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1 Introduction

During the past three decades, the subject of fractional calculus (that is, calculus of inte-
grals and derivatives of arbitrary order) has gained considerable popularity and impor-
tance, mainly due to its demonstrated applications in numerous diverse and widespread
fields in science and engineering. For example, fractional calculus has been successfully
applied to problems in system biology, physics, chemistry and biochemistry, hydrology,
medicine and finance. In many cases these new fractional-order models are more ade-
quate than the previously used integer-order models, because fractional derivatives and
integrals enable the description of the memory and hereditary properties inherent in var-
ious materials and processes that are governed by anomalous diffusion. Hence, there is
a growing need to find the solution behaviour of these fractional differential equations.
However, the analytic solutions of most fractional differential equations generally can-
not be obtained. As a consequence, approximate and numerical techniques are playing
an important role in identifying the solution behaviour of such fractional equations and
exploring their applications.

In this article, we are concerned with the numerical study of the following nonlinear
fractional integro-differential equation:

Dγy(t)= f̂ (t,y(t))+
∫ t

0
K̂(t,τ,y(τ))dτ+ ĝ(t), 0<γ<1, t∈ [0,T], (1.1a)

y(0)=y0, (1.1b)

where 0<γ<1, f̂ : [0,T]×R→R, kernel function K̂ : S×R→R (where S :={(t,τ) : 0≤τ≤
t≤ T}) and ĝ(t) : [0,T]→R are known, y(t) is the unknown function to be determined.
Dγ denotes fractional derivative of fractional order γ defined as Caputo derivative.

It will always be assumed that problem (1.1) possesses a unique solution, namely, the
given functions f̂ (t,y), K̂(t,τ,y) and ĝ(t) will be subject to the conditions that ĝ∈C[0,T],
f̂ is continuous for all x and all u and satisfies the (uniform) Lipschitz conditions:

| f̂ (t,y1)− f̂ (t,y2)|≤M|y1−y2|, (1.2)

K̂ is continuous for all S, K̂∈Hm for y and satisfies the Lipschitz conditions:

|K̂(t,τ,y1)−K̂(t,τ,y2)|≤L0|y1−y2|, (1.3a)∣∣∣∂iK̂(t,τ,y1)

∂yi − ∂iK̂(t,τ,y2)

∂yi

∣∣∣≤Li|y1−y2|, i=1,··· ,m, (1.3b)

for all t∈ [0,T], (t,τ)∈S and y1, y2∈R, with Lipschitz constants M and Li being indepen-
dent of y1 and y2.

Let Γ(·) denote the Gamma function. For any positive integer n and n−1<γ<n, the
Caputo derivative, Riemann-Liouville derivative and fractional integral of order γ are
respectively defined as:
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left Caputo derivative:

C
a Dγ

t u(t)=
1

Γ(n−γ)

∫ t

0

u(n)(s)
(t−s)(γ−n+1)

ds, t∈ [a,b], (1.4)

right Caputo derivative:

C
t Dγ

b u(t)=
(−1)−n

Γ(n−γ)

∫ b

t

u(n)(s)
(t−s)(γ−n+1)

ds, t∈ [a,b]. (1.5)

Iγ denotes the Riemann-Liouville fractional integral of order γ and is defined as

Iγu(t)=
1

Γ(γ)

∫ t

a
(t−s)γ−1u(s)ds, (1.6)

and we have

Iγ(C
a Dγ

t u(t))=u(t)−
n−1

∑
k=0

u(k)(a)
tk

k!
. (1.7)

The numerical solution of fractional differential equations has attached considerable
attention from many researchers and some reliable and efficient techniques are developed
to solve fractional differential equations [1, 2], such as generalized differential transform
method [3], variational iteration method [4]. Moreover,orthogonal functions also play
an important role in finding numerical solutions for fractional differential equations [5],
such as Block pulse functions [6], Bernstein polynomials [7], shifted Legendre polyno-
mials [8], Chebyshev wavelets [9], Legendre wavelets [10], etc. However, many of these
methods cannot be applied to nonlinear FDEs. Further, to the authors knowledge, a sys-
tematic convergence analysis of these methods does not appear in the literature. It is
well known that the spectral methods offer exponential rates of convergence/spectral
accuracy for smooth problems in simple geometries.

