V7V1, VgVal, Tcy = {V17V14, V18V1s5 V19V165 V20 V133

The two singularity factors a; and a, corresponding to Tc; and Tc, are

te,8l3,6 52,4512 t9,10L7,9 S5,753,5

al — > El il E bl El 3 E , (4.1a)
3989 54,551,5 L6,786,10 $2,352,7
t58t3559,1057,9 t2,411,2 S6,854,6

az — El E bl El il E $] El (4.1b)

ty8la 3 S6,756,10 L4,5L1,5 S8,954,9

Proposition 4.1. We consider the spline space S(2,2,1,1,Jp) over the T-mesh 9 with a pair
of parallel T-cycles as shown in Fig. 17(a). If the conditions of a; = 1 and a, = 1 are satisfied,
where a; and a, are defined by (4.1a) and (4.1b), the structure of Jp will be separated into
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two independent T-cycles as shown in Fig. 17(b); Otherwise, it will not be degenerated. For
the both cases, the dimension of S(2,2,1,1,%p) is 37 unchanged.

Proof. See Appendix C. O

5. Conclusions

In this paper, we introduce a class of T-meshes with the structure of N-nested T-cycles.
Using the smoothing cofactor-conformality method, a constraint on T-mesh is introduced
in order to obtain a stable dimension formula of spline space over T-mesh with a N-nested
T-cycle. Moreover, we discuss the instability in the dimensions of spline spaces over T-
meshes with 2-nested and 3-nested T-cycles. At last, we indicate that a pair of parallel
T-cycles in T-mesh may lead to structure’s degeneration. In the future, we will discuss the
dimension of spline space and structure’s degeneration for more general T-meshes.

Appendix A: Proof of Theorem 3.4

Proof. By using the smoothing cofactor-conformality method, the conformality condi-
tions of the smoothing cofactors on each T-segment can be transformed into two kinds of
conformality conditions of the conformality factors at each interior vertex [9]. Denote d;
by the conformality cofactor at the interior vertex v; (i = 1,---,24). For Tc,, there is a
conformality condition along each T-segment:

dy(x — x5)% 4 dy3(x — x3)? + dy7(x — x5)* + dya(x — x6)> =0, (A.1a)
do(y = ¥2)* + d1a(y = ¥3)* + das(y — y5)* +dis(y — y6)* =0, (A.1b)
dyo(x — x7)? 4+ dys(x — x6)* + dyo(x — x4)* + dyg(x — x3)* =0, (A.1c)
di1(y = ¥7)* + dig(y = ¥6)* + dao(y = y4)* + di3(y — y3)* =0. (A.1d)

Every conformality condition is equivalent to a linear system. For example, (A.1a) is Ad =
0, where

1 1 1 1 313
A= | —2x3 —2xg —2X, —2Xs and d= d“
2 2 2 2 12
X3 X6 X2 X5 d
17

Since rank(A) = 3, the dimension of the solution space of (A.1a) is 1. That is, three of
the conformality factors can be determined by the rest one, e.g., d;3 = %dm, where
2,353,5

Si i =X;—X;.

j
Similarly, by solving the conformality conditions along T-segments e,, e; and e, of T'c,,

we obtain

L,j
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where t; ; = y; — ¥;. Then we have

di3 = apdys,

$5,652,6 U5,602,6 53,7534 [37034

where a, =
to

, and a, is the singularity factor of Tc,. It is equivalent
S2,3535 L2335 56,7546 Lo 7lae

(a2 - 1)d13 =0. (AZ)

For Tc,, there are another four conformality conditions along T-segments ez, eg, €,
and eg:

ds(x — x1)* +dq(x — x3)* + doy (x — x5)* + dg(x — x6)* + dy(x — x7)* =0, (A.3a)
de(y = y1)* + do(y = ¥2)* +doo(y — ¥5)* + d1o(y = ¥6)* +ds(y — ¥,)*=0,  (A3b)
d,(x — xg)?* + d3(x — x7)* + dog(x — x4)* + dq1(x — x3)* + d4(x — x,)* =0, (A.30)
ds(y — ¥8)* +da(y = y7)* + doa(y — ¥4)* +d1o(y = y3)* + di(y = ¥2)*=0.  (A3d)

