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1. Introduction

Atomistic-to-continuum (a/c) coupling methods, also known as quasicontinuum (QC)
methods, are a class of of multiscale methods for coupling an atomistic model of a solid
with a continuum model which is often obtained by the Cauchy-Born approximation. The
atomistic model is used in certain regions of interest, such as crystal defects and their
neighbourhoods, to gain a good accuracy while a continuum model is applied to reduce
the cost of the computation in the elastic far fields. We refer to [25, 26, 32] for perfect
reviews for such methods.

There are two major types of a/c coupling methods, namely the energy-based methods
and the force-based methods. The energy-based methods approximate the energy of the
atomistic system by a coupling energy and essentially solve energy minimization problems
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[12, 17–20, 30, 35, 38, 40]. However, the original energy-based (QCE) method, despite its
simple formulation, exhibits spurious force at the coupling interface which reduces the
accuracy of computing the deformation and the lattice stability [7, 8, 28, 33] while the
improved energy-based methods have the difficulty of the reconstruction of the energy of
the interface atoms [35, 36, 38, 39]. On the other hand, the force-based methods directly
solve equilibrium equations of the coupling forces at each degree of freedom [6, 14, 23]
and possess better accuracy with simple constructions. However the original force-based
(QCF) method has certain stability issues which make the determination of the lattice
stability challenging. The stability is then improved by blending the atomistic force with the
continuum force in certain regions so that the blended equation becomes positive definite
[16] which gives the blended QCF (BQCF) method. Such improvement is also achieved by
changing the formulation of the problem to a stress-based variational formulation which
gives the stress-based a/c (SAC) method [23].

Considerable efforts have been devoted to the a priori analysis of the force-based meth-
ods [4,6,10,14,16,22,24,27], especially the (in-)stability of these methods as mentioned
earlier. Meanwhile, comparatively little research has been carried out to the a posteriori

error estimates and adaptivity of the force-based methods. The existing literature, to the
best knowledge of the authors, only consider energy-based methods [1–3,34,37,41,42].

The current work aims to provide a first step for the a posteriori error estimates and
adaptivity of the force-based methods. We derive the residual based error estimators for
three prototype force-based methods, namely the QCF, the SAC and the BQCF methods, fol-
lowing the framework provided in [34]. We consider a 1D periodic next-nearest-neighbour
multi-body interaction atomistic system and its force-based approximations. Though in a
1D setting, the system we consider and the numerical experiments we do preserve many
important aspects in higher dimensions which we believe are valuable contributions to this
field.

The outline of the paper is listed below.

In Section 2, we introduce the atomistic model problem, the three force-based a/c
coupling methods and the notation that will be used throughout the paper. We note that
some of the setting and notation follows from [23].

In Section 3, we derive the residual estimates for the three methods in a discrete neg-
ative Sobolev norm. We see that the residual estimate of the QCF method can be given as
a special case of the BQCF method.

In Section 4, we give the a posteriori stability analysis through a different approach
compared with that in [34]. In Section 5, we combine the residual estimates and the
stability to give a posteriori error estimators for the deformation gradient.

In Section 6, we develop adaptive algorithms according to the error estimators and
present numerical examples to illustrate the performances. In particular, we consider what
we call the model adaptivity problem using the residual approach.

We note that we will use a/c (short name for atomistic-to-continuum) and QC (short
name for quasicontinuum) liberally since they have the same meaning at least in the
present work.
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2. The Atomistic model and its force-based QC approximations

2.1. Atomistic model

We formulate our problem on an infinite lattice L# = Z and look for the solution of
our atomistic problem in the space of 2N−periodic displacements

U ǫ :=
¦

u :L#→ R
Z : uℓ+2N = uℓ and u0 = 0

©
. (2.1)

Since the solution is periodic, we only consider a specific period of the lattice denoted by

L := {−N + 1,−N + 2, · · · , N − 1, N}.

Let ǫ = 1/N then Ω = [−1,1] is essentially the domain we consider. The corresponding
admissible set of deformations is defined by

Y ǫ :=
¦

y :L#→ R
Z : yℓ = ǫFℓ+ vℓ, v ∈ U ǫ

©
, (2.2)

where ǫ = 1/N . We note thatU ǫ and Y ǫ are identified with the P1 functions with respect
to the canonic mesh associated with the lattice Tǫ = {T

ǫ
ℓ
}ℓ∈Z where T ǫ

ℓ
= [(ℓ− 1)ǫ,ℓǫ].

For v ∈ RZ, we define v′ = {v′
ℓ
}(ℓ∈Z), v′′ = {v′′

ℓ
}(ℓ∈Z) by

v′ℓ =
vℓ− vℓ−1

ǫ
and v′′ℓ =

v′
ℓ+1 − v′

ℓ

ǫ
.

We assume that the atomistic system is modeled by a next-nearest-neighbour multi-body
potential and the internal energy in one period under y ∈ Y ǫ is given by

E a(y) := ǫ
∑

ℓ∈L

V (D yℓ), (2.3)

where V ∈ C3
�
(0,+∞]4;R
�

is a general multi-body potential and

D yℓ := (D1 yℓ, D2 yℓ, D−1 yℓ, D−2 yℓ)

for which

D1 yℓ :=
yℓ+1 − yℓ

ǫ
, D2 yℓ :=

yℓ+2 − yℓ

ǫ
, D−1 yℓ :=

yℓ−1 − yℓ

ǫ
, D−2 yℓ :=

yℓ−2 − yℓ

ǫ
.

Assuming that the external forces are dead loads which is representable by g ∈ U ǫ, the
total energy (per period) under a deformation y ∈ Y is given by

E a
tot(y) = E

a(y)− 〈g, y〉ǫ ,

where 〈g, y〉ε =
∑
ℓ∈L gℓ yℓ, and the solution we seek for the atomistic problem is:

Find ya ∈ Y
ǫ, s.t. ya ∈ argminE a

tot(Y ). (2.4)
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If ya is a solution to (2.4), it then satisfies the first-order criticality condition

( f a(ya), v)ǫ = (g, v)ǫ ∀v ∈ U ǫ, (2.5)

where f a(y) = { f a(y)ℓ}ℓ∈Z for y ∈ Y ǫ are defined by

f a
ℓ (y) :=

1

ǫ

∂ E a(y)

∂ yℓ
=

1

ǫ

�
σa
ℓ+1(y)−σ

a
ℓ(y)
�
∀ℓ ∈ Z, (2.6)

for which

σa
ℓ(y) :=∂1V (D yℓ−1)− ∂−1V (D yℓ) + ∂2V (D yℓ−2)

+ ∂2V (D yℓ−1)− ∂−2V (D yℓ)− ∂−2V (D yℓ+1) (2.7)

is the atomistic stress tensor. Using the periodic boundary condition, it is easy to show that
(c.f. [23]) the left hand side of the variational problem (2.5) is actually the first variation
of the atomistic energy, i.e.,

( f a(y), v)ǫ = 〈δE
a(y), v〉= ǫ
∑

ℓ∈L

σa
ℓv
′
ℓ. (2.8)

2.2. The local QC approximation

We define the Cauchy-Born energy functional for a given y ∈W 1,∞(Ω;R) by

E c(y) :=

∫

Ω

W (∇y)dx , (2.9)

where W (F) := V (F, 2F,−F,−2F) ∈ C3(0,+∞) is the Cauchy-Born stored energy density

[35]. The local QC approximation is the P1-finite element discretization of E c.
To formulate the local QC approximation, we partition Ω by choosing a small number

of, say K , lattice sites as the finite element nodes and construct the mesh Th = {Tk}
K
k=1 on

Ω with the following restrictions and definitions:

1. The nodes are identified with the indices of the lattice sites by ℓ : {1, · · · , K} → L
such that ℓk := ℓ(k) is the index of the lattice site which is also the k’th node in Th.

2. Th = {Tk}
K
k=1 where Tk := [xk−1, xk] and xk = ǫℓk for all k = 1, · · ·K . The length of

Tk is given by hTk
:= |Tk| = xk − xk−1.

We then define the coarse-grained space of displacement as

U h :=
�
uh ∈ P1(Th) : uh(x + 1) = uh(x) and uh(0) = 0

	
, (2.10)

and the coarse-grained admissible set of deformation as

Y h :=
�

yh ∈ P1(Th) : yh = F x + uh(x),uh ∈ Uh

	
, (2.11)
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where P1(Th) denotes the space of continuous piecewise affine functions with respect to
Th. We note that by the construction of T h, U h ⊂ U ǫ and hence any uh is canonically
identified with its nodal interpolant Iǫuh ∈ Tǫ with respect to Tǫ, and so is any yh, for
example, uh

ℓk
:= uh(xk).