This paper presents a numerical solution scheme for a class of fractional integro-
differential equations (FIDEs). In this approach, the FIDEs are expressed in terms of
Caputo type fractional derivative. Properties of the Caputo derivative allow one to re-
duce the FIDEs into a Volterra type integral-differential equations with singular kernel.
Once this is done, a number of numerical schemes developed for Volterra type integral
equation can be applied to find numerical solution of FIDEs. Recently, we provided Ja-
cobi spectral-collocation method or spectral Petrov-Galerkin method [12–14] and conver-
gence analysis for integro-differential equations. The main objective of this paper is to
convert the nonlinear FIDEs into equivalent nonlinear integral-differential equations of
Volterra type with singular kernel and develop new effective numerical methods and
supporting analysis, based on the spectral Jacobi-collocation methods. The convergence
of our proposed numerical methods are also investigated. Numerical experiments are
carried out in support of our theoretical analysis. We also emphasise that the numerical
methods we develop are applicable for many other types of fractional partial differential
equations.
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This paper is organized as follows. In Section 2, We convert the fractional integro-
differential equations into equivalent integral-differential equations of Volterra type with
singular kernel using the properties of the Caputo derivative and propose a spectral
Jacobi-collocation approximation for nonlinear integro-differential equations of Volterra
type. Some lemmas useful for establishing the convergence results will be provided in
Section 3. The convergence analysis will be carried out in Section 4 and Section 5 contains
numerical results, which will be used to verify the theoretical results obtained in Section
4.

2 Jacobi-collocation method

Let ωα,β(x)=(1−x)α(1+x)β be a weight function in the usual sense, for α,β>−1. As de-
fined in [15–17], the set of Jacobi polynomials {Jα,β

n (x)}∞
n=0forms a complete L2

ωα,β(−1,1)
-orthogonal system, where L2

ωα,β(−1,1) is a weighted space defined by

L2
ωα,β(−1,1)={v : v is measurable and ‖v‖ωα,β <∞},

equipped with the norm

‖v‖ωα,β =

(∫ 1

−1
|v(x)|2ωα,β(x)dx

) 1
2

,

and the inner product

(u,v)ωα,β =
∫ 1

−1
u(x)v(x)ωα,β(x)dx, ∀u,v∈L2

ωα,β(−1,1).

For a given N≥0, we denote by {θk}N
k=0 the Legendre Gauss points and by {ωk}N

k=0
the corresponding Legendre weights (i.e., Jacobi weights {ω0,0

k }N
k=0). Then, the Legendre

Gauss integration formula is

∫ 1

−1
f (x)dx≈

N

∑
k=0

f (θk)ωk. (2.1)

Similarly, we denote by {θ̃k}N
k=0 the Jacobi Gauss points and by {ωα,β

k }N
k=0 the correspond-

ing Jacobi weights. Then, the Jacobi Gauss integration formula is

∫ 1

−1
f (x)ωα,β(x)dx≈

N

∑
k=0

f (θ̃k)ω
α,β
k . (2.2)

For a given positive integer N, we denote the collocation points by {xα,β
i }N

i=0, which
is the set of (N+1) Jacobi Gauss points, corresponding to the weight ωα,β(x). Let PN
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denote the space of all polynomials of degree not exceeding N. For any v∈C[−1,1], we
can define the Lagrange interpolating polynomial Iα,β

N v∈PN , satisfying

Iα,β
N v(xi)=v(xi), 0≤ i≤N.

The Lagrange interpolating polynomial can be written in the form

Iα,β
N v(x)=

N

∑
i=0

v(xi)Fi(x), 0≤ i≤N,

where Fi(x) is the Lagrange interpolation basis function associated with {xi}N
i=0.

For the sake of applying the theory of orthogonal polynomials, we use the change of
variable

t=
1
2

T(1+x), x=
2t
T
−1,

τ=
1
2

T(1+s), s=
2τ

T
−1,

and let

u(x)=y
(1

2
T(1+x)

)
, g(x)= ĝ

(1
2

T(1+x)
)

,

f (x)= f̂
(1

2
T(1+x)

)
, K(x,s)=

T
2

K̂
(1

2
T(1+x),

1
2

T(1+s)
)

.

The nonlinear fractional integro-differential equation in one dimension (1.1) is of the form

Dγu(x)= f (x,u(x))+
∫ x

−1
K(x,s,u(s))ds+g(x), 0<γ<1, x∈ I=[−1,1], (2.3a)

u(−1)=u−1=y0. (2.3b)

In order that the Jacobi collocation methods are carried out naturally, using (1.7), we
restate (2.3) as

Dγu(x)= f (x,u(x))+
∫ x

−1
K(x,s,u(s))ds+g(x), 0<γ<1, x∈ I, (2.4a)

1
Γ(γ)

∫ x

−1
(x−s)γ−1Dγu(s)ds=u(x)−u(−1). (2.4b)

Let −µ = γ−1. Set the collocation points as the set of (N+1) Jacobi Gauss points,
{x−µ,−µ

i }N
i=0 associated with ω−µ,−µ. Assume that Eq. (2.4) holds at x−µ,−µ

i :