Similarly, they are also equivalent to corresponding linear systems with the solution space

of dimension 2. We obtain

S5,751,7 S5,651,6 ts7t1,7 ts6l16
d]. = —d2+ d9, d2= dlo,
$1,252,5 $1,252,5 t12ts5 t12ts5
52,8524 $3,853.4 tyglog t3gl34
d3=——ds + dy;, d4= 12-
S7,854,7 S7,854,7 t7gtay t7gta7
Denote the coefficients by
S57517 S5651,6 ts7t17 ts6l16
Cq g = 2L Cjq= 222 Coyn = 21 Cy1p9 = 222
L 5125257 ’ 5125257 2,3 t12tas’ 2,10 t12tas’
Can = 52,8524 c _ 538534 Chi = tagloa c _ t3gt34
34 S78847° 311 578547 41 trsts7’ 4,12 t78ta7’

We have the following relation equation

dy =c19dy + ¢19dg
=c1,2(c2,3d3 + c210d10) + ¢1,0dg
=¢1,2€2,3(€3,4d4 + 311d11) + €126210d10 + €1,0d9
=C1,2€2,3¢3,4(C41d1 + c412d12) + €1,2€2 363 11d11 + €1,2€2,10d10 + €1,0dg

=C1,2€2,3€3,4C4,1d1 + C12€23€3 4C412d12 + €1 2C2 3¢5 11d11 + €1 2C0 10d10 + €1 0dg.  (A4)
According to the conformality conditions of the T-segments of Tc,, we also have

55,653,6 £2,602,5 _ tap lasta356,7546

$4,653,6 25023
9> 11 —

d12 = 9 d]_o = dg. (A.S)

S2,582,3 t36l35 s t3,784,7 $3,753,4 $3,754,7 ts6l36

S5653,6 L26l25 lap L25023 S6,7546 S4,653,6 L25023

Denote ¢ c and ¢ b respectively. Then
12,9>%11,9 10,9 y52,552,3 t3e6tss’ tse t37tay 537534 P Y-

(A.4) can be written as the following form

$3,754,7 tsel3e

(a1 - 1)d1 + bldg = 0, (A6)
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where a; = ¢4 3¢5 3¢5 4C4.1, a; is the singularity factor of T'¢c; and

b1 =€1,2€2,3€3 4€4,12C12,0 + €1,2€2.3€311C11,9 + €1,2€2,10C10,9 + C1,9- (A7)

By the smoothing cofactor-conformality method, the dimension of the spline space S(m, n, a,
B,,) is determined by

dim S(m,n,a, 3,7;)
=(m+1)n+1)+C(m+1)(n-p)+C,(m—a)(n+1)+ o0, (A.8)

where C;, and C, are the number of horizontal cross-cuts and vertical cross cuts in &,. o
is the dimension of the solve space of the global conformality conditions of the 2-nested
T-cycle, i.e., the conditions of (A.1a)-(A.1d), (A.3a)-(A.3d). Hence, the values of a;, a,
and b, in (A.2) and (A.6) determine the dimension of the spline space S(2,2,1,1,%,).

We can easily see that ¢; ; metioned above are totally positive due to the ascending of
x and y in 5. Hence, the b; determined by the expression of (A.7) has the property that
b; > O for the T-mesh %,.

According to the values of a; and a,, the dimension of the T-connected component
with a 2-nested T-cycle can be briefly analyzed in the following cases.

Case 1: a, # 1. (By (A.2), dy3 = 0, i.e. all of the conformality factors for Tc, are
zeros, then the inner T-cycle is degenerated. Therefore, (a; —1)d; =0.)

a) If a; =1, then d; is a free variable and the dimension of T-connected component with
a 2-nested T-cycle is 1.

b) If a; # 1, then we have d; = 0, that is, the T-cycle Tc; is also degenerated. The
dimension of T-connected component with a 2-nested T-cycle is 0.

Case 2: a, = 1.

a) If a; =1, it follows that dg = 0 and d; is a free variable by (A.6). Then by (A.5), the
inner T-cycle Tc, is degenerated and the analysis of relevant dimension is the same as
the case 1(a).

b) If a; # 1, d; is determined by dy by (A.6), then determined by d;3 in (A.2) by the
conformality conditions of the T-segments of Tc,. Since a, = 1, d;3 can not be zero.
The dimension of T-connected component with a 2-nested T-cycle is 1.