The internal energy of the local QC approximation under yh ∈ Y
h is given by

E c(y) =

∫

Ω

W (∇yh)dx =

K∑

k=1

hTk
W (∇yh|Tk

). (2.12)

If we approximate the external energy by the trapezium rule and define eωk = Tk ∪ Tk+1

and Hk =
1
2
| eωk|, we obtain the total local QC energy

E c
tot(y) =

K∑

k=1

hTk
W (∇yh|Tk

)− 〈g, yh〉h, (2.13)

where 〈g, yh〉h :=
∑K

k=1 Hk gℓk
yh(xk), and the solution we seek for the local QC problem is

Find yqcl ∈ Y
h, s.t. yqcl ∈ argminE c

tot(Y
h). (2.14)

Similar to the atomistic problem, if yqcl is a solution to (2.14), it then satisfies

(F c(yqcl), vh)h = (g, vh)h ∀vh ∈ U
h, (2.15)

where F c(yh) = {F
c
k
(yh)}k∈Z for yh ∈ Y

h are given by

F c
k(yh) :=

1

Hk

∂ E c(yh)

∂ yh(xk)
=

1

Hk

h
σc

Tk+1
(yh)−σ

c
Tk
(yh)
i
∀ℓ ∈ Z (2.16)

for which
σc

Tk
(yh) :=W ′(∇yh|Tk) (2.17)

is the continuum stress tensor. Again it is easy to show that (c.f. [23]) the left hand side of
the variational problem (2.15) is the first variation of the continuum energy, i.e.,

(F c(yh), v)h = 〈δE
c(yh), vh〉 =

K∑

k=1

hTk
σc

Tk
∇v|Tk

. (2.18)

2.3. The force-based QC methods

In this section, we introduce three force-based QC methods which are the original force-
based QC method (QCF), the blended force-based QC method (BQCF) and the stress-based
QC method (SAC).Though the force-based QC method can be considered as a special case
of the blended force-based QC method, we nevertheless single it out as it provides the
fundamental idea and motivation for the other two methods.
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2.3.1. The QCF method

We begin by decomposing the lattice L into A and C , where A denotes the set of lat-
tice sites inside which full atomistic accuracy is required, and C := L \A denotes the
remaining lattice sites. We then partition the computational domain Ω into Ωa and Ωc

according to the decomposition ofL so that each lattice site inA is a node in Th. For sim-
plicity of presentation, we assume only one atomistic region Ωa exists. Then there exists
1< K < K < K such that

A = {ℓK ,ℓK+1, · · · ,ℓK}, (2.19)

and Ωa = [ǫℓK ,ǫℓK]. We define the sets of the indices of the nodes in the period, the nodes
in the atomistic region and the nodes in the continuum region respectively by

K := {1,2, · · · , K}, K a := {K , K + 1, · · · , K} and K c :=K \K a.

To simplify the analysis and presentation, we require that the two atoms in the continuum
region which are adjacent to the atomistic region are also nodes in Th, i.e., ℓK − 1 = ℓK−1

and ℓK + 1 = ℓK+1. This essentially means that we put an extra layer of atoms around the
atomistic region, see [14] for a similar setting. We denote the periodic extensions of A
and C byA# and C#.

The QCF force Fqcf(yh) = {F
qcf
k
(yh)}k∈Z for yh ∈ Y

h are given by

F c
k
(yh) =

¨
f a
ℓk
(yh), k ∈K a,

F c
k
(yh), k ∈K c,

and the QCF method is defined by the following nonlinear variational problem:

Find yqcf ∈ Y
h, s.t. (Fqcf(yqcf), vh)h = (g, vh)h, ∀vh ∈ Y

h. (2.20)

By summation by parts, the left hand side of the QCF variational problem (2.20) for yh ∈
Y h can be written as (c.f. [24, Section 4])

(Fqcf(yqcf), vh)h =
∑

k∈K a

ǫσa
ℓk
(v′h)ℓk

+
∑

k∈K c

hTk
σc

k∇vh|Tk

− vh
ℓK−1

�
σc

TK
−σa

ℓK

�
+ vh

ℓK

�
σc

TK+1
−σa

ℓK+1

�
. (2.21)

Remark 2.1. It was proved in [6] that the QCF force is nonconservative, i.e., there does
not exist a potential whose gradient with respect to the deformation equals to the QCF
force, which results in the fact that (2.21) is not a variation of an energy functional as
opposed to the atomistic variational problem (2.8) and the continuum variational problem
(2.18).

Compared with any energy-based a/c coupling method, the QCF method possesses a
higher order accuracy [5, 6, 14, 21, 27]. However, it was shown in [4, 9, 10] that the QCF
operator lack of uniform coercivity with respect to the size of the atomistic system. Variants
of the QCF method which we review in Section 2.3.2 and Section 2.3.3 appeared to tackle
this issue.
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2.3.2. The SAC method

The first variant of the QCF method that we analyze is the stress-based a/c coupling
method (the SAC method) which was developed in [23] and analyzed in detail in [24].
The idea is that we drop the interface terms on the second line of (2.21) and define the
SAC stress tensor F sac(yh) = {F

sac(yh)Tk
}k∈Z such that

σsac
Tk
(yh) =

¨
σa
ℓk
(yh), ℓk ∈A ,

σc
Tk
(yh), ℓk ∈ C ,

and the problem we solve is to find yh ∈ Yh such that

(F sac(yh), vh)h :=
∑

k∈K a

ǫσa
ℓk
(yh)(v

′
h)ℓk
+
∑

k∈K c

hTk
σc

Tk
(yh)∇vh|Tk

=(g, vh)h, ∀vh ∈ U
h. (2.22)

The main advantage of the SAC method over the QCF method is that the linearized SAC
operator is positive definite in general (except possibly close to bifurcation point), which
results in a direct a priori error estimates by duality in the discrete H1−norm [23,24].

2.3.3. The BQCF method

The second variant of the QCF method we will analyze is the blended force-based quasi-
continuum method (the BQCF method) [14–16, 21, 27]. To formulate the BQCF method,
we first introduce a blending region Ωb between the atomistic region and the continuum
region and decompose the lattice into L = A ∪B ∪C accordingly. To be precise, if we
inherit the lattice decomposition in (2.19) and assume there is only one atomistic region,
we can choose L and L such that 1< L < K < K < L < K and define

B :=
¦
ℓL,ℓL + 1, · · · ,ℓK ,ℓK , · · · ,ℓL − 1,ℓL

©
,

and Ωb = [ǫL,ǫK]∪ [ǫK ,ǫL]. Similar to the QCF method, we put an extra layer of atoms
around the blending region, i.e., ℓL − 1 = ℓL−1 and ℓL + 1 = ℓL+1. The periodic extension
ofB is denoted byB#.

We define a (smooth) blending function β : Z→ [0,1] such that

β(ℓ) =

¨
0, ∀ℓ ∈A#,
1, ∀ℓ ∈ C#,

and define the BQCF force Fbqcf(yh) =
n

F
bqcf
k
(yh)
o

k∈Z
for yh ∈ Y

h by

F
bqcf
k
(y) := (1− β(ℓk)) f

a
ℓk
(yh) + β(ℓk)F

c
k(yh). (2.23)
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The purpose of such construction is to ’spread’ the interface effect caused by the second
line of (2.21) so that certain stability property holds for the BQCF method [14–16,21,27].
We usually define the blending function β by scaling such that for ℓ ∈ B

β(ℓ) =




β̂

�
ℓ−ℓK

ℓK−ℓL

�
, ℓL ≤ ℓ≤ ℓK ,

β̂

�
ℓK−ℓ

ℓL−ℓK

�
, ℓK ≤ ℓ ≤ ℓL,

where β̂ ∈ C3 is a smooth function whose definition will be given later. The BQCF is then
defined by the nonlinear variational problem:

Find y
bqcf
h
∈ Y h, s.t.
�

Fbqcf�ybqcf�, vh

�
h
= (g, vh)h ∀vh ∈ Uh. (2.24)

We could also write the BQCF method in a divergence form using the following proposition
(c.f. [32, Section 6.4]).

Proposition 2.1. Let yh ∈ Y
h; then, ∀vh ∈ Uh

�
Fbqcf(yh), vh

�
h
=
∑

ℓ∈A∪B

ǫσa
ℓ(yh)(v

h
a )
′
ℓ+
∑

k∈Kb∪Ka

hTk
σc

Tk
(yh)∇vh

c |Tk
, (2.25)

where vh
a = (1− β)vh, and vh

c = β vh andKb = {L, · · · , K} ∪ {K , · · · , L}.

Proof. By the property that β ceases to zero in the atomistic region but equals to one in
the continuum region and the mesh structure of the BQCF method, we have

�
Fbqcf(yh), vh

�
h
=
�
(1− β) f a(yh) + βF c(yh), vh

�
h

=
�

f a(y), (1− β)vh

�
ǫ +
�

F c(y),β vh

�
h.