Dγu(x−µ,−µ
i )= f (x−µ,−µ

i ,u(x−µ,−µ
i ))+

∫ x−µ,−µ
i

−1
K(x−µ,−µ

i ,s,u(s))ds+g(x−µ,−µ
i ), (2.5a)

u(x−µ,−µ
i )=u(−1)+

1
Γ(γ)

∫ x−µ,−µ
i

−1
(x−µ,−µ

i −s)−µDγu(s)ds. (2.5b)
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The main difficulty in obtaining high order of accuracy is to compute the integral term in
(2.5). In particular, for small values of x−µ,−µ

i , there is little information available for u(s).
To overcome this difficulty, we will transfer the integral interval [−1,x−µ,−µ

i ] to a fixed
interval [−1,1] then make use some appropriate quadrature rule. More precisely, we first
make a simple linear transformation:

s(x,θ)=
1+x

2
θ+

x−1
2

, −1≤ θ≤1. (2.6)

Then (2.5) becomes

Dγu(x−µ,−µ
i )= f (x−µ,−µ

i ,u(x−µ,−µ
i ))+

∫ 1

−1
K̃(x−µ,−µ

i ,s(x−µ,−µ
i ,θ),u(s(x−µ,−µ

i ,θ)))dθ

+g(x−µ,−µ
i ), (2.7a)

u(x−µ,−µ
i )=u(−1)+

1
Γ(γ)

(
1+x−µ,−µ

i
2

)γ∫ 1

−1
(1−θ)−µDγu(s(x−µ,−µ

i ,θ))ds, (2.7b)

where

K̃(x−µ,−µ
i ,s(x−µ,−µ

i ,θ),u(s(x−µ,−µ
i ,θ))

=
1+x−µ,−µ

i
2

K(x−µ,−µ
i ,s(x−µ,−µ

i ,θ),u(s(x−µ,−µ
i ,θ)). (2.8)

Next, using a (N+1)-point Gauss quadrature formula relative to Legendre weights
{ωk}N

k=0 (i.e., Jacobi weights {ω0,0
k }N

k=0), the integration term in (2.7a) can be approxi-
mated by ∫ 1

−1
K̃(x−µ,−µ

i ,s(x−µ,−µ
i ,θ),u(s(x−µ,−µ

i ,θ)))dθ

=
N

∑
k=0

K̃(x−µ,−µ
i ,s(x−µ,−µ

i ,θk),u(s(x−µ,−µ
i ,θk))),ω

0,0
k , (2.9)

where the set {θk}N
k=0 is the Legendre Gauss points corresponding Legendre weight

{ω0,0
k }N

i=0. Similarly, the integration term in (2.7b) can be approximated by

∫ 1

−1
(1−θ)−µDγu(s(x−µ,−µ

i ,θ))dθ=
N

∑
k=0

Dγu(s(x−µ,−µ
i , θ̃k))ω

−µ,0
k , (2.10)

where {θ̃k}N
k=0 is the set of Jacobi Gauss points corresponding to the weight {ω−µ,0

k }N
k=0.

We use ui, uγ
i , 0≤ i≤N to approximate the function value u(x−µ,−µ

i ), Dγu(x−µ,−µ
i ),

0≤ i≤N and use

U(x)=
N

∑
j=0

ujFj(x), Uγ(x)=
N

∑
j=0

uγ
j Fj(x), (2.11)
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where Fj(x) is the Lagrange interpolation basis function associated with {x−µ,−µ
i }N

i=0
which is the set of (N+1) Jacobi Gauss points. Combining the above equation and (2.7)
yields

uγ
i = f (x−µ,−µ

i ,ui)+

(
N

∑
k=0

K̃(x−µ,−µ
i ,s(x−µ,−µ

i ,θk),
N

∑
j=0

ujFj(s(x−µ,−µ
i ,θk)))ω

0,0
k

)
+g(x−µ,−µ

i ), (2.12a)

ui =u(−1)+
1

Γ(γ)

(
1+x−µ,−µ

i
2

)γ N

∑
j=0

uγ
j

(
N

∑
k=0

Fj(s(x−µ,−µ
i , θ̃k))ω

−µ,0
k

)
. (2.12b)

The numerical scheme (2.12) leads to a nonlinear system for {ui}N
i=0 and {uγ

i }N
i=0, we can

get the values of {ui}N
i=0 and {uγ

i }N
i=0 by solving the system of nonlinear equations using

a proper solver (e.g., Newton method).

3 Some useful lemmas

In this section, we will provide some elementary lemmas, which are important for the
derivation of the main results in the subsequent section. Let I :=(−1,1).