Therefore, if there is at least one condition of a; = 1 and a, = 1 satisfied, then the
dimension of S(2,2,1,1,%,) is 30; otherwise, the dimension is 29. Then the proof is
completed. O
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Appendix B: Analysis of conjecture 3.1

10

Analysis. Assume that x = (xi)}g_l andy = (y; y=-1

205

are two ascending sequences. The

conformality conditions of the T-segments of Tc, and Tc5 are the same as the proof of The-
orem 3.4. In addition, the conformality conditions along the T-segments eq, €19, €17, €12
must be taken into consideration for the calculation of dim S(2,2,1,1,%;). Specifically,

they are
dag(x — x0)? + das(x — x1)* + da(x — x5)* + dg(x — x7)* + dae(x — xg)* = 0,
dso(y — ¥0)* + dos(y — y1)* +d3a(y — ¥5)* + ds(y — y7)* +doy(y — y5)* =0,
ds1(x — x9)% + doy (x — xg)? + d3s(x — x4)* + dg(x — Xx9)? + dyg(x — x1)*> =0,
dp(y — yo)* +dos(y — ¥8)* +d3e(y — ¥4)* +ds(y = ¥2)* + das(y — y1)* =O0.

By solving the conformality conditions of (B.1a)-(B.1d), we obtain

$5,850,8 S5,750,7 5,8l0,8 ts7to,7

dys = dye + de, dye = dy,
$1,550,1 $1,550,1 1,5t0,1 t1,5t0,1
_ $1,951,4 $2,952,4 1,9t1,4 tr9l24

dy7 = ———dyg + dg, dyg = ds.
$4,8589 $4,8589 tygtgo tygtg9

Denote cy5 26, €256, €26,27> €26,7> €27,28> C27,8> 28,25, Cag,5 Dy the coefficients

Ss5.8508 S5.7507 lsglog fszto7  S1,9514 S29524 l19l14 Eoolog

b b b b b b b
$1,5%,1 S1,5%,1 tisto1  fisfo1  S48589 S48539 laglgo Laglgog

in above expressions respectively. It can be found that the above ¢; ; > 0.
For T¢;, we have the following relation equation

dgs =C35,26d26 + Ca5 6dg
=Cg5,26(Ca6,27d27 + C26,7d7) + a5 6ds

=C25,26C26,27(C27,28d2g + C27,8dg) + €25 26C26,7d7 + €25, 66

(B.1a)
(B.1b)
(B.10)
(B.1d)

=C95,26C26,27C27,28 (Cag 25d2s + Cag 5d5) + Ca5 26C26,27C27,8ds t C25,26C26,7d7 + Ca5 6d6

=C25,26C26,27C27,28C28,25 dys + €25,26€26,27C27,28C28,5 ds + C25,26C26,27C27,8d8
+ C35,26C26,7d7 + 25 6de-

(B.2)

The conformality factors of ds,dg, d; can be transformed into dg according to the confor-
mality conditions of the T-segments of Tc, and Tcs. For the three T-cycles Tc;, Tcy, and

Tc5, we define the corresponding singularity factors a;, a, and as respectively:

_ 55,850,851,951,4 58L0,8 1,901 4

1— )
$1,550,1 $4,858,9 t1,5t0,1 t48t89

0 = $5,751,7 $2,852,4 U57L1,7 taglo4
2

- >
$1,252,5 57,8547 L1225 L7 8ta7
_ 55,652,6 93,7534 L5 6la6 [3,7034

$2,3535 S6,754,6 L2335 Lg7lae
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It can be obtained that
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_S56526 |, S2,7525 ( b, S5.651,6 )
d _ $1,251,5 $1,551,7 az—1 $1,2525 d (B 3a)
5 te,7to5 S46536 t23 ty 7825 $12525 ( b, 55,651,6) 6> :
t1,7t1,5 $3,754,7 U356 ty7t15 S5,751,7 ~d2—1 51,2825
_bagtaq | t37l34 taglng 1
b t7gtag  l7glag tyglay (_ba_, 138534,
2 az=1l  t78ta7
dg = (— : dg, (B.3b)
a,—1 o,7t2,5 54,6536 t23 | fa7las 51,252,5( by 55,651,6)
t1,781,5 83,7547 l36 t1,7t15 S5,751,7 ~a2—1 51,2825
523567 ta6lse Sa7 | Sa7S27 tiatas, by 5616
d, — S2,854,8 t37t47 S36 S2,8548 t57t17 ~ap—1 t12ts5 d
7 = 6> (B.BC)
_Iselas ta7tas ( b, f5,6f1,6)
t12l15 t1st1y ~ap—1 t12l25

where

_ S5,751,7 Us,701,7 52,8524 138134 S5,653,6 L26l25 | S5751,7 U5781,7 538534 L46

=
$1,282,5 L1280 5 78547 L7 8647525523 L3635
to5t23 56,7546 n S5,751,7 U5,611,6 $4,653,6 L2523

$1,252,5 t12805 78547 L5
$5,651,6

b
$1,252,5
to8ts4 557517 t56t1,6 Sa6

t3,7847 3,753,4  S1,252,5 L1,202,5 53,7547 L5636
3. = t28l2,4 55751,7 5,717 53,8534 L3,613,4 2,652,