By the smoothness of β and the variational formulations (2.8) and (2.18), we have

(Fbqcf(yh), vh)h =
∑

ℓ∈A∪B

ǫ
�
(1− β(ℓ))vh

�′
ℓσ

a
ℓ +
∑

k∈K b∪K c

hTk
∇(β(ℓk)v)
��
Tk
σc

Tk

=
∑

ℓ∈A∪B

ǫ
�

vh
a

�′
ℓσ

a
ℓ(yh) +
∑

k∈K b∪K c

hTk
∇vh

c

��
Tk
σc

Tk
(yh),

which is the stated result. �

Remark 2.2. We note that (2.25) reduces to (2.21) when B = {ℓK − 1,ℓK} ∪ {ℓK ,ℓK + 1}
and we may thus consider the QCF method as a special case of the BQCF method.
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2.4. Further formulation and notation

We introduce some formulation and notation that would accommodate our analysis in
subsequent sections.

We define the set of indices of lattice sites inside and on the right boundary of the
element Tk by

LTk
:= {ℓk−1+ 1, · · · ,ℓk}. (2.26)

By the 1D setting of our problem and the definition of Y ǫ and Y h, we have

∇vh|T =
ǫ

hT

∑

ℓ∈LT

v′ℓ, ∀v ∈ Y h. (2.27)

Consequently the following equation holds that

hTk
σc

Tk
(yh)∇vh|Tk

= ǫ
∑

ℓ∈LTk

σc
ℓ(yh)(v

h)′ℓ, ∀k ∈K b ∪K c, (2.28)

where the continuum stress tensor associated with the lattice σc
ℓ
(yh) is identical to σc

Tk
(yh)

for ℓ ∈ LTk
. This identity is very useful in our analysis.

We define the set which contains the indices of the nodes in the continuum region that
are not adjacent to the interface nodes as

�K c :=

¨
K c \ {K − 1, K + 1} for the QCF method,
K c \ {L − 1, L+ 1} for the BQCF method.

We also define the set which contains the indices of the elements in the ’central continuum
region’ as

K c
Th

:=

¨
K c \ {K − 1, K + 2} for the QCF method,
K c \ {L− 1, L + 2} for the BQCF method.

Let D be a subset of Z. For a vector v ∈ RZ, we define

‖v‖ℓp
ǫ (D)

:=





�∑
ℓ∈D ǫ|vℓ|

p
�1/p

, 1≤ p <∞,

maxℓ∈D |vℓ|, p =∞.

If the label D is omitted, it means D = {−N + 1, · · · , N}.
We define the first order discrete derivatives v′

ℓ
:= (vℓ − vℓ−1)/ǫ for v ∈ U ǫand equip

the space U ǫ with the discrete Sobolev norm

‖v‖U 1,2 := ‖v′‖ℓ2
ǫ

for v ∈ U ǫ.

The norm on the dual space (U ǫ)∗ is defined by

‖T‖U −1,2 := sup
v∈U ǫ
‖v‖U 1,2=1

T[v].
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3. Residual estimates

3.1. Framework of the residual estimates

We first introduce the framework which essentially follows those from [34,41,42]. We
define the residual operator R : Y h→ (U ǫ)∗ by

R[v] = 〈δE a(yac), v〉 − 〈g, v〉ǫ
=
�
〈δE a(yac), v〉 − 〈g, v〉ǫ

�
−
�
(Sac(yac), v)h− (g, v)h

�

=
�
〈δE a(yac), v〉 − (Sac(yac), v)h

�
+
�
(g, v)h− 〈g, v〉ǫ

�

=: Rint[v] + Rext[v], (3.1)

where Sac ∈ {σsac, Fqcf, Fbqcf} and yac are the corresponding a/c solutions, and we call
Rint[v] the internal residual and Rext[v] the external residual. Here we consider (Sac, ·)h as
operators on U ǫ whose detailed definitions will be given for the corresponding methods.
We will bound the two different types of residuals separately where the internal residual
has different formulations for the SAC and the (B)QCF methods.

3.2. Estimate of the internal residual for SAC

We begin with the residual estimate for the SAC method whose analysis is the most
straightforward one among the three. For the sake of the simplicity of notation, we assume
that the size of the element whose index is in K c

Th
is larger than or equal to 6ǫ in the

following theorem.

Theorem 3.1 (Elementwise internal residual estimate for SAC). Let yac be a solution of the

SAC model (2.22), min(yac)
′
ℓ
> 0 and Rsac

int := 〈δE a(yac), v〉 − (σsac(yac), v)h; then with the

assumption of the size of the elements made just before the theorem, the internal residual is

then estimated by

‖Rsac
int‖U −1,2 ≤
n ∑

k∈K c
Th

(ηsac
Tk
)2
o 1

2
:= ηsac

int , (3.2)

where the elementwise upper bound of the internal residual is given by

ηsac
Tk
=





¨
1
2
ǫ
h∑ℓk−1+3

ℓ=ℓk−1−2(R
int
ℓ
)2 +
∑ℓk+3
ℓ=ℓk−2(R

int
ℓ
)2
i« 12

, k ∈ �K c
Th

,

¨
1
2
ǫ
h∑ℓk−1+3

ℓ=ℓk−1−2(R
int
ℓ
)2
i
+ ǫ
h∑ℓk

ℓ=ℓk−2(R
int
ℓ
)2
i« 12

, k = K − 1,

¨
ǫ
h∑ℓk−1+3

ℓ=ℓk−1
(Rint
ℓ
)2
i
+ 1

2
ǫ
h∑ℓk+3

ℓ=ℓk−2(R
int
ℓ
)2
i« 12

, k = K + 2,

(3.3a)

Rint
ℓ := σa

ℓ(yac)−σ
c
ℓ(yac), (3.3b)

are the internal residual associated with the lattice.
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Proof. By the variational formulation of the atomistic model (2.8) and the SAC model
(2.22), and the identity (2.28), we have

Rsac
int [v] =ǫ
∑

ℓ∈C

σa
ℓ(yac)v

′
ℓ−
∑

k∈K c

hTk
σc

Tk
(yac)∇vh|Tk

=
∑

k∈ �K c

ǫ

ℓk+3∑

ℓ=ℓk−2

Rint
ℓ v′ℓ+ ǫ

ℓK−1∑

ℓ=ℓK−1−2

Rint
ℓ v′ℓ+ ǫ

ℓK+1+3∑

ℓ=ℓK+1

Rint
ℓ v′ℓ

≤




∑

k∈ �K c

ǫ

ℓk+3∑

ℓ=ℓk−2

(Rint
ℓ )

2 + ǫ

ℓK−1∑

ℓ=ℓK−1−2

(Rint
ℓ )

2 + ǫ

ℓK+1+3∑

ℓ=ℓK+1

(Rint
ℓ )

2





1
2

‖v′‖ℓ2
ǫ
,

where we have used the fact that σa
ℓ
(yac) = σ

c
ℓ
(yac) for ℓ ∈ LTk

\[{ℓk−1+1,ℓk−1+2,ℓk−1+

3}∪ {ℓk− 2,ℓk− 1,ℓk}]. Regrouping the residuals with respect to nodes and elements, we
obtain the stated results. �

In the case without coarse-graining, i.e., in the case that we choose U h ≡ U ǫ and
Y h ≡ Y ǫ, a nodewise internal residual estimate is given in the following corollary whose
proof is straight forward and thus omitted.

Corollary 3.1 (Nodewise internal residual estimate for SAC). Let yac be a solution of the

SAC model (2.22) with the solution spaces U h ≡U ǫ and Y h ≡ Y ǫ. With the same assump-

tion of yac and the same definition of Rsac
int in Theorem 3.1, the internal residual is estimated

by

‖Rsac
int‖U −1,2 ≤
n∑

ℓ∈C

(η̃sac
ℓ )

2
o 1

2
:= ηsac

int , (3.4)

where the nodewise upper bound of the internal residual is simply given by

(η̃sac
ℓ )

2 :=
1

5

ℓ+2∑

ℓ−2

(ηsac
ℓ )

2, (3.5)

and ηsac
ℓ

:= ǫRint
ℓ

.

Remark 3.1. We will use the result in Corollary 3.1 and its counterpart in Section 3.3 in
our numerical experiments to do the model adaptivity problem. We take the average of
the residual contributions around ℓ because each Rint

ℓ
is affected by the atoms with indices

ℓ− 2 to ℓ+ 2.