Lemma 3.1 (see [18]). Assume that an (N+1)-point Gauss quadrature formula relative to the
Jacobi weight is used to integrate the product uϕ, where u∈Hm(I) with I for some m≥ 1 and
ϕ∈PN . Then there exists a constant C independent of N such that∣∣∣∣∫ 1

−1
u(x)ϕ(x)dx−(u,ϕ)N

∣∣∣∣≤CN−m|u|Hm,N
ωα,β (I)‖ϕ‖L2

ωα,β (I), (3.1)

where

|u|Hm,N
ωα,β (I)=

 m

∑
j=min(m,N+1)

‖u(j)‖2
L2

ωα,β (I)

1/2

,

and

(u,ϕ)N =
N

∑
j=0

u(xj)ϕ(xj)ωj. (3.2)

Lemma 3.2 (see [18, 19]). Assume that u∈Hm,N
ω−µ,−µ(I) and denote by I−µ,−µ

N u its interpolation
polynomial associated with the (N+1) Jacobi-Gauss points {xj}N

j=0, namely,

I−µ,−µ
N u=

N

∑
i=0

u(xi)F(xi).
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Then the following estimates hold:

‖u− I−µ,−µ
N u‖L2

ω−µ,−µ (I)≤CN−m|u|Hm,N
ωα,β (I), (3.3a)

‖u− I−µ,−µ
N u‖L∞(I)≤


CN1−µ−m|u|Hm,N

ωc (I), 0≤µ<
1
2

,

CN
1
2−m logN|u|Hm,N

ωc (I),
1
2
≤µ<1,

(3.3b)

where ωc =ω−
1
2 ,− 1

2 denotes the Chebyshev weight function.

Lemma 3.3 (see [20]). Assume that {Fj(x)}N
j=0 are the N−th degree Lagrange basis polynomials

associated with the Gauss points of the Jacobi polynomials. Then,

‖Iα,β
N ‖L∞(I)≤ max

x∈[−1,1]

N

∑
j=0
|Fj(x)|=

O(logN), −1<α,β≤−1
2

,

O(Nγ+ 1
2 ), γ=max(α,β), otherwise.

(3.4)

Lemma 3.4 (Gronwall inequality, see Lemma 7.1.1 in [21]). Suppose L≥0, 0<µ<1, u and
v are a non-negative, locally integrable functions defined on [−1,1] satisfying

u(x)≤v(x)+L
∫ x

−1
(x−τ)−µu(τ)dτ.

Then there exists a constant C=C(µ) such that

u(x)≤v(x)+CL
∫ x

−1
(x−τ)−µv(τ)dτ for −1≤ x<1.

If a nonnegative integrable function E(x) satisfies

E(x)≤L
∫ x

−1
E(s)ds+ J(x), −1< x≤1,

where J(x) is an integrable function, then

‖E‖L∞(−1,1)≤C‖J‖L∞(−1,1), (3.5a)

‖E‖Lp

ω−α,β (−1,1)≤C‖J‖Lp

ω−α,β (−1,1), q≥1. (3.5b)

Lemma 3.5 (see [22, 23]). For a nonnegative integer r and κ ∈ (0,1), there exists a constant
Cr,κ>0 such that for any function v∈Cr,κ([−1,1]), there exists a polynomial function TNv∈PN
such that

‖v−TNv‖L∞(I)≤Cr,κ N−(r+κ)‖v‖r,κ, (3.6)

where ‖·‖r,κ is the standard norm in Cr,κ([−1,1]), TN is a linear operator from Cr,κ([−1,1]) into
PN , as stated in [22, 23].
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Lemma 3.6 (see [24]). Let κ∈ (0,1) and letM be defined by

(Mv)(x)=
∫ x

−1
(x−τ)−µK(x,τ)v(τ)dτ.

Then, for any function v∈C([−1,1]), there exists a positive constant C such that

|Mv(x′)−Mv(x′′)|
|x′−x′′| ≤C max

x∈[−1,1]
|v(x)|,

under the assumption that 0<κ<1−µ, for any x′,x′′∈ [−1,1] and x′ 6= x′′. This implies that

‖Mv‖0,κ≤C max
x∈[−1,1]

|v(x)|, 0<κ<1−µ.

Lemma 3.7 (see [25]). For every bounded function v, there exists a constant C, independent of
v, such that

sup
N

∥∥∥ N

∑
j=0

v(xj)Fj(x)
∥∥∥

L2
ωα,β (I)

≤C max
x∈[−1,1]

|v(x)|,

where Fj(x), j = 0,1,··· ,N, are the Lagrange interpolation basis functions associated with the
Jacobi collocation points {xj}N

j=0.

