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Abstract. We consider computing the minimal nonnegative solution of the nonsym-
metric algebraic Riccati equation with M-matrix. It is well known that such equations
can be efficiently solved via the structure-preserving doubling algorithm (SDA) with
the shift-and-shrink transformation or the generalized Cayley transformation. In this
paper, we propose a more generalized transformation of which the shift-and-shrink
transformation and the generalized Cayley transformation could be viewed as two
special cases. Meanwhile, the doubling algorithm based on the proposed generalized
transformation is presented and shown to be well-defined. Moreover, the convergence
result and the comparison theorem on convergent rate are established. Preliminary
numerical experiments show that the doubling algorithm with the generalized trans-
formation is efficient to derive the minimal nonnegative solution of nonsymmetric al-
gebraic Riccati equation with M-matrix.
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1 Introduction

Consider solving the nonsymmetric algebraic Riccati equation

XCX−AX−XD+B=0 (1.1)
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and its dual form
YBY−DY−YA+C=0, (1.2)

where A, B, C, D are real matrices of size m×m, m×n, n×m, n×n, respectively. In many
real-life applications such as the transport theory related to the transmission of a particle
beam [16] and the Markov process [3], the coefficient matrices in (1.1) and (1.2) constitute
a block structure of M-matrix, that is,

K=

(
D −C
−B A

)
(1.3)

is a nonsingular M-matrix or an irreducible singular M-matrix. In this sense, we referred
such equations as M-matrix algebraic Riccati equations (MAREs) [21]. The minimal non-
negative solution of the MARE is of great interest in real applications and its existence has
been well studied in [15,16]. Lots of numerical iterative methods including the Newton’s
method and the fixed-point methods have been extensively studied to find the minimal
nonnegative solution of MAREs, see [1, 2, 5, 7, 8, 10, 11, 13, 16, 21, 22] and the references
therein. Among these methods, the structure-preserving doubling algorithm stands out
for its quadratical convergence analogous to Newton’s method and the faster conver-
gence than fixed-point methods. With incorporating different matrix transformations,
the doubling algorithm has various initial processes and they are respectively referred as
the SDA [13], the SDA-ss [6] and the ADDA [21]. Concretely, for a matrix A, the SDA
employs the Cayley transformation

C(A,α)=(A−αI)(A+αI)−1 (1.4)

with α>0. The SDA-ss admits the shift-and-shrink transformation

S(A,γ)= I−A/γ (1.5)

with γ>0 and the ADDA exploits the generalized Cayley transformation

G(A,β,α)=(A−βI)(A+αI)−1 (1.6)

with α>0 and β>0. By selecting proper parameters α, β and γ, each of all above trans-
formations is able to transfer n eigenvalues of Hamiltonian-like matrix

H=

(
D −C
B −A

)
(1.7)

on the left complex semi-plane to ones inside the unit circle and other n eigenvalues of H
on the right complex semi-plane to ones outside the unit circle. Then each initial process
of these doubling algorithms is well-defined and the whole iteration scheme is feasible.

In this paper, we still aim at the doubling algorithm for solving MAREs, but with a
transformation different with (1.4), (1.5) and (1.6). The development story origins from
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the observation of the shrink-and-shift transformation I−A/γ might be seen as one-
order Taylor expansion of an exponential transformation e−A/γ, which has been exploited
in [12] for solving a class of differential Riccati equations with M-matrix. One may won-
der whether a higher-order approximation could be applicable. This helps us develop
a new generalized transformation inheriting some characteristics both from the shrink-
and-shift transformation (1.5) and the generalized Cayley transformation (1.6). Later we
will show in theory that the doubling algorithm based on our new presented transfor-
mation could provide a faster convergence rate than the other three doubling algorithms,
i.e., the SDA, the SDA-ss and the ADDA.