3.3. Estimate of the internal residual for BQCF

We then derive the internal residual of the BQCF methods where the blending function
presents in the error estimator. Again, in the following theorem, we assume the sizes of
the elements in the continuum region to be larger than or equal to 6ǫ as we did in theorem
3.1.
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Theorem 3.2 (Elementwise internal residual estimate for BQCF). Let yac be a solution of

the BQCF model (2.24), min(yac)
′
ℓ
> 0 and R

bqcf
int := 〈δE a(yac), v〉 − (Fbqcf(yac), v)h; then

with the same assumption of the size of the elements as that in Theorem 3.1, the internal

residual is estimated by

‖Rbqcf
int ‖U −1,2 ≤
n ∑

k∈K c
Th

(η
bqcf
Tk
)2
o 1

2
:= ηbqcf

int , (3.6)

where the elementwise upper bound of the internal residual is given by

η
bqcf
Tk
= ηsac

Tk
, k ∈ �K c

Th
, (3.7)

where ηsac
Tk

is defined in (3.3a), and

η
bqcf
TL−1
=

¨
1

2
ǫ
h ℓL−1+3∑

ℓ=ℓL−2−2

(Rint
ℓ )

2
i
+ ǫ
h ℓL−1∑

ℓ=ℓL−1−2

(Rint
ℓ )

2
i

+ 2
h
ǫ
∑

ℓ∈B l

(Rint
ℓ βℓ)

2
i
+ 2
h
ǫ|B r |
∑

ℓ∈B l

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
i« 12

, (3.8a)

η
bqcf
TL+2
=

¨
ǫ
h ℓL+3∑

ℓ=ℓL+1

(Rint
ℓ )

2
i
+

1

2
ǫ
h ℓL+2+3∑

ℓ=ℓL+2−2

(Rint
ℓ )

2
i

+ 2
h
ǫ
∑

ℓ∈B r

(Rint
ℓ βℓ)

2
i
+ 2
h
ǫ|B r |
∑

ℓ∈B r

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
i« 12

, (3.8b)

where Rint
ℓ

is defined in (3.3b) and the setsB l andB r referring to the left and right blending

regions are defined by

B l := {ℓL, · · · ,ℓK} and B r := {ℓK , · · · ,ℓL − 1,ℓL},

and |D| := card(D) denotes the cardinality for a set D.

Proof. By the variational formulation of the atomistic model (2.8) and the BQCF model
(2.25), we have

R
bqcf
int [v] =ǫ
∑

ℓ∈L

σa
ℓ(yac)(v)

′
ℓ− ǫ
∑

ℓ∈B∪C

σc
ℓ(yac)(vc)

′
ℓ− ǫ
∑

ℓ∈L

σa
ℓ(yac)(va)

′
ℓ

=ǫ
∑

ℓ∈C

�
σc
ℓ(yac)−σ

a
ℓ(yac)
�

v′ℓ+ ǫ
∑

ℓ∈B

�
σa
ℓ(yac)v

′
ℓ−σ

a
ℓ(yac)(va)

′
ℓ−σ

c
ℓ(yac)(vc)

′
ℓ

�

=:Rbqcf
1 [v] + R

bqcf
2 [v]. (3.9)

The analysis for R
bqcf
1 is the same as the SAC method and we concentrate on R

bqcf
2 in (3.9).
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By the definition of va and vc, it is easy to verify that v′
ℓ
= (va)

′
ℓ
+ (vc)

′
ℓ

which results in

R
bqcf
2 [v] =ǫ
∑

ℓ∈B

�
σa
ℓ(yac)−σ

c
ℓ(yac)
�
(vc)
′
ℓ =
∑

ℓ∈B

ǫRint
ℓ (β v)′ℓ

=ǫ
∑

ℓ∈B

Rint
ℓ β
′
ℓvℓ−1+ ǫ
∑

ℓ∈B

Rint
ℓ βℓv

′
ℓ. (3.10)

For simplicity, we only present the analysis on the right blending region.
For the first part on the right hand side of (3.10), the key observation is that, by the

condition that v0 = 0,

|vℓ−1| =
���ǫ
�

vℓ−1 − vℓ−2

ǫ
+ · · ·+

vℓ− v0

ǫ

����

= ǫ
��
ℓ−1∑

j=1

v′j

�� ≤ ǫ
��ℓ− 1
�� 12


ℓ−1∑

j=1

|v′j|
2




1
2

, (3.11)

where the last inequality holds by the Cauchy-Schwarz inequality. A further application of
the Cauchy-Schwarz inequality yields

ǫ
∑

ℓ∈B r

Rint
ℓ β
′
ℓvℓ−1 ≤ǫ
∑

ℓ∈B r

��ǫRℓβ ′ℓ
��|ℓ− 1|

1
2



ℓ−1∑

j=1

|v′j|
2




1
2

≤


ǫ
∑

ℓ∈B r

|ℓ− 1|
��ǫRℓβ ′ℓ
��2



1
2


ǫ
∑

ℓ∈B r

ℓ−1∑

j=1

|v′j|
2




1
2

≤


ǫ|B r |
∑

ℓ∈B r

|ℓ− 1|
��ǫRℓβ ′ℓ
��2



1
2

‖v′‖
ℓ2
ǫ (
gB r )

, (3.12)

wheregB r := {1, · · · ,ℓL}.
The same analysis can be carried out for the left blending region easily by symmetry.

Together with the estimate of the second part on the right hand side of (3.10) by the
Cauchy-Schwarz inequality, the following estimate holds

R
bqcf
2 [v]≤
�h
ǫ
∑

ℓ∈B r

(Rint
ℓ βℓ)

2
i 1

2
+
h
ǫ|B r |
∑

ℓ∈B r

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
i 1

2

�
‖v′‖

ℓ2
ǫ(
gB r )

+

�h
ǫ
∑

ℓ∈B l

(Rint
ℓ βℓ)

2
i 1

2
+
h
ǫ|B l |
∑

ℓ∈B l

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
� 1

2o
‖v′‖

ℓ2
ǫ (
ÝB l )

≤
�

2
h
ǫ
∑

ℓ∈B r

(Rint
ℓ βℓ)

2
i
+ 2
h
ǫ|B r |
∑

ℓ∈B r

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
i

+ 2
h
ǫ
∑

ℓ∈B l

(Rint
ℓ βℓ)

2
i
+ 2
h
ǫ|B l |
∑

ℓ∈B l

|ℓ− 1|
��ǫRℓβ ′ℓ
��2
i� 12
‖v′‖ℓ2

ǫ (
fB), (3.13)



246 H. Wang, S. H. Liu and F. Yang

where ÝB l := {L, · · · , 0} and fB := {L, · · · , L}, and the last inequality is obtained by a
weighted Cauchy-Schwarz inequality. The stated results can be obtained after the combina-

tion of R
bqcf
1 and the estimate of R

bqcf
2 in (3.13) with the application of the Cauchy-Schwarz

inequality.

For the reason we mentioned in Remark 3.1, we present a nodewise internal residual
estimate in the following corollary for the case U h ≡U ǫ and Y h ≡ Y ǫ.

Corollary 3.2 (Nodewise internal residual estimate for BQCF). Let yac be a solution of

the BQCF model (2.24) with the solution spaces U h ≡ U ǫ and Y h ≡ Y ǫ. With the same

assumption of yac and the same definition of Rsac
int in Theorem 3.2, the internal residual is

estimated by



Rbqcf

int





U −1,2
≤
n ∑

ℓ∈L c
ℓ

(η̃
bqcf
ℓ
)2
o 1

2
:= ηbqcf

int , (3.14)

where the nodewise upper bound of the internal residual is given by

�
η̃

bqcf
ℓ

�2
:=

1

5

ℓ+2∑

ℓ−2

�
η

bqcf
ℓ

�2
, (3.15a)

η
bqcf
ℓ
=





ǫRint
ℓ

, ℓ ∈ C ,
n

2
�
ǫ(Rint

ℓ
βℓ)

2�+ 2ǫ|B l ||ℓ− 1|
��ǫRℓβ ′ℓ
��2�
o 1

2
, l =B l ,

n
2
�
ǫ(Rint

ℓ
βℓ)

2�+ 2ǫ|B r ||ℓ− 1|
��ǫRℓβ ′ℓ
��2�
o 1

2
, l =B r .

(3.15b)

Remark 3.2. As we mentioned in Remark 2.2, we may consider QCF as a special case of
BQCF where we simply defineB := {ℓK−1,ℓK}∪{ℓK ,ℓK+1} :=B l∪B r and the internal
residual can be obtained accordingly.

3.4. Estimate of the external residual

We then turn to the estimate of the residual of the external energy defined by

Rext[v] = 〈g, Ihv〉h− 〈g, v〉ǫ, (3.16)

where Ihv is the nodal interpolant of v with respect to Th. We essentially follow the same
line as in [32,34] for the estimate of Rext in which the analysis is given in detail. We decide
to include a brief discussion but not just citing the related work simply for the thoroughness
of the paper which also provides the rationale for the numerical experiments in Section 6.