Lemma 3.8 (see [26]). For all measurable functions f ≥ 0, the following generalized Hardy’s
inequality (∫ b

a
|(T f )(x)|qu(x)dx

)1/q

≤
(∫ b

a
| f (x)|pv(x)dx

)1/p

holds if and only if

sup
a<x<b

(∫ b

x
u(t)dt

)1/q(∫ x

a
v1−p′(t)dt

)1/p′

<∞, p′=
p

p−1
,

for the case 1< p≤q<∞. Here, T is an operator of the form

(T f )(x)=
∫ x

a
k(x,t) f (t)dt

with k(x,t) a given kernel, u, v are nonnegative weight functions and −∞≤ a<b≤∞.

4 Convergence analysis

This section is devoted to provide a convergence analysis for the numerical scheme. The
goal is to show that the rate of convergence is exponential, i.e., the spectral accuracy
can be obtained for the proposed approximations. Firstly, we will carry our convergence
analysis in L∞ space.
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Theorem 4.1. Let u(x) and uγ(x) be the exact solution of the fractional integro-differential
equation (2.3), which is assumed to be sufficiently smooth. Assume that U(x) and Uγ(x) are
obtained by using the spectral collocation scheme (2.12) together with a polynomial interpolation
(2.11). If γ associated with the weakly singular kernel satisfies 0<γ<1 and u∈Hm+1

ω−µ,−µ(I), then

‖Uγ(x)−uγ(x)‖L∞(I)

≤


CNγ− 1

2−m
(

K∗+N
1
2U
)

,
1
2
<γ<1,

CN−m logN
(

K∗+N
1
2U
)

, 0<γ≤ 1
2

,
(4.1a)

‖U(x)−u(x)‖L∞(I)

≤


CNγ− 1

2−m
(

K∗+N
1
2U
)

,
1
2
<γ<1,

CN−m logN
(

K∗+N
1
2U
)

, 0<γ≤ 1
2

,
(4.1b)

provided that N is sufficiently large, where C is a constant independent of N,

K∗= max
x∈[−1,1]

|K(x,s,u(s))|Hm,N
ω0,0 (I), (4.2a)

U= |uγ|Hm,N
ωc (I)+|u|Hm,N

ωc (I). (4.2b)

Proof. The numerical scheme (2.12) can be written as

uγ
i = f (x−µ,−µ

i ,ui)+
∫ 1

−1
K̃(x−µ,−µ

i ,s(x−µ,−µ
i ,θ),

N

∑
j=0

ujFj(s(x−µ,−µ
i ,θ)))ds

+g(x−µ,−µ
i )+ Ii,1, (4.3a)

ui =u−1+
1

Γ(γ)

(
1+x−µ,−µ

i
2

)γ∫ 1

−1
(1−θ)−µUγ(s)ds, (4.3b)

where

Ii,1=
N

∑
k=0

K̃

(
x−µ,−µ

i ,s(x−µ,−µ
i ,θk),

N

∑
j=0

ujFj(s(x−µ,−µ
i ,θk))

)
ω0,0

k

−
∫ 1

−1
K̃(x−µ,−µ

i ,s(x−µ,−µ
i ,θ),U(s(x−µ,−µ

i ,θ)))ds. (4.4)

Using the integration error estimates from Jacobi-Gauss polynomials quadrature in
Lemma 3.1, we have

|Ii,1(x)|≤CN−m|K̃(x,s(x,θ),U(s(x,θ)))|Hm,N
ω0,0 (I)

≤CN−m
(
|K(x,s,u(s))|Hm,N

ω0,0 (I)+|K(x,s,U(s))−K(x,s,u(s))|Hm,N
ω0,0 (I)

)
. (4.5)
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Using the definition of |·|Hm,N(I) in (3.2) and the Lipschitz conditions (1.3), we have

|K(x,s,U(s))−K(x,s,u(s))|Hm,N
ω0,0 (I)

=

 m

∑
j=min(m,N+1)

∥∥∥∥∂jK(x,s,U)

∂U j − ∂jK(x,s,u)
∂uj

∥∥∥∥2

L2
ω0,0 (I)

 1
2

≤
m

∑
j=min(m,N+1)

Li‖U−u‖L2
ω0,0 (I)

≤C‖U−u‖L2
ω0,0 (I) . (4.6)

Then (4.5) can be rewritten as

|Ii,1(x)|≤CN−m|K(x,s(x,θ),U(s(x,θ)))|Hm,N
ω0,0 (I)

≤CN−m
(
|K(x,s,u(s))|Hm,N

ω0,0 (I)+‖U−u‖L2
ω0,0 (I)