The rest of this paper is organized as follows. Section 2 presents our generalized trans-
formation as well as several known results about M-matrices. Section 3 is devoted to the
well-definition of the initial process for the doubling algorithm with our new general-
ized transformation. The whole algorithm and the corresponding convergence analysis
is given in Section 4, also accompanied with the detailed comparison result on conver-
gence rate between the ADDA and our doubling algorithm. Numerical results to demon-
strate the efficiency of the doubling algorithm with the new generalized transformation
are finally presented in Section 5.

Notation. Symbol Rn×n in this paper stands for the set of n×n real matrices. For matrices
A, B∈Rn×n, we write A≥B (A>B) if aij≥ bij (aij > bij) for all i, j. A real square matrix
A is called a Z-matrix if all its off-diagonal elements are nonpositive. It is clear that any
Z-matrix A can be written as sI−B with B≥0. A Z-matrix A= sI−B with B≥0 is called
an M-matrix if s≥ ρ(B), where ρ(·) denotes the spectral radius. It is called a singular
M-matrix if s= ρ(B) and a nonsingular M-matrix if s> ρ(B). Given a square matrix A,
we will denote by σ(A) the set of eigenvalues of A, and ‖A‖ the Euclid norm of A.

2 The generalized transformation and some lemmas

It is known that the generalized Cayley transformation (1.6) with two parameters is more
sensitive to the magnitude of two matrices than the Cayley transformation (1.4) which
uses only one parameter. So the ADDA embedded in transformation (1.6) is superior
to the SDA with transformation (1.4). On the other hand, the shrink-and-shift trans-
formation, first given by Ramaswami in [19], was employed to construct the doubling
algorithm SDA-ss [6], which had shown dramatic improvements over the SDA in most
cases but might still run slower sometimes, although not often happened. Wang, Wang
and Li [21] subsequently proved in theory that the ADDA is faster than the SDA-ss and
it is the fastest among doubling algorithms with all possible bilinear transformations.

A common feature we note in all three transformations is the injection property, i.e.,
they are one-to-one maps. This might be unnecessary when used in the doubling algo-
rithms as the core target is mapping the eigenvalues of H in the left complex semi-plane
into the inner of the unit circle. On the other hand, an effective combination of advantages
from the shift-and-shrink transformation (1.5) and the generalized Cayley transformation
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(1.6) might also be feasible. These motivate us to devise the following transformation of
a matrix A

P(A,γ,β,α)=(I−A/γ)(A−βI)(A+αI)−1, (2.1)

where γ, β, α are some positive constants. Obviously, the new transformation (2.1) is
reduced to the generalized Cayley transformation when α>0, β>0, γ→+∞ and to the
shift-and-shrink transformation when α=β=0, γ>0. Therefore, it is a more generalized
transformation. We will show that with some proper positive α, β and γ, the doubling
algorithm based on (2.1) is well defined and capable of preserving the monotonicity of
iteration sequence with the convergence to the required minimal nonnegative solution.
More important, the generalized transform (2.1) equipped with proper parameters, when
applied to doubling algorithm, is superior to the generalized Cayley transformation (1.6)
in terms of the expected convergence rate.

At the end of this section, we present some lemmas associated with M-matrix and
Symplectic forms. The first is well known (see [20] for example).

Lemma 2.1. For a Z-matrix A, the following statements are equivalent:
(a) A is a nonsingular M-matrix.
(b) A is nonsingular and satisfies A−1≥0.
(c) Av>0 for some vector v>0.
(d) All eigenvalues of A have positive real parts.

Moreover, A is an irreducible singular M-matrix if and only if Av=0 for some vector v>0.

The next two are also standard (see respectively [4] and [14] for example).

Lemma 2.2. Let A∈Rn×n be a nonsingular M-matrix, and let B∈Rn×n be a Z-matrix. If B≥A,
then B is also a nonsingular M-matrix.

Lemma 2.3. Let an m×n matrix M be partitioned into a block form

M=

(
A B
C D

)
.

Then

M−1=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
,

where inverses when appearing exist.

The following definition comes from [13].