The starting point is to transform (3.16) to a continuous problem by treating the test
function v as an element in P1(Tǫ) and g as a C2 function on Ωc. By such consideration
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we may separate Rext by

Rext[v] =

∫

Ωc

�
Iǫ(gv)− Ih(gIhv)

�
dx

=

∫

Ωc

�
Iǫ(gv)− gv
�

dx +

∫

Ωc

�
gv − gIhv
�

dx +

∫

Ωc

�
gIhv− Ih(gIhv)

�
dx

=: R1
ext[v] +R2

ext[v] + R3
ext[v], (3.17)

where R2
ext[v] represents the residual by the coarse-graining of the solution space and

R1
ext[v] and R3

ext[v] represents the residual by the application of quadrature rules. By
standard interpolation error estimates and Poincaré inequality for H1(Ω), we obtain (c.f.
[34, Proposition 3])

R1
ext[v]≤ η

f ‖v′‖L2(Ω) :=



∑

k∈Kc
Th

� h2
k

π2
‖g‖2

L2(Th
k
)

�



1
2

‖v′‖L2(Ω)

=:
h ∑

k∈Kc
Th

η
f

Tk

i 1
2 ‖v′‖L2(Ω), (3.18a)

R2
ext[v] +R3

ext[v]≤ η
q‖v′‖L2(Ω)

=:



∑

k∈Kc
Th

�
(ǫ4+ h4

k
)‖g′‖2

L2(Th
k
)
+
(ǫ4 + h4

k
)

4π2
‖g′′‖2

L2(Th
k
)

�



1
2

‖v′‖L2(Ω). (3.18b)

We observe that the estimate of the quadrature residual ηq is of higher order of the estimate
of the main residual η f . However, such assertion is inadequate if we consider the singular
force which essentially behaves like |g(x)| ∼ |x |−1 near x = 0 (which is the force we
employ in our numerical experiment). In that case, one can show that the reverse is true,
i.e., η f is dominated by ηq because of the large value of ‖g′′‖L2(Th

k
) near x = 0.

The remedy comes from the application of a weighted Poincaré inequality. We choose
a proper weight function w such that ‖wg′′‖L2(Ω) is small enough but ‖w−1v‖L2(Ω) ≤
C‖v′‖L2(Ω) for some C not too large. The estimate of R3

ext then becomes

��R3
ext[v]
��≤ 1

4
‖h2(gIhv)′′‖L1(Ωc)

≤ 1
2
‖h2 g′ Ihv′‖L1(Ω̃c)

+ 1
4
‖h2 g′′Ihv‖L1(Ω̃c)

=1
2
‖h2 g′ Ihv′‖L1(Ωc)

+ 1
4



(h2wg′′)(w−1 Ihv)




L1(Ωc)

≤1
2
‖h2 g′‖L2(Ωc)

‖v′‖L2(Ωc)
+ 1

4
C‖h2wg′′‖L2(Ωc)

‖v′‖L2 . (3.19)

We consequently have (the estimate of R2
ext is essentially the same)

‖Rext‖U−1,2 ≤ η f + η̂q := ηext, (3.20)
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where

(η̂q)2 :=
∑

k∈{1,··· ,K}
Th

k
⊂Ω̃c

(η̂
q

k
)2,

(η̂
q

k
)2 := (ǫ4+ h4

k
)‖g′‖2

L2(Th
k
)
+ (ǫ4 + h4

k
)C‖wg′′‖2

L2(Th
k
)
.

For the singular force in our numerical experiment, we choose w(x) := x log(x) and con-
sequently C = 1

log2
. We can then prove η̂q is dominated by η f . For the technical detail we

refer to [34, Section 3.3 and 3.4].

4. Stability

In order to give the a posteriori error estimates for the QC methods, we need the
corresponding a posteriori stability condition. The correct notion of such condition is the
positive definiteness (coercivity) of the Hessian of the atomistic model at the QC solutions
as we aim to derive the error bounds in U 1,2-norm. The following discussion for stability
can also be deemed as an extension of that in [34] for multi-body interaction potentials.

We first define the set of interaction range of an atom to be

R = {1,−1,2,−2}, (4.1)

and define the sets of the nearest and the next-nearest neighbour interaction ranges as

RNN = {1,−1}, RNNN = {2,−2}. (4.2)

By direct calculation we obtain the second variation of the atomistic energy at y ∈ Y ǫ by

〈δ2E a(y)v, v〉

=ǫ
∑

ℓ∈L

∑

ρ∈R

∂ρ,ρV (D yℓ)(Dρvℓ)
2+ ǫ
∑

ℓ∈L

∑

ρ,ξ∈RNN,
ρ 6=ξ

∂ρ,ξV (D yℓ)(Dρvℓ)(Dξvℓ)

+ ǫ
∑

ℓ∈L

∑

ρ∈RNN,ξ∈RNNN,
or ξ∈RNN,ρ∈RNNN

∂ρ,ξV (D yℓ)(Dρvℓ)(Dξvℓ)

+ ǫ
∑

ℓ∈L

∑

ρ,ξ∈RNNN,
ρ 6=ξ

∂ρ,ξV (D yℓ)(Dρvℓ)(Dξvℓ),

=:Stab1 + Stab2 + Stab3 + Stab4. (4.3)

By the inequality of arithmetic mean and and the number of combinations in each case,
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we can estimate the last three parts of (4.3) by

Stab2 ≥
∑

ℓ∈L

C
cross,NN
ℓ

∑

ρ∈RNN

(Dρvℓ)
2, (4.4a)

Stab3 ≥
∑

ℓ∈L

C
cross,NN−NNN
ℓ

∑

ρ∈R

(Dρvℓ)
2, (4.4b)

Stab4 ≥
∑

ℓ∈L

C
cross,NNN
ℓ

∑

ρ∈RNNN

, (Dρvℓ)
2, (4.4c)

where

C
cross,NN
ℓ

=min
�
0, min
ρ,ξ∈RNN,
ξ 6=ρ

∂ρ,ξV (D yℓ)
	
, (4.5a)

C
cross,NN−NNN
ℓ

=
�
0, min

ρ∈RNN,ξ∈RNNN,
or ξ∈RNN,ρ∈RNNN

∂ρ,ξV (D yℓ)
	
, (4.5b)

C
cross,NNN
ℓ

=min
�
0, min
ρ,ξ∈RNNN,
ξ 6=ρ

∂ρ,ξV (D yℓ)
	
. (4.5c)

Defining
CNN
ℓ = min

ρ∈RNN
∂ρ,ρV (D yℓ), CNNN

ℓ = min
ρ∈RNNN

∂ρ,ρV (D yℓ), (4.6)

we can separate the terms involving the nearest neighbour interactions and the next-
nearest neighbour interactions and estimate (4.3) by

〈δ2E a(y)v, v〉

≥ǫ
∑

ℓ∈L

∑

ρ∈RN N

�
CNN
ℓ + C

cross,NN
ℓ

+ C
cross,NN−NNN
ℓ

�
(Dρvℓ)

2

+ ǫ
∑

ℓ∈L

∑

ρ∈RN N N

�
CNNN
ℓ + C

cross,NNN
ℓ

+ C
cross,NN−NNN
ℓ

�
(Dρvℓ)

2

=ǫ
∑

ℓ∈L

C1
ℓ

�
|v′ℓ|

2+ |v′ℓ+1|
2
�
+ ǫ
∑

ℓ∈L

C2
ℓ

�
|v′ℓ+ v′ℓ−1|

2+ |v′ℓ+1+ v′ℓ+2|
2
�

, (4.7)

where

C1
ℓ = CNN

ℓ + C
cross,NN
ℓ

+ C
cross,NN−NNN
ℓ

, C2
ℓ = CNNN

ℓ + C
cross,NNN
ℓ

+ C
cross,NN−NNN
ℓ

.

The technique for estimating (4.7) is that we rewrite the ’non-local’ Hessian terms |v′
ℓ
+

v′
ℓ+1|

2 in terms of the ’local’ terms |v′
ℓ
|2 and |v′

ℓ+1|
2 and a strain-gradient correction [31,34],

|v′ℓ+ v′ℓ+1|
2 = 2|v′ℓ|

2+ 2|v′ℓ+1|
2 − ǫ2|v′′ℓ |

2,

which yields the following estimate

〈δ2E a(y)v, v〉 ≥ ǫ
∑

ℓ∈L

Aℓ(y)|v
′
ℓ|

2+ ǫ3
∑

ℓ∈L

Bℓ(y)|v
′′
ℓ |

2, (4.8)
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where

Aℓ = C1
ℓ + C1

ℓ−1 + 2C2
ℓ−2+ 2C2

ℓ−1+ 2C2
ℓ + 2C2

ℓ+1, (4.9a)

Bℓ = −C2
ℓ−1− C2

ℓ+1. (4.9b)

The same as for pair potential [34], we assume that Bℓ ≥ 0, which will also be verified
numerically in Section 6.2.2. Consequently we obtain the following lemma which gives the
sufficient conditions for the stability of the atomistic hessian evaluated at the QC solution.

Proposition 4.1. Let yac ∈ Y
h, ac ∈ {qcf, sac,bqcf} be a solution of the force-based coupling

problems (2.20), (2.22) and (2.24) respectively and assume that Bℓ(yac) ≥ 0,∀ℓ ∈ L where

the coefficients Bℓ(y) are defined in (4.9a); then

〈δ2E a(yac)v, v〉 ≥ A∗(yac)‖v
′‖2
ℓ2
ǫ

, ∀v ∈ U ǫ, where A∗(yac) :=min
ℓ∈L

Aℓ(yac), (4.10)

and the Aℓ(y) is defined in (4.9a).