)
≤CN−m

(
|K(x,s,u(s))|Hm,N

ω0,0 (I)+‖U−u‖L∞(I)

)
. (4.7)

It follows from (2.5) and (2.7) that

uγ
i = f (x−µ,−µ

i ,ui)+
∫ x−µ,−µ

i

−1
K(x−µ,−µ

i ,s,U(s))ds+g(x−µ,−µ
i )+ Ii,1, (4.8a)

ui =u−1+
1

Γ(γ)

∫ x−µ,−µ
i

−1
(x−µ,−µ

i −s)−µUγ(s)ds. (4.8b)

Multiplying Fi(x) on both sides of (4.8) and summing up from 0 to N yield

Uγ(x)= I−µ,−µ
N f (x,U(x))+ I−µ,−µ

N

∫ x

−1
K(x,s,U(s))ds+ I−µ,−µ

N g(x)+ J1(x), (4.9a)

U(x)= I−µ,−µ
N (u−1)+ I−µ,−µ

N

(
1

Γ(γ)

∫ x

−1
(x−s)−µUγ(s)ds

)
, (4.9b)

where

J1(x)=
N

∑
i=0

Ii,1Fi(x).

It follows from (2.4) that

Uγ(x)= I−µ,−µ
N f (x,U(x))+ I−µ,−µ

N

(∫ x

−1
K(x,s,U(s))ds

)
+ I−µ,−µ

N

(
Dγu− f (x,u)−

∫ x

−1
K(x,s,u(s))ds

)
+ J1(x)
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= I−µ,−µ
N Dγu+ I−µ,−µ

N ( f (x,U(x))− f (x,u(x))

+ I−µ,−µ
N

∫ x

−1
(K(x,s,U(s))−K(x,s,u(s)))ds+ J1(x), (4.10a)

U(x)= I−µ,−µ
N (u−1)+ I−µ,−µ

N

(
1

Γ(γ)

∫ x

−1
(x−s)−µUγ(s)ds

)
. (4.10b)

Let e and eγ denotes the error function,

e(x)=U(x)−u(x), eγ(x)=Uγ(x)−uγ(x),

using the Lipschitz conditions, which gives

|eγ(x)|≤MI−µ,−µ
N |U(x)−u(x)|+L0 I−µ,−µ

N

∫ x

−1
|U(s)−u(s)|ds+|J1(x)|+|J2(x)|

≤M|e(x)|+L0

∫ x

−1
|e(s)|ds+|J1(x)|+|J2(x)|+|J3(x)|+|J4(x)|, (4.11a)

e(x)=
1

Γ(γ)

∫ x

−1
(x−s)−µeγ(s)ds+ J5(x)+ J6(x), (4.11b)

and

J2(x)= I−µ,−µ
N uγ(x)−uγ(x),

J3(x)=MI−µ,−µ
N e(x)−Me(x),

J4(x)=L0 I−µ,−µ
N

∫ x

−1
e(s)ds−L0

∫ x

−1
e(s)ds,

J5(x)= I−µ,−µ
N u(x)−u(x),

J6(x)= I−µ,−µ
N

(
1

Γ(γ)

∫ x

−1
(x−s)−µeγ(s)ds

)
− 1

Γ(γ)

∫ x

−1
(x−s)−µeγ(s)ds,

using the Dirichlet’s formula which states∫ x

−1

∫ τ

−1
Φ(τ,s)dsdτ=

∫ x

−1

∫ x

s
Φ(τ,s)dτds

provided the integral exists, we obtain

eγ(x)≤M
1

Γ(γ)

∫ x

−1
(x−s)−µ|eγ(s)|ds

+L0

∫ x

−1

(∫ τ

s

1
Γ(γ)

(τ−s)−µds
)
|eγ(τ)|dτ

+M|J5(x)|+M|J6(x)|+L0

∫ x

−1
(J5(s)+ J6(s))ds

+|J1(x)|+|J2(x)|+|J3(x)|+|J4(x)|. (4.12)
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It follows from the Gronwall inequality in Lemma 3.4 that

‖eγ(x)‖L∞(I)≤C
6

∑
i=1
‖Ji‖L∞(I), (4.13a)

‖e(x)‖L∞(I)≤C
6

∑
i=1
‖Ji‖L∞(I). (4.13b)

Using Lemma 3.3 and the estimates (4.7), we have

‖J1‖L∞(I)≤


CN

1
2−µ max0≤i≤N |Ii,1|, 0<µ<

1
2

,

ClogNmax0≤i≤N |Ii,1|,
1
2
≤µ<1,

≤


CN

1
2−µ−m(maxx∈[−1,1] |K(x,s,u(s))|Hm,N

ω0,0 (I)+‖e
γ(x)‖L∞(I)), 0<µ<

1
2

,

CN−m logN(maxx∈[−1,1] |K(x,s,u(s))|Hm,N
ω0,0 (I)+‖e

γ(x)‖L∞(I)),
1
2
≤µ<1.