Definition 2.1. A matrix pencil λL−M with M,L∈R(n+m)×(n+m) is said to be in Symplectic
form if it can be written as

M=

(
E 0
−H I

)
, L=

(
I −G
0 F

)
,

where the blocks ±E∈Rn×n≥0 and ±F∈Rm×m≥0, H∈Rm×n≥0 and G∈Rn×m≥0.
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A result below on Symeplectic form is useful [18, Theorem 6.19].

Lemma 2.4. Let λL−M be a matrix pencil with M,L∈R(n+m)×(n+m), and partition both ma-
trices as

M=(A1 A2), L=(E1 E2),

with A1,E1∈R(n+m)×n and A2,E2∈R(n+m)×m. A Symplectic Form pencil which is right-similar
to λL−M exists if and only if

(E1 A2)

is nonsingular; in this case, (
E −G
−H F

)
=(E1 A2)

−1(A1 E2).

3 Initial process based on the generalized transform

We first review the main framework of doubling algorithm in this section and then show
the well-definition of the initial process.

Define R = D−CΦ and S = A−BΨ, where Φ and Ψ are respectively the minimal
nonnegative solution of the MARE (1.1) and its dual form (1.2). Obviously, (1.1) and (1.2)
are equivalent to

H
(

I
Φ

)
=

(
I
Φ

)
R and H

(
Ψ
I

)
=

(
Ψ
I

)
(−S) (3.1)

with H defined in (1.7). By incorporating the generalized transformation (2.1), we have

(I−H/γ)(H−βI)
(

I
Φ

)
=(H+αI)

(
I
Φ

)
P(R,γ,β,α), (3.2a)

(I−H/γ)(H−βI)
(

Ψ
I

)
Q(S,α,β,γ)=(H+αI)

(
Ψ
I

)
, (3.2b)

with
P(R,γ,β,α)=(I−R/γ)(R−βI)(R+αI)−1

and
Q(S,α,β,γ)=(S−αI)(βI+S)−1(I+S/γ)−1,

which could be further rewritten as

P(H,γ,β,α)
(

I
Φ

)
=

(
I
Φ

)
P(R,γ,β,α) (3.3)

and

P(H,γ,β,α)
(

Ψ
I

)
Q(S,α,β,γ)=

(
Ψ
I

)
, (3.4)
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given all inverses exist and α>0, β>0, γ>0.
Let

M0=

(
E0 0
−H0 I

)
, L0=

(
I −G0
0 F0

)
. (3.5)

Then (3.3) and (3.4), if Lemma 2.4 applicable, could be reduced to

M0

(
I
Φ

)
=L0

(
I
Φ

)
P(R,γ,β,α) (3.6)

and

M0

(
Ψ
I

)
Q(S,α,β,γ)=L0

(
Ψ
I

)
. (3.7)

Also, λL0−M0 is a Symplectic form. In fact, the whole process is valid thanks to the later
Theorem 3.1. Before that, some lemmas will be provided first.

Lemma 3.1. Let

K̃=

(
α∗γI −β∗C−CA+DC

0 β∗γI+β∗A+A2−BC

)
=

(
K̃11 K̃12

0 K̃22

)
(3.8)

and

K̂=

(
γβ∗ I−β∗D−CB+D2 0

β∗B+AB−BD γα∗ I

)
=

(
K̂11 0
K̂21 K̂22

)
(3.9)

with

α∗=max
i
{Aii}, β∗=max

i
{Dii}, γ=max

{α∗2

β∗
,

β∗2

α∗

}
. (3.10)

If K in (1.3) is a nonsingular M-matrix (or an irreducible singular M-matrix). Then K̃w>0 and
K̂w>0 hold true for some positive vector w>=(u>,v>).

Proof. If K is a nonsingular M-matrix, it follows from Lemma 2.1 that there are two posi-
tive vectors u and v such that

Du>Cv and Av>Bu.