Remark 4.1. We briefly comment on the stability estimate given. First of all, We emphasize
that the computational cost of A∗(yac) is of O (K) since the deformation gradient remains
constant in each element. Second, We treat the nearest neighbour cross terms separately
to single out its importance compared with other cross terms which will be illustrated in
our numerical examples. Third, the sharpness of the stability estimate may be improved
with some extra effort but we decide not to include it in this work but will show that the
current stability estimate is sufficient for the numerical experiments we consider in Section
6. Finally, for pair interaction potentials, Bℓ < 0 may only be achieved under extreme
compression under which case the pair potentials may not be considered correct. We thus
expect similar facts holds for multi-body potentials we consider.

4.1. Estimates for the Hessian

Before we present our main theorems, we state a useful auxiliary results, a local Lips-
chitz bound on δ2E a, whose proofs is given in Appendix A.

Lemma 4.1. Let y, z ∈ Y ǫ such that yℓ, zℓ ∈ E := [µ,ν] for some constants µ < ν , then

��〈{δ2E a(y)− δ2E a(z)}v, w〉
�� ≤CLip‖y

′ − z′‖ℓ∞ǫ ‖v
′‖ℓ2

ǫ
‖w′‖ℓ2

ǫ
∀v, w ∈ U ,

where

CLip = 2M2(E) + 22M2(E) + 72m2(E)+ 120m2(E).

Here, m j(E), m j(E), M j(E) and M j(E) are defined in Appendix A.
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5. A Posteriori error estimates

We now arrive at the point to present the complete a posteriori error estimate by com-
bining the residual estimate and the stability estimate under certain assumptions which
will be clear in the following theorem.

Theorem 5.1. Let yac ∈ Y
h, ac ∈ {qcf, sac,bqcf} be a solution of the force-based coupling

problems (2.20), (2.22) and (2.24)respectively with Bℓ(yac) ≥ 0,∀ℓ ∈ L and A∗(yac) > 0
where Bℓ and A∗ are defined in (4.9a) and (4.10). Suppose ya is a solution of the atomistic

problem (2.4) such that, for some τ > 0,

‖y ′a − y ′qc‖ℓ∞ǫ ≤ τ. (5.1)

If τ is sufficiently small, then we have the error estimate

‖y ′a − y ′ac‖ℓ2
ǫ
≤ 2

A∗(yqc)

�
ηac

int +ηext

�
, (5.2)

where ηac
int are defined in (3.2) and (3.6) and ηext is defined in (3.20).

Proof. Let e := ya − yac ∈ U
ǫ. By the mean value theorem we know that there exists

θ ∈ conv{ya, yac} such that

|〈δ2E a(θ)e, e〉| = |〈δE a(yac), e〉 − 〈δE a(ya), e〉| = |〈δE a(yac), e〉 − 〈g, e〉ǫ |,

where the right hand side of the above equation is exactly the residual R[v] defined in
(3.1) and we therefore have

|〈δ2E a(θ)e, e〉| = |Rint[v]+ Rext[v]| ≤ [η
ac
int +ηext]‖e

′‖ℓ2
ǫ
, (5.3)

by the estimates (3.2), (3.6) and (3.20).
We then compute a lower bound on |〈δ2E a(θ)e, e〉|. Using the Lipschitz estimate given

in Lemma 4.1, the stability estimate in Proposition 4.1 together with our assumption on
Bℓ(yac) and A∗(yac) and the a priori bound (5.1), we have

|〈δ2E a(θ)e, e〉| ≥|〈δ2E a(yac)e, e〉 − CLip‖θ − yac‖‖e
′‖2
ℓ2
ǫ

≥|〈δ2E a(yac)e, e〉 − CLip‖ya − yac‖‖e
′‖2
ℓ2
ǫ

≥
�
A∗(yac)− CLipτ

�
‖e′‖2

ℓ2
ǫ

.

If we require that τ ≤ A∗(yac)/(2CLip) (this is satisfied for τ sufficiently small), we finally
obtain

1

2
A∗(yqc)‖e

′‖2
ℓ2
ǫ

≤ [ηac
int +ηext]‖e

′‖ℓ2
ǫ
.

Dividing through by ‖e′‖ℓ2
ǫ

yields the stated estimate. �
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Remark 5.1. We make an important assumptions in Theorem 5.1 that yqc is sufficiently
close to ya which is characterized by (5.1). This assumption essentially says that given a
yqc satisfying A∗(yac) > 0, there exists a ya ’sufficiently’ near by. Such assumption can be
dropped by proper applications of the inverse function theorem which have some existing
results, c.f., [31, 41]. However, since the a posteriori existence is not the focus of the
present work, we do not go further in this direction but to keep the assumption (5.1) to
for simplicity.

6. Numerical experiments

In this section, we present numerical experiments to illustrate the results of our anal-
ysis. In particular, we will consider the problem of mesh adaptivity and model adaptivity
with the residual based error estimator. Throughout this section, We fix our computational
domain Ω = [−1,1] and F = 1.03, which corresponds to applying a 3% tensile stretch from
the ground state to the system. We assume our atomistic system possesses EAM potential
whose site energy is given by

V (D yℓ) =
1

2

∑

ρ∈R

(φ(Di yℓ) +φ(−D j yℓ))+ eF


∑

ρ∈R

(ψ(Di yℓ) +ψ(−D j yℓ))


 ,

where φ(r) = e−2a(r−1) − 2e−a(r−1), ψ(r) = e−br and eF(ρ) = c[(ρ − ρ0)
2 + (ρ − ρ0)

4],
with the parameter a = 4.4, b = 3, c = 5, ρ0 = 2e−b.

6.1. Mesh adaptivity

In the first numerical experiment, we propose an adaptive mesh refinement algorithm
by the residual based error estimator, and show numerically that it achieves an optimal
“convergence rate” in terms of the number of degrees of freedom.

The problem we consider here follows that in [34] which is a benchmark testing case
in 1D. We set N = 50000 and defined the external force gℓ to be

gℓ :=

(
−0.4(1+ 1

2ǫℓ
), −25000≤ ℓ < 0,

0.4( 1
2ǫℓ
− 1), 0< ℓ ≤ 25000.

We note that g(x) behaves essentially like |x |−1, which is a typical decay rate for elastic
fields generated by long-ranged defects in 2D/3D [13]. We thus test the performance and
robustness of our adaptive algorithm in a setting that includes some of the features of
higher dimensional problems. The constant 0.4 was chosen sufficiently large to achieve a
significant deformation, but sufficiently small to ensure that there exists an elastic stable
equilibrium configuration.
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The blending function for the BQCF method we choose is a cubic spline defined by
(c.f. [14])

β̂(x) :=





0, x < 0,

−2x3+ 3x2, 0≤ x ≤ 1,
1, x > 1.

(6.1)

Such choice of blending function make sure the atomistic model and the local QC model
are smoothly blended in the blending region and is also optimal in the sense of maintaining
the positive-definiteness of the BQCF operator near tensile limit according to the analysis
in [14–16,32].

We use two different strategies to decide the blending width of the BQCF method. The
first strategy is to fix the blending width, i.e. L−K , to be 5,10 and 20. The second strategy
is slightly adaptive where we set the the radius of the atomistic region to be of the same as
the blending width, which was shown to produce the (quasi-)optimal H1−error [14,15].

We will compute the relative errors of the strain gradient, given by:

‖y ′ac − y ′a‖ℓ2
ǫ

‖u′a‖ℓ2
ǫ

, (6.2)

where ac ∈ {qcf, sac,bqcf}.

6.1.1. Adaptive algorithm

In our computations, we begin with a mesh that resolves the “defect” (i.e., it has atomistic
resolution near x = 0) but is coarse elsewhere. We then employ the algorithm stated below
to locally refine the mesh where required and thus improve the quality of the solution.

We first define the error estimators according to which we drive the mesh refinement.
The element error estimator are given by (cf. (3.3a), (3.8a) and (3.18a))

(ρTk
)2 := 2

A∗(yac)
·

¨
(ηac

Tk
)2 + (η

f

Tk
)2, if k ∈K c

Th
,

0, otherwise,

where ac ∈ {qcf, sac,bqcf}. Note that we have ignored the quadrature residual ηq which
was shown to be dominated by η f in Section 3.4.

The following algorithm is based on established ideas from the adaptive finite element
literature [11,29].

6.1.2. Numerical results

We summarize the results of our numerical experiments for different force-based methods.

1. In Fig. 1, we display the gradient errors for the mesh generation algorithms for
QCF, SAC and BQCF with different blending width. We note that the error curves
of different force-based methods are barely distinguishable which implies that these
methods possesses almost the same accuracy under the current setting.
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Algorithm 6.1 A posteriori mesh adaptivity.

1. Create Add the nodes 0,±ǫ,±2ǫ, · · · , (L − 1)ǫ and (L + 1)ǫ to the mesh (L = K for the
QCF and the SAC methods). Add the nodes {xh

0 = −1, xh
K = 1} to the mesh.