=
t78l47 512525 L1282 5 S7 8547 t47t67 536535
ty3l35 525523 ty8l2 4556516 £3,663,5 52,5523

t7 8847512525 t1 2855847
t3gt3 4

b
tygts 7
t5781,7 52,852,4 38634 S5

t56l2,6 55,6537  l7,8147 51,2525 La6la5 53,6556
3. — t5,781,7 S2,852,4 L2802 4 S5,651,6 53,754,7 L5613,6

=
t12825 57,8547 Ly gl 7 S1 2525546536 L25623
S47837 tselae 57017538534 La6ls 6547567

t12825 578547 t7 8t 7546
ts6l16

Sp5S23 to3lys  T1olp5S78547 U37847536534 12025

The coefficients of by, b, Ez come from the following relation of the conformality factors.

(az - 1)d1 + b2d9 = 0, (B.4a)
(ay —1)d, + bydip =0, (B.4b)
(az — 1)d2 + %Zdlo =0. (B.4C)

Denote r5 ¢, 15 ¢ and r; ¢ by the correlation coefficients of (B.3), i.e., ds = 15 ¢dg, dg = g ¢dg
and d; = r; ¢de. Then the equation of (B.2) can be written as

((11 - 1)d25 + b1d6 = O, (BS)
where a; = Ca5,26€26,27C€27,28€28,25 and
b1 = C25,26C26,27€27,28€28,575,6 T €25,26€26,27€27,878,6 T €25,26€26,777,6 T C25,6- (B.6)
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Consequently, the dimension of T-connected component of a 3-nested T-cycle can be de-
cided by the following system:

(a3 - 1) d13 = O, (B7a)
(a2 - 1)d1 + b2d9 = O, (B7b)
((11 — 1)d25 + b1d6 =0. (B.7C)

According to the analysis of Appendix A, we obtain b, > 0. Due to the complexity of the
expressions of rs g, rg ¢ and r; ¢ in (B.3), here we make a conjecture that b; > 0 and we
use a numerical method to test the conjecture in the following example.

Example B.1. We choose x;, = 1,x3 = 2,x4 = %,xs = %,x6 =3,x;,=4,y,=1,y3 =
2,y4= %,ys = §,J’6 =3, y7; = 4 in Fig. 14. By calculation, ag = 0. Then rs¢, rg¢ and ;¢
are simplified into the following formulas.

(=84 3y;)(4(—828 + y,(332 — 87y3) + 223,) + x5(1212 — 367y, + y,(—428 + 123y5)))
756 = 728+ 3x,)(—912 + x5(412 — 187yg) + 312y + x, (848 — 248y, + 3x5(— 116+ 41y5)))
_(=8+3y;)(—2748 + x5(943 — 367y,) + 1212y, + x,(812 — 428, + 3x5(—89 + 41y,)))
T (=74 3yg)(—912 + x5(412 — 187yg) + 312yg + x,(848 — 248y, + 3x5(—116 + 41yg)))
_ (=8+3y;)(—648 + ,(392 — 267y5) + 523, + x1(312 — 187y, + y;(—248 + 123y,)))
776 = (27 + 3x5) (=912 + xg(412 — 187y5) + 3125 + x, (848 — 2485 + 3x5(—116 + 41y5)))

g6

We use a numerical method to estimate the values of rsg, 3¢ and ;6. Let x1, y; be
two real numbers of the range between —3 and 1, xg, yg be two real numbers of the
range between 4 and 8. We choose the step of 0.01, using the Matlab software, it can be
calculated that the values of rs ¢, rg ¢ and r; ¢ are greater than zero. Since all of ¢; ; > 0 in
the expression of b; in (B.6), then it is easy to see b; > 0.

According to the values of a;, a, and as, we omit the analysis of the dimension of spline
space over T-mesh with a 3-nested T-cycle since it is similar to the proof of Theorem 3.4.
The analysis is completed.

Appendix C: Proof of Proposition 4.1

In order to prove Proposition 4.1, we firstly give the following lemma.

58545 557535

s
Lemma C.1. For 9 in Fig. 17(a), the relation of
56,8546 56,7536

can not be satisfied.

Proof. Letsgs =c, Sg7 =Db, S45=C, S8 = b, ss.6 = k, where ¢ >¢ >0, b>b>0and
k > 0. We only need to testify the following equation can’t be satisfied for Zp. Suppose,
(k+D)-T (k+b)-c
b-(C+k) b-(c+k)
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be(c +k)
0. If A and k are regarded as two fixed values, then b can be written by a function related

toc.