Furthermore, let D= β∗ I−D1 and A=α∗ I−A1 with D1 and A1 nonnegative matrices. It
then follows

β∗u>D1u+Cv and α∗v>A1v+Bu. (3.11)

By noting α∗γ/β∗≥max{α∗,β∗} and β∗γ/α∗≥max{α∗,β∗}, we have

K̃11u+K̃12v=α∗γu−β∗Cv+DCv−CAv
=α∗γu−α∗Cv−D1Cv+CA1v
≥max{α∗,β∗}(D1u+Cv)−α∗Cv−D1Cv+CA1v
≥D1(max{α∗,β∗}u−Cv)+CA1v
>0, (3.12)
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and

K̃22v=β∗γv+β∗Av+A2v−BCv

>β∗γv+β∗Bu+α∗2v−2α∗A1v+A2
1v−BCv (3.13)

≥max{α∗,β∗}(A1v+Bu)+α∗2v−2α∗A1v+A2
1v−BCv (3.14)

≥max{α∗,β∗}A1v+α∗(A1v+Bu)−2α∗A1v+A2
1v+max{α∗,β∗}Bu−BCv

>(max{α∗,β∗}−α∗)A1v+α∗Bu+B(max{α∗,β∗}u−Cv)
>0. (3.15)

So K̃w>0 with w>=[u>,v>]>. Analogously, inequalities

K̂11u=β∗γu−β∗Du−CBu+D2u

=β∗γu−β∗D1u−CBu+D2
1u

≥(max{α∗,β∗}−β∗)D1u+C(max{α∗,β∗}v−Bu)+D2
1u

>0

and

K̂21u+K̂22v=α∗γv+β∗Bu+ABu−BDu
=α∗γv+α∗Bu−A1Bu+BD1u
≥A1(max{α∗,β∗}v−Bu)+(α∗+max{α∗,β∗})Bu+BD1u
>0

show that K̂w>0 with w>=[u>,v>]>.
If K is an irreducible singular M-matrix, there are also two positive vectors u and v,

by Lemma 2.1, such that

β∗u=D1u+Cv and α∗v=A1v+Bu.

We can implement the above proof process again, only replacing the inequality with
equality in (3.13), to show the conclusion also holds true.

Remark 3.1. The inequality (3.12) in the above proof implies that K̃12−CA1 is a non-
positive matrix with K̃11u+(K̃12−CA1)v>0. Also, (3.14) indicates K̃22−A2

1 is a Z-matrix
with (K̃22−A2

1)v>0.

To explicitly see the well-definition of the initial process in doubling algorithm, fur-
ther exploration of block structure for γK+K̃ and its inversion is required. Here and after,
all elements of K in (1.3), without loss of generality, are assumed to be non-zeros. Oth-
erwise, tiny quantities will replace zeros and a continuity argument works. Besides, the
division symbol between two nonnegative matrices A and B (i.e., A

B ) means the element-
wise division and maxij{ A

B } is the maximal value of the divided matrix A
B excluded in-

finity.
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Lemma 3.2. If

γ≥max
{

max
ij

{A2
1−BC
A1

}
−β∗−2α∗, max

ij

{CA1−D1C
C

}
−α∗

}
. (3.16)

Then the matrix γK+K̃ is a nonsingular M-matrix with

(γK+K̃)−1=

(
S−1

D
−S−1

D
(K̃12−γC)(γA+K̃22)−1

−S−1
A

B(D+α∗ I)−1 S−1
A

)
, (3.17)

where the Schur complements

SD =γ
(

D+α∗ I+(K̃12−γC)(K̃22+γA)−1B
)

(3.18)

and
SA =γA+K̃22+B(D+α∗ I)−1(K̃12−γC) (3.19)

are nonsingular M-matrices.

Proof. As

γA+K̃22=
(

γ(α∗+β∗)+α∗(β∗+1)
)

I−
(
(γ+2α∗+β∗)A1+BC−A2

1)
)

,

so if

γ≥max
ij

{A2
1−BC
A1

}
−β∗−2α∗,

then γA+K̃22 is a Z-matrix. It from Lemma 3.1 that there is a positive vector v such that
(γA+K̃22)v>0. Thus γA+K̃22 is a nonsingular M-matrix by Lemma 2.1.