2. Solve: Compute the QC solution on the current mesh, compute the error indicators ρk.
For T h

k
⊂ Ωa, set ρk = 0.

3. Mark: Choose a minimal subsetM ⊂ {1, · · · , K} of indices such that

∑

k∈M

ρk ≥
1

2

K∑

k=1

ρk. (6.3)

4. Refine: Bisect all elements T h
k

with indices belonging toM :

a For the QCF and the SAC methods if an element that needs to be refined is adjacent
to the atomistic region, merge this element into the atomistic region and create a
new atomistic to continuum interface.

b For the BQCF methods if an element that needs to be refined is adjacent to the
blending region, merge this element into the blending region and create a new
atomistic region and blending region according to the fixed blending width strate-
gy or the adaptive blending width strategy.

5. If the resulting mesh reaches a prescribed maximal number of degrees of freedom, stop
the algorithm; otherwise, go to Step (2).
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‖ L

2

1.1189

BQCF (BW:5)
BQCF (BW:10)
BQCF (BW:20)
BQCF(Adaptive BW)
QCF
SAC

Figure 1: Relative errors in the deformation gradient plotted against the number of degrees of freedom
for five types of mesh refinement.

2. We set the maximum number of degrees of freedom to be 3000 and observe the
convergence rate is close to 1 due to the P1 solution space we choose.

3. We compute the efficiency factors which are the ratio between the estimated error
and the true error and are shown in Fig. 2. The efficiency factors are very moderate
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Figure 2: Efficiency factors plotted against the number of degrees of freedom for five types of mesh
refinement.
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Figure 3: Numerical validation of the condition Bℓ(yac)> 0.

for these methods. We refer to [42] for a theoretical consideration for the efficiency
of the residual based a posteriori estimator for a/c coupling methods.

4. We also validate numerically the assumption that Bℓ(yac)> 0 and plot the constants
min Bℓ(yac) in Fig. 3.

5. We list the minimums of the second order derivatives at all the a/c solutions we
obtain in Table 1. We find that, at least in the current experiment, the ‘nearest
neighbour’ dominates so that our estimates of the stability constant remain positive
which are not affected by the ‘cross’ nearest neighbour terms ∂1−1V (y).

We can conclude that our residual based a posteriori error estimators can be used
to select quasi-optimal meshes for error of the deformation gradient of the force based
methods, at least for this testing problem.
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Table 1: List of the values of the second-order derivatives.

Type of derivatives min

∂11V (yac) ∂−1−1V (yac) 10.8833
∂1−1V (yac) ∂−11V (yac) -0.2337
∂22V (yac) ∂−2−2V (yac) -0.1653
∂12V (yac) ∂21V (yac) 0.0092
∂1−2V (yac) ∂−21V (yac) -0.0107
∂2−1V (yac) ∂−12V (yac) -0.0107
∂−1−2V (yac) ∂−2−1V (yac) 0.0092
∂2−2V (yac) ∂−22V (yac) 0.0005

6.2. Model adaptivity

Our second numerical experiment is motivated by the fact that in the first numerical ex-
periment, the external residual dominates which is shown in Fig. 4. Therefore, we consider
a problem with only internal error to further show the effectiveness of our analysis.

We set N = 1000 for which we expect to ’better’ show the effect of the blending. The
external force gℓ to be

gℓ :=

(
−0.02(1+ 1

2ǫℓ
), −500≤ ℓ < 0,

0.02( 1
2ǫℓ
− 1), 0< ℓ ≤ 500,

whose magnitude fits this small system.

Again we use the cubic blending function as defined in (6.1) with different blending
width, 5, 10 and 20, and the ’adaptive’ blending width strategy . In addition to that, we
also consider two different blending functions, which are linear and quintic splines defined
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Figure 4: Comparison of the estimates of the external error and the internal error.
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by

β̂(x) :=





0, x < 0,
x , 0≤ x ≤ 1,
1, x > 1,

β̂(x) :=





0, x < 0,
6x5− 15x4+ 10x3, 0≤ x ≤ 1,
1, x > 1,

but fix the blending width to be 10 for these two cases. The relative errors of the strain
gradient is again defined in (6.2).

6.2.1. Adaptive algorithm

In our computations, we begin with a mesh that is ’fully refined’, which means each atom is
a degree of freedom so that the external residual becomes 0 and only the internal residual
plays the role. In this case, we consider the problem of adaptively choose the atomistic
region, which is purely a model adaptivity problem. We note that similar problems was
investigated in [1, 2] but for a different model and a different type of a posteriori error
estimator. We use the nodewise error estimators defined in (3.4) and (3.14) to develop the
following adaptive algorithm:

Algorithm 6.2 A posteriori model adaptivity

1. Create Mark the atoms 0,±ǫ,±2ǫ, · · · , (K − 1)ǫ and (K + 1)ǫ as atomistic. Create the
blending region according to the blending width and mark the atoms outside the blend-
ing region to be continuous.

2. Solve: Compute the QC solution on the current decomposition of the lattice, compute
the error indicators ηac

ℓ
for ℓ ∈B ∪C .

3. Mark: Choose a minimal subset D ⊂ {1, · · · , N} of indices such that

∑

ℓ∈L

(ηac
ℓ )

2 ≥
1

2

∑

ℓ∈D

(ηac
ℓ )

2. (6.4)

4. Refine: Mark all the atoms in D as atomistic and create the atomistic, blending and
continuum regions accordingly.

5. Stop the algorithm if
∑
ℓ∈L (η

ac
ℓ
)< 10−7 ; otherwise, go to Step (2).

6.2.2. Numerical results

We summarize the results of our numerical experiments.
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Figure 5: Relative errors in the deformation gradient plotted against the number of atoms in the
atomistic region and the blending region.
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Figure 6: Efficiency factors plotted against the number of atoms in the atomistic and the blending
region.

1. In Fig. 5, we display the gradient errors for the model adaptivity algorithms. We
observe that the blending function has marginal effect on the accuracy of the solu-
tions in this testing case whereas the blending width plays a more important role.
This is somehow understandable since for a fixed |A |, longer blending width means
more atomistic information is taken into account. A notable fact is the superiority
of the SAC method which achieves better accuracy with even less atomistic infor-
mation which could be explained by the absence of any interface effect [23, 24]. In
that sense, the extension of the SAC method to higher dimension might be worth
investigating.

2. We compute the efficiency factors which are shown in Fig. 6. The efficiency factors
are again moderate. However, the efficiency factor is larger for the (B)QCF methods
which might imply that our error estimator could be improved especially for treating
the interface.
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We can conclude that our residual based a posteriori error estimators can also be used
to select atomistic region for error of the deformation gradient. However, since we do not
observe almost the same accuracy for all the methods we consider, we do not expect to
develop model adaptivity methods for adaptively deciding the blending widths or selecting
the blending functions using residual based error estimators. Further possible researches
will be discussed in the next section.

7. Conclusions

We derive the a posteriori error estimators for the deformation gradient for three differ-
ent force-based a/c methods for a periodic atomistic chain. Based on these estimators we
propose mesh adaptive algorithms which adaptively choose location of the degrees of free-
dom and model adaptive algorithms which adaptively decide the locationof the atomistic
region. Our numerical experiments show that our algorithms are quasi-optimal.

There are several possible future researches in this direction.

The first is the adaptive method for the BQCF methods which includes the adaptivity for
the blending width and the blending function. Since prior analysis shows that the blending
width and the blending function will substantially affect the stability of the method near
instability [14–16, 32], we will pursue a further study in this direction together with a
sharper a posteriori stability estimate.

The second is the adaptive method for the BQCE methods, including the adaptivity for
the blending width and the blending function, using residual based estimators. We believe
this is promising as the blending width and the blending function will affect the accuracy
of the solution which should be detected by the residual based estimators. The difficulty
there is to set up an appropriate optimization problem which takes the blending width and
the blending function as input factors.

The third is the extension of adaptivity for a/c methods in higher dimensions. A no-
table progress has been made in [41] but we believe our analysis in 1D also provides an
important stepping-stone in this direction.