(4.14)

Due to Lemma 3.2,

‖J2‖L∞(I)≤


CN1−µ−m|uγ|Hm,N

ωc (I), 0<µ<
1
2

,

CN
1
2−m logN|uγ|Hm,N

ωc (I),
1
2
≤µ<1,

(4.15a)

‖J5‖L∞(I)≤


CN1−µ−m|u|Hm,N

ωc (I), 0<µ<
1
2

,

CN
1
2−m logN|u|Hm,N

ωc (I),
1
2
≤µ<1.

(4.15b)

By virtue of Lemma 3.2 (3.3b) with m=1,

‖J4‖L∞(I)≤


CN−µ|

∫ x
−1 e(s)ds|H1

ωc (I)≤CN−µ‖e‖L∞(I), 0<µ<
1
2

,

CN−
1
2 |
∫ x
−1 e(s)ds|H1

ωc (I)≤CN−µ‖e‖L∞(I),
1
2
≤µ<1,

≤


CN−µ

(
‖eγ‖L∞(I)+‖J3‖L∞(I)+‖J5‖L∞(I)

)
, 0<µ<

1
2

,

CN−
1
2

(
‖eγ‖L∞(I)+‖J3‖L∞(I)+‖J5‖L∞(I)

)
,

1
2
≤µ<1.

(4.16)

We now estimate the term J6(x). It follows from Lemma 3.5 and Lemma 3.6, that

‖J6‖L∞(I)=‖(I−µ,−µ
N − I)Meγ‖L∞(I)

=‖(I−µ,−µ
N − I)(Meγ−TNMeγ)‖L∞(I)

≤
(

1+‖I−µ,−µ
N ‖L∞(I)

)
CN−k‖Meγ‖0,κ

≤


CN

1
2−µ−κ‖eγ‖L∞(I), 0<µ<

1
2

,

CN−κ logN‖eγ‖L∞(I),
1
2
≤µ<1,

(4.17)
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where in the last step we used Lemma 3.6 under the following assumption
1
2
−µ<κ<1−µ, when 0<µ<

1
2

,

0<κ<1−µ, when
1
2
≤µ<1.

It’s easy to obtain that

J3(x)=MJ6(x)+MI−µ,−µ
N (J5(x)+ J6(x))−(J5(x)+ J6(x)), (4.18)

we have

‖J3‖L∞(I)≤


CN

1
2−µ−κ‖eγ‖L∞(I), 0<µ<

1
2

,

CN−κ logN‖eγ‖L∞(I),
1
2
≤µ<1.

(4.19)

Provided that N is sufficiently large. Combining (4.14), (4.15), (4.16) and (4.17) gives

‖Uγ(x)−uγ(x)‖L∞(I)

≤


CN

1
2−µ−m

(
maxx∈[−1,1] |K(x,s,u(s))|Hm,N

ω0,0 (I)+N
1
2 (|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I))

)
, 0<µ<

1
2

,

CN−m logN
(

maxx∈[−1,1] |K(x,s,u(s))|Hm,N
ω0,0 (I)+N

1
2 (|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I))

)
,

1
2
≤µ<1,

‖U(x)−u(x)‖L∞(I)

≤


CN

1
2−µ−m

(
maxx∈[−1,1] |K(x,s,u(s))|Hm,N

ω0,0 (I)+N
1
2 (|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I))

)
, 0<µ<

1
2

,

CN−m logN
(

maxx∈[−1,1] |K(x,s,u(s))|Hm,N
ω0,0 (I)+N

1
2 (|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I))

)
,

1
2
≤µ<1.

Using γ=1−µ, we have the desired estimates (4.1) and (4.1b).

Next, we will give the error estimates in L2
ω−µ,−µ space.