Since K̃12−γC=CA1−D1C−(γ+α∗)C, the choice of

γ≥max
ij

{CA1−D1C
C

}
−α∗,

then guarantees its non-positivity. So SD is a Z-matrix. Note that there are two positive
vectors u and v in Lemma 3.1 such that Du>Cv and Av>Bu, then

SD u=γDu−γ2C(γA+K̃22)
−1Bu+α∗γu+γK̃12(γA+K̃22)

−1Bu

>γC(γA+K̃22)
−1(γAv+K̃22v−γBu)+α∗γu+γK̃12(γA+K̃22)

−1Bu

=γC(γA+K̃22)
−1
(

K̃22v+γ(Av−Bu)
)
+α∗γu+γCA1(γA+K̃22)

−1Bu

+γ(K̃12−CA1)(γA+K̃22)
−1Bu

>γC(γA+K̃22)
−1K̃22v+γ2C(γA+K̃22)

−1(Av−Bu)

+γCA1(γA+K̃22)
−1Bu+α∗γu+(K̃12−CA1)v

>0, (3.20)
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where we use the fact γ(Av−Bu)+K̃22v>0 and the non-positivity of K̃12−CA1 in Remark
3.1. Similarly,

SA v=γAv−γB(D+α∗ I)−1Cv+K̃22v+B(D+α∗ I)−1K̃12v

>γB(D+α∗ I)−1(Du+α∗u−Cv)+K̃22v+B(D+α∗ I)−1K̃12v

=γB(D+α∗ I)−1(Du−Cv)+K̃22v+B(D+α∗ I)−1(α∗γu+K̃12v)
>0.

So SD and SA are nonsingular M-matrices.
Finally γK+K̃ is a Z-matrix when γ is selected in (3.16). Furthermore, we have (γK+

K̃)w > 0 with wT = (uT,vT). So γK+K̃ is a nonsingular M-matrix and its inverse form
follows readily from Lemma 2.3.

Lemma 3.3. Let

γ≥max
{

max
ij

{A1B−BD1

B

}
−α∗, β∗−max

ij

{D2
1−CB
D1

}}
. (3.21)

Then the matrix γK−K̂ is non-positive.

Proof. Since

γK−K̂=

(
γD−K̂11 −γC
−γB−K̂21 γA−α∗γI

)
with γD−K̂11=CB−D2

1−(γ−β∗)D1 and γB+K̂21=(γ+α∗)B+BD1−A1B, then the choice
of γ in (3.21) guarantees its non-positivity.

Remark 3.2. If the selected γ in (3.16) or (3.21) is negative, then the choice of γ returns to
(3.10), which always preserves the positivity.

Theorem 3.1. Let α∗=max1≤i≤n Aii, β∗=max1≤i≤n Dii and γ∗ be selected from the maximal
of (3.10), (3.16) and (3.21). Then (3.1) is equivalent to (3.6) and (3.7) with E0≤0, F0≤0, H0≥0
and G0≥0. Moreover, I−G0H0 and I−H0G0 are nonsingular M-matrices.

Proof. According to Lemma 2.4, the Symplectic form in (3.6) and (3.7) satisfies(
E0 −G0
−H0 F0

)
=(γ∗K+K̃)−1(γ∗K−K̂), (3.22)

which together with Lemma 3.2 and Lemma 3.3 yield E0≤0, F0≤0, H0≥0 and G0≥0.
Moreover, if β∗=max1≤i≤n Dii and γ∗ is selected as the maximal among (3.10), (3.16)

and (3.21), then

β∗ I−R=β∗ I−D+CΦ≥0 and γ∗ I−R=γ∗ I−D+CΦ≥0
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with their respective diagonal entries nonzero. So

P(R)=− 1
γ∗

(γ∗ I−R)(β∗ I−R)(α∗ I+R)−1≤0

withP(R)e<0 (e=(1,··· ,1)T) by noting the fact α∗ I+R is a nonsingular M-matrix (σ(R)⊂
C+). Analogously, it is not difficult to show

Q(S)=− 1
γ∗

(α∗ I−S)(β∗ I+S)−1(γ∗ I+S)−1≤0

with Q(S)e<0. Now equating both sides of (3.6) results in

E0=(I−G0Φ)P(R), Φ−H0=F0ΦP(R).