Since the two sides of equation have the same form, we just need to consider

b(c) = kc
T A DAk
Take the derivative, we get
, Ak?
b'(c) =

[(A—1)c+ Ak]?

It is easy to find b’(c) > O under the assumption. It implies that b increases with the
increasing c, hence ¢ > ¢ gives b > b. In other words, there won't be ¢ > ¢ and b > b
such that satisfy the condition of

(k+b5)- (k+b)-c
b-(G+k) b-lc+k)

So the hypothesis is not correct. O

Proof. Proof of Proposition 4.1. By solving the conformality conditions along T-
segments of Tc;, we derive

te,8t36 trgta3 $2,451,2
= d3 - d6, d3 == —d4,
t39tg9 t39tg9 $45515
t910t7,9 S$5,753,5 $6,753,6
dy=—"dy, dy = ———dy + ———dy.
te,7t6,10 $2,352,7 $9,352,7

We have the following relation equation

_ legl3652451,2 L9,10l7,9 57535 do+ te,8t3,6 52,451,2 L9,10L7,9 56,7536 trgls3 d

= 2 20
t39tg8 9545515 te7L610 52,352,7 t39tg 9545515 te7L610 52,352,7 t39lg9
It is equivalent to

te,8t3,652,451,2 L9,1017,9 S6,753,6 toglas
(1-ay)dy, = dyg — ——ds, (C.1
t39tg 9 54551,5 te,7t6,10 52,352,7 t39lg9

where
_ legl3652,451,2 91017, 55,7535

t39lg9 545515 te,7t6,10 $2,352,7

By solving the conformality conditions along T-segments of Tc,, it is derived that

_ t5,8t3,5d t8,9t3,9d d o4l 2 4
13= 16 — 205 5= Qi4,
togla3 togta3 ty5t1s
$6,854,6 $5,854,5 $9,1057,9
di4= d de, dijg=—"4d;5

13
58,9549 58,9549 $6,756,10
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We have the following relation equation

dow = t58135 59,1057,9 (24112 56,834,6d
13= 13
t2,802,3 56,756,10 L4,501,5 S8,954,9

58835 591057,9 t2,481,2 58545 d tgolsg

6
ty8ta 3 S6,756,10 L45L1,5 S8,954,9 tygla3
It follows that
t58l35591057,9 t2,481,2 S5854,5 tgotsg

(1 _ az)dlg — B 5 > 5 5 > 5 > d6 _ > 5 d20’ (C.2)
to8t2 3 S6,756,10 La,581,5 S8,954,9 tyglas

where
t58l3 559 1057,9 £2,481,2 S6,854,6

a2 = .
o823 56,756,10 t4,511,5 58,9549

Case 1: If a; = 1 and a, = 1, we have

$6,753,6 tyglas
= de, (C.3a)

20
S5,7583,5 t39tg9
$5,854,5 Qe = tgol3,9

6 dyp. (C.3b)
$6,854,6 tyglas

From (C.3a), substituting
togts 3557535

20: 'y 'y 3 E d6
t3,9tg 9 56,7536
into (C.3b)gives
S58545  S57535
56,8546 56,7536

By Lemma C.1, we derive dg = 0 and d,; = 0 under the conditions of a; = 1 and
a, = 1. Thus the structure of the parallel T-cycles is separated into two independent T-
cycles as shown in Fig. 17(b). We can choose one conformality factor at arbitrary vertex
of each independent T-cycle as a free variable(such as d; and d;3) and the dimension of
$(2,2,1,1, %) is 37.

For example if (xg, X7, ,x17) =(0,1 ,2, L 3 3, 3, 131, 4, 133, 134, 137,6) and (¥o, Y1, »
y11) =1(0,1 ,2, L 3 8 , 3, 10, 11 , 4, 13, 3 18 6), then a; = a, =1 in this case.

Case 2: If a; = 1 and a, 75 1, dg is determined by dsg, d;5 is determined by dg (or dyg)
by (C.1) and (C.2), then d, and d¢ (or d, and d,) are two free variables, the structure is
non-degenerate and the dimension of $(2,2,1,1, %) is 37;

Case 3: If a; # 1 and a, = 1, d¢ is determined by d,, d, is determined by dg (or dy()
by (C.1) and (C.2), then d;5 and dg (or d;3 and d,) are two free variables, the structure
is non-degenerate and the dimension of S(2,2,1,1, %) is 37;

Case 4: If a; # 1 and a, # 1, dg and d,q are free variables, the structure is non-
degenerate and the dimension of S(2,2,1,1, %) is 37.

The proof is completed. O
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