Appendix A Proof for lemma 4.1

Proof. For any y ∈ Y ǫ, direct calculation gives us the following formula of second
variation with arbitrary test function v, w ∈ U :

〈δ2E a(y)v, w〉 =ǫ
∑

ℓ∈L

Ãℓ(y)w
′
ℓ−3v′ℓ+ B̃ℓ(y)w

′
ℓ−2v′ℓ+ C̃ℓ(y)w

′
ℓ−1v′ℓ+ D̃ℓ(y)w

′
ℓv
′
ℓ

+ Ẽℓ(y)w
′
ℓ+1v′ℓ+ F̃ℓ(y)w

′
ℓ+2v′ℓ+ G̃ℓ(y)w

′
ℓ+3v′ℓ, (A.1)
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where

Ãℓ(y) := −∂2,−2(D yℓ−2), (A.2a)

B̃ℓ(y) :=−[∂2,−1(D yℓ−2) + ∂2,−2(D yℓ−2) + ∂1,−2(D yℓ−1) + ∂2,−2(D yℓ−1)], (A.2b)

C̃ℓ(y) := ∂21(D yℓ−2)+ ∂22(D yℓ−2)− ∂1,−1(D yℓ−1)− ∂1,−2(D yℓ−1)

− ∂2,−1(D yℓ−1)− ∂2,−2(D yℓ−1) + ∂−1,−2(D yℓ) + ∂−2,−2(D yℓ), (A.2c)

D̃ℓ(y) := ∂22(D yℓ−2)+ ∂11(D yℓ−1) + 2∂12(D yℓ−1) + ∂22(D yℓ−1) + ∂−1,−1(D yℓ)

+ 2∂−1,−2(D yℓ) + ∂−2,−2(D yℓ) + ∂−2,−2(D yℓ+1), (A.2d)

Ẽℓ(y) := ∂12(D yℓ−1) + ∂22(D yℓ−1)− ∂−1,1(D yℓ)− ∂−1,2(D yℓ)− ∂−2,1(D yℓ)

− ∂−2,2(D yℓ) + ∂−2,−1(D yℓ+1) + ∂−2,−2(D yℓ+1), (A.2e)

F̃ℓ(y) := −[∂−1,2(D yℓ) + ∂−2,2(D yℓ) + ∂−2,1(D yℓ+1) + ∂−2,2(D yℓ+1)], (A.2f)

G̃ℓ(y) := −∂−2,2(D yℓ+1).

Before giving further analysis, we define some upper bounds for the second- and third-
order derivatives of the potential function V which will be used later. Let g := (g1, g2, g3,
g4) ∈ R

1×4 and E×4 := E × 2E ×−E ×−2E, we define

m1(E) := max
g∈E×4

�
max
(i, j)∈S 4

|∂i jV (g )|
	
, m2(E) := max

g∈E×4

�
max

(i, j,k)∈S S 4
|∂i jkV (g )|
	
;

m1(E) := max
g∈E×4

�
max
(i, j)∈S 3

|∂i jV (g )|
	
, m2(E) := max

g∈E×4

�
max

(i, j,k)∈S S 3
|∂i jkV (g )|
	
;

M1(E) := max
g∈E×4

�
max
(i, j)∈S 2

|∂i jV (g )|
	
, M2(E) := max

g∈E×4

�
max

(i, j,k)∈S S 2
|∂i jkV (g )|
	
;

M1(E) := max
g∈E×4

�
max
(i, j)∈S 1

|∂i jV (g )|
	
, M2(E) := max

g∈E×4

�
max

(i, j,k)∈S S 1
|∂i jkV (g )|
	
,

where

S 1 := {±(1,1)}, S S 1 := {±(1,1,1)};

S 2 := {±(1,−1),±(2,2)}, S S 2 := {±(1,1,−1),±(2,2,2)};

S 3 := {±(1,2),±(1,−2)}, S S 3 := {±(1,1,2),±(1,1,−2),±(1,2,2),±(1,−2,−2)};

S 4 := {±(2,−2)}, S S 4 := {±(1,2,−2),±(1,−1,−2),±(2,2,−2)}.

Remark A.1. We classify the partial derivatives as above in order for a sharper estimate.
Numerical experiments show that: when µ and ν are close to ∇ya, we have m j ≪ m j ≪

M j ≪ M j for j = 1,2. Therefore, we should avoid using M j , which is the uniform upper
bounds for all derivatives, for every derivative to give an (quasi-) optimal estimate.

For any ℓ ∈ L , the following upper bounds hold that

|Ãℓ(y)|, |G̃ℓ(y)| ≤ m1(E), (A.3a)

|B̃ℓ(y)|, |F̃ℓ(y)| ≤ 2[m1(E) +m1(E)], (A.3b)

|C̃ℓ(y)|, |Ẽℓ(y)| ≤ m1(E) + 4m1(E) + 3M1(E), (A.3c)

|D̃ℓ(y)| ≤ 4m1(E) + 4M1(E) + 2M1(E). (A.3d)
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and thus for any y, z ∈ Y ǫ, by (A.1) we have
¬
δ2E a(y)v, w
¶
−
¬
δ2E a(z)v, w
¶

=ǫ
∑

ℓ∈L

�
Ãℓ(y)− Ãℓ(z)
�
w′ℓ−3v′ℓ+
�
B̃ℓ(y)− B̃ℓ(z)
�
w′ℓ−2v′ℓ

+
�
C̃ℓ(y)− C̃ℓ(z)
�
w′ℓ−1v′ℓ+
�

D̃ℓ(y)− D̃ℓ(z)
�
w′ℓv
′
ℓ

+
�

Ẽℓ(y)− Ẽℓ(z)
�
w′ℓ+1v′ℓ+
�

F̃ℓ(y)− F̃ℓ(z)
�
w′ℓ+2v′ℓ+
�
G̃ℓ(y)− G̃ℓ(z)
�
w′ℓ+3v′ℓ. (A.4)

We note that
��Ãℓ(y)− Ãℓ(z)
��

=
��∂2,−2(D yℓ−2)− ∂2,−2(Dzℓ−2)

��

≤
��∂2,−2V (y ′ℓ−1, y ′ℓ−1 + y ′ℓ,−y ′ℓ−2,−y ′ℓ−3 − y ′ℓ−2)− ∂2,−2V (z′ℓ−1, y ′ℓ−1 + y ′ℓ,−y ′ℓ−2,−y ′ℓ−3 − y ′ℓ−2)

��
+
��∂2,−2V (z′ℓ−1, y ′ℓ−1 + y ′ℓ,−y ′ℓ−2,−y ′ℓ−3 − y ′ℓ−2)− ∂2,−2V (z′ℓ−1, z′ℓ−1 + z′ℓ,−y ′ℓ−2,−y ′ℓ−3 − y ′ℓ−2)

��
+
��∂2,−2V (z′ℓ−1, z′ℓ−1 + z′ℓ,−y ′ℓ−2,−y ′ℓ−3− y ′ℓ−2)− ∂2,−2V (z′ℓ−1, z′ℓ−1 + z′ℓ,−z′ℓ−2,−y ′ℓ−3− y ′ℓ−2)

��
+
��∂2,−2V (z′ℓ−1, z′ℓ−1 + z′ℓ,−z′ℓ−2,−y ′ℓ−3 − y ′ℓ−2)− ∂2,−2V (z′ℓ−1, z′ℓ−1 + z′ℓ,−z′ℓ−2,−z′ℓ−3 − z′ℓ−2)

��.

Applying the mean value theorem we have
��Ãℓ(y)− Ãℓ(z)
��

≤ max
g∈E×4

��∂2,−2,1V (g )
����y ′ℓ−1 − z′ℓ−1

��+ max
g∈E×4

��∂2,−2,2V (g )
�����y ′ℓ−1 − z′ℓ−1

��+
��y ′ℓ − z′ℓ

���

+ max
g∈E×4

��∂2,−2,−1V (g )
����y ′ℓ−2 − z′ℓ−2

��

+ max
g∈E×4

��∂2,−2,−2V (g )
�����y ′ℓ−3 − z′ℓ−3

��+
��y ′ℓ−2 − z′ℓ−2

���

≤6m2(E)


y ′ − z′



ℓ∞ǫ

. (A.5)

Similarly, we have

|G̃ℓ(y)− G̃ℓ(z)| ≤ 6m2(E)‖y
′ − z′‖ℓ∞ǫ , (A.6a)

|B̃ℓ(y)− B̃ℓ(z)|, |F̃ℓ(y)− F̃ℓ(z)| ≤
�

18m2(E) + 6m2(E)
�
‖y ′ − z′‖ℓ∞ǫ , (A.6b)

|C̃ℓ(y)− C̃ℓ(z)|, |Ẽℓ(y)− Ẽℓ(z)| ≤
�

26m2(E) + 16m2(E)+ 6M2(E)
�
‖y ′ − z′‖ℓ∞ǫ , (A.6c)

|D̃ℓ(y)− D̃ℓ(z)| ≤
�

20m2(E) + 28m2(E) + 10M2(E) + 2M2(E)
�
‖y ′ − z′‖ℓ∞ǫ . (A.6d)

We may then find an upper bound for (A.4) as
��〈δ2E a(y)v, w〉 − 〈δ2E a(z)v, w〉

��

≤
�

2M2(E) + 22M2(E) + 72m2(E) + 120m2(E)
�
‖y ′ − z′‖ℓ∞ǫ ‖w

′‖ℓ2
ǫ
‖v′‖ℓ2

ǫ

= : CLip‖y
′ − z′‖ℓ∞ǫ ‖w

′‖ℓ2
ǫ
‖v′‖ℓ2

ǫ
. (A.7)

Therefore, CLip can be chosen as CLip = 2M2(E)+22M2(E)+72m2(E)+120m2(E), which
concludes the proof of Lemma 4.1. �
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