Since P(R)≤0, we can find a positive vector e such that (I−G0Φ)·(−P(R)e)=−E0e>0.
Then I−G0Φ is a nonsingular M-matrix. On the other hand, it follows from F0≤ 0 that
H0≤Φ. So I−G0H0 is a nonsingular M-matrix by Lemma 2.2. Similarly by equating both
sides of (3.7), I−H0G0 is also not hard to shown be a nonsingular M-matrix.

4 Algorithm and convergence

When the initial Symplectic forms in (3.6) and (3.7) are established, the next step is to
construct a iteration sequence {Mk,Lk} for k=0, 1,2,···, satisfying

Mk

(
I
Φ

)
=Lk

(
I
Φ

)
(P(R,γ∗,β∗,α∗))2k

(4.1)

and

Mk

(
Ψ
I

)
(Q(S,α∗,β∗,γ∗))2k

=Lk

(
Ψ
I

)
(4.2)

with

Mk =

(
Ek 0
−Hk I

)
and Lk =

(
I −Gk
0 Fk

)
. (4.3)

To construct the next iteration, multiply Mk and Lk from the left by

M̌=

(
Ek(I−Gk Hk)

−1 0
−Fk(I−HkGk)

−1Hk I

)
and Ľ=

(
I −Ek(I−Gk Hk)

−1Gk
0 Fk(I−HkGk)

−1

)
,

respectively, and then yield Mk+1 = M̌Mk and Lk+1 = ĽLk with both of them having the
same Symplectic structure in (4.3). This process contributes to the following doubling
algorithm with generalized transform (DAGT).

Algorithm 4.1 (DAGT). (1) Select initial matrices E0, F0, H0 and G0 as in Theorem 3.1.
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(2) For k≥0, do following iterations until the convergence.

Fk+1=Fk(I−HkGk)
−1Fk,

Ek+1=Ek(I−Gk Hk)
−1Ek,

Hk+1=Hk+Fk(I−HkGk)
−1HkEk,

Gk+1=Gk+Ek(I−Gk Hk)
−1GkFk.

Theorem 4.1. Let K be defined in (1.3) and parameters α, β, γ be selected in Theorem 3.1. Let Φ,
Ψ be the minimal nonnegative solutions of the MARE and its dual equation, respectively. Then
the matrix sequences {Ek}, {Hk}, {Gk} and {Fk} generated by the DAGT are well defined, and
Ek ≥ 0, Fk ≥ 0, 0≤ Hk ≤ Hk+1≤Φ, 0≤Gk ≤Gk+1≤Ψ and both I−Gk Hk and I−HkGk are
nonsingular M-matrices. Moreover, we have

limsup
k→∞

2k
√
||Φ−Hk||≤ρ(P(R,γ∗,β∗,α∗))·ρ(Q(S,α∗,β∗,γ∗)), (4.4a)

limsup
k→∞

2k
√
||Ψ−Gk||≤ρ(Q(S,α∗,β∗,γ∗))·ρ(P(R,γ∗,β∗,α∗)). (4.4b)

Proof. The proof may be conducted in almost the same way in [13] provided Theorem 3.1
is true.

We subsequently concentrate on the convergence comparison of existing doubling
algorithms. Only comparison of the transformation (2.1) in DAGT with the generalized
Cayley transformation (1.6) is considered since ADDA is the most fast in all existing
doubling-type algorithms.