Theorem 4.2. If the hypotheses given in Theorem 4.1 hold, then

‖Uγ(x)−uγ(x)‖L2
ω−µ,−µ (I)

≤


CN−m

(
N

1
2−µ−κK∗+N1−µ−κU+V

)
,

1
2
<γ<1,

CN−m
(

N
1
2−µ−κK∗+N1−µ−κU+V

)
, 0<γ≤ 1

2
,

(4.20a)

‖U(x)−u(x)‖L2
ω−µ,−µ (I)

≤


CN−m

(
N

1
2−µ−κK∗+N1−µ−κU+V

)
,

1
2
<γ<1,

CN−m
(

N
1
2−µ−κK∗+N1−µ−κU+V

)
, 0<γ≤ 1

2
,

(4.20b)

for any κ∈(0,γ) provided that N is sufficiently large and C is a constant independent of N, where

V=U+K∗.
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Proof. By using the generalization of Gronwalls Lemma 3.4 and the Hardy inequality
Lemma 3.8, it follows from (4.12) that

‖eγ‖L2
ω−µ,−µ (I)≤C

6

∑
i=1
‖Ji‖L2

ω−µ,−µ (I). (4.21)

Now, using Lemma 3.7, we have

‖J1‖L2
ω−µ,−µ (I)≤C max

x∈[−1,1]
|I(x)|

≤CN−m
(

max
x∈[−1,1]

|K(x,s,u(s))|Hm,N
ω0,0 (I)+‖e

γ(x)‖L∞(I)

)
. (4.22)

By the convergence result in Theorem 4.1 (m=1), we have

‖eγ‖L∞(I)≤C
(
|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I)

)
.

So that
‖J1‖L2

ω−µ,−µ (I)≤CN−m
(

K∗+
(
|uγ|Hm,N

ωc (I)+|u|Hm,N
ωc (I)

))
. (4.23)

Due to Lemma 3.2 (3.3a),

‖J2‖L2
ω−µ,−µ (I)≤CN−m|uγ|Hm;N

ωc (I), (4.24a)

‖J5‖L2
ω−µ,−µ (I)≤CN−m|u|Hm;N

ωc (I). (4.24b)

By virtue of Lemma 3.2 (3.3a) with m=1,

‖J4‖L2
ω−µ,−µ (I)≤CN−1

∣∣∣∣∫ x

−1
e(s)ds

∣∣∣∣
H1

ω−µ,−µ (I)
≤CN−1‖e‖L2

ω−µ,−µ (I). (4.25)

Finally, it follows from Lemma 3.5 and Lemma 3.7 that

‖J6‖L2
ω−µ,−µ (I)

=‖(I−µ,−µ
N − I)Meγ‖L2

ω−µ,−µ (I)

=‖(I−µ,−µ
N − I)(Meγ−TNeγ‖L2

ω−µ,−µ (I)

≤‖I−µ,−µ
N (Meγ−TNeγ)‖L2

ω−µ,−µ (I)+‖Meγ−TNeγ‖L2
ω−µ,−µ (I)

≤C‖Meγ−TNeγ‖L∞(I)

≤CN−κ‖Meγ‖0,κ

≤CN−κ‖eγ‖L∞(I), (4.26)
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where, in the last step we used Lemma 3.6 for any κ∈(0,1−µ). By the convergence result
in Theorem 4.1, we obtain that

‖J6‖L2
ω−µ,−µ (I)≤


CN

1
2−µ−m−κ

(
K∗+N

1
2U
)

, 0<µ<
1
2

,

CN−m−κ logN
(

K∗+N
1
2U
)

,
1
2
≤µ<1.

(4.27)

Using (4.18), we have

‖J3‖L2
ω−µ,−µ (I)≤


CN

1
2−µ−m−κ

(
K∗+N

1
2U
)

, 0<µ<
1
2

,

CN−m−κ logN
(

K∗+N
1
2U
)

,
1
2
≤µ<1,

(4.28)

for N sufficiently large and for any κ∈(0,1−µ). The desired estimates (4.20a) and (4.20b)
follows from the above estimates and (4.21) and γ=1−µ.

5 Numerical experiments

Example 5.1. Consider the following nonlinear fractional integro-differential equation

Dαy(t)=1+2t−e−t2
y2(t)+t(1+2t)

∫ t

0
eτ(t−τ)y(τ)dτ, (5.1a)

y(0)=1, (5.1b)

when α=1, the exact solution of (5.1) is y(t)= et2
.

In the only case of α=1, we know the exact solution. We have reported the obtained
numerical results for N = 20 and α = 0.25,0.5,0.75,1 in Fig. 1. We can see that, as α ap-
proaches 1, the numerical solutions converges to the analytical solution y(t) = et2

, i.e.,
in the limit, the solution of fractional integro differential equations approaches to that
of the integer order integro differential equations. In Fig. 2, we plot the resulting errors
versus the number N of the steps. This figure shows the exponential rate of convergence
predicted by the proposed method.

Example 5.2. Consider the following fractional integro-differential equation,

D0.5y(t)= f (t)y(t)+g(t)+
√

t
∫ t

0
y2(τ)dτ, (5.2a)

y(0)=0, (5.2b)

with

f (t)=2
√

t+2t
3
2−
(√

t+t
3
2

)
ln(1+t), g(t)=

2arcsinh(