Theorem 4.2. Let λR and λS be the minimal eigenvalues of two M-matrices R= D−CΦ and
S=A−ΦC, respectively. Define a function

f (α,β,γ) :=ρ(P)·ρ(Q) (4.5)

with P=(γI−R)(βI−R)(αI+R)−1 and Q=(αI−S)(βI+S)−1(γI+S)−1.
Then for α>α∗, β>β∗ and γ>β∗,

(a) f (α,β,γ) equals one when both minimal eigenvalues of R and S are zero (i.e., they are singular
M-matrices).
(b) f (α,β,γ) is a strictly increasing function of α, β, γ and less than one when at least one of R
and S is a nonsingular M-matrix.

Proof. Assume first R and S are irreducible M-matrices. Let λR and λS be the minimal
eigenvalues of R and S, respectively. By Perron-Frobenius theorem [20], we have two
real positive vectors (unique up to a multiple) uR and uS such that

RuR =λR uR , SuS =λS uS .
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It is clear that P and Q are also nonnegative irreducible matrices if α > α∗, β > β∗ and
γ>β∗. Using Perron-Frobenius theorem [20] again we have

ρ(P)=(γ−λR)(β−λR)(α+λR)
−1,

ρ(Q)=(α−λS)(β+λS)
−1(γ+λS)

−1.

Thus

f (α,β,γ)=ρ(P)·ρ(Q)

=
α−λS

α+λR

· β−λR

β+λS

· γ−λR

γ+λS

:=g1(α)·g2(β)·g3(γ).

If R and S are both singular, λR=λS=0 and (a) holds true. If one of R and S is nonsingular,
f (α,β,γ) is a strictly increasing function since g1, g2 and g3 are strictly increasing in α, β,
γ.

For R and S are reducible matrices, we can using a similar way in [21] to reduce such
a case to a irreducible one.

The function (4.5) attains the minimal value at α=α∗, β=β∗ and γ=β∗, which implies
the best convergence of doubling algorithm based on generalized transformation (2.1).
Unlike the exact choice of α and β, the tight choice of γ= β∗ seems hard to guarantees
the well-definition under the frame of M-matrix theory. As a substitution, the choice of
γ=γ∗ in Theorem 3.1 is employed. The practical numerical experiments in next section
show that such a choice in (2.1) could also help DAGT performing no worse than ADDA
with generalized Cayley transformation. The following result further interprets such
numerical behaviors in terms of comparison of convergence rate.

Corollary 4.1. The convergence rate of DAGT based on the generalized transformation (2.1) with
γ=γ∗ is faster than the ADDA with transformation (1.6).

Proof. Let λR and λS be the minimal eigenvalue of two M-matrices R and S, respectively.
Then for γ=γ∗, the convergence rate of DAGT based on the generalized transformation
(2.1) is

rdagt =
α∗−λS

α∗+λR

· β
∗−λR

β∗+λS

· γ
∗−λR

γ∗+λS

. (4.6)

On the other hand, we have known the convergence rate of the ADDA is

radda =
α∗−λS

α∗+λR

· β
∗−λR

β∗+λS

. (4.7)

Then we have
rdagt

radda
=

γ∗−λR

γ∗+λS

=1− λR +λS

γ∗+λS

<1,

which shows the convergence rate of doubling algorithm with transformation (2.1) is
always less than that of ADDA with transformation (1.6).
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5 Numerical experiments

We compare performances of the new algorithm DAGT with those of ADDA in this sec-
tion. It is seen that the DAGT shares the same complexity of ADDA at each iterative
step. Thus we only need to compare the decrease of the equation residual as the iter-
ations increase. Our computations is implemented in MATLAB with a machine error
error≈1.11×10−16. We take α=α∗, β=β∗ and γ=γ∗ The stop criterion is NRes< tol with

NRes=
||Φ̂CΦ̂−AΦ̂−Φ̂D+B||1

||Φ̂||1(||Φ̂||1||C||1+||A||1+||D||1)+||B||1
,

tol = 10−14, and Φ̂ the approximation of Φ, derived by the new method or the ADDA
when termination occurs.

Example 5.1. Our first example is taken from Examples 1 in [21]. Here coefficient matrices
are

D=

(
3 −1
−1 3

)
, C=

(
1 1
1 1

)
, A= ξ∗D, B= ξ∗C,

with ξ a positive constant. The MARE lies in the non-critical case when ξ=1.5 and close
to the critical case when ξ=1+10−6. The corresponding minimal nonnegative solution is

X∗=
1
2

(
1 1
1 1

)
.

The convergence histories for ADDA and our DAGT are plotted in Fig. 1 the left for ξ=1.5
and the right for ξ = 1+10−6. Obviously, both two algorithms converged quadratically
when MARE was far from the critical case and ours with the selected γ∗≈6.75 was faster
than the ADDA. However, their numerical performances became linearly as the right
plot shown where the MARE was very close to the critical case. Again, our DAGT with
the selected γ∗≈ 3.00 converged always faster than ADDA did. Especially, our method
seemed attaining the smaller residual level than the ADDA did in the last step, although
both of them retained almost the same linear convergence rate.

Example 5.2. Consider the MARE arises from a problem in neutron transport theory [16].
Matrices B and C are of rank-one forms

B= eeT, C=qqT,

with
e=(1,1,··· ,1)T, q=(q1,q2,··· ,qn)

T, qi =
ci

2ωi
, i=1,2,··· ,n,

and A and D are of diagonal-plus-rank-one forms

A=∆−eqT, D=Γ−qeT,
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Figure 1: Normalized residual histories for ξ=1.5 (left) and ξ=1+10−6 (right) in Example 5.1.
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Figure 2: Normalized residual histories for c=0.5, α=0.5 (left) and c=1−10−8, α=10−8 (right) in Example
5.2.

with
∆=Diag(δ1,δ2,··· ,δn), Γ=Diag(γ1,γ2,··· ,γn),

δi =
1

cωi(1+α)
, γi =

1
cωi(1−α)

, i=1,2,··· ,n,

and α∈ [0,1), c∈ (0,1]. The two parameter sets {ωi}n
i=1 and {ci}n

i=1 denote the nodes and
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weights, respectively, of the Gauss-Legendre formula satisfying 0<ωn< ···<ω1<1, and

n

∑
i=1

ci =1

with ci >0.
We set n=27=128 and take the non-critical case with (c=0.5, α=0.5) and the approach-

ing critical case with (c=1−10−8,α=10−8) to test numerical performances of both algo-
rithms. The corresponding normalized residual histories are plotted in Fig. 2. Clearly, the
left in Fig. 2 showed that both ADDA and DAGT with γ∗≈14413.7 possessed quadrati-
cally convergent behaviors and DAGT attained less residual than ADDA did. Similarly,
they degenerated to be linearly convergent when MARE became close to the critical case
in which the DAGT with selected γ∗≈15796.3 was still superior to the ADDA as the right
plot indicated.

Example 5.3. This example comes from a positive recurrent Markov chain with non-
square coefficient matrices in fluid model, originally from [3], see also in [17]. Here

D=

(
28 −22
−21 27

)
, A=

 26 −22 −2
−21 24 −1
−21 −1 24

, B=13,2, C=2BT,

with 1 a matrix of all elements ones. The minimal nonnegative solution in this example
is

X∗=

0.163265306122449 0.170068027210884
0.163265306122449 0.170068027210884
0.163265306122449 0.170068027210884


and eigenvalues of R = D−CX∗ are 4 and 49. Normalized residual histories for both
algorithm are plotted in Fig. 3, which showed that the DAGT with selected γ∗ ≈ 30.15
converged faster than ADDA did.

6 Conclusions

We have devised a new transformation in this paper, generalizing the shift-and-shrink
transformation and the generalized Cayley transformation. The doubling algorithm with
generalized transform, referred as DAGT, was then presented for computing the mini-
mal nonnegative solution of the nonsymmetric algebraic Riccati equation with M-matrix,
showing theoretically and numerically faster convergence than the existing doubling al-
gorithms.
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Figure 3: Normalized residual history in Example 5.3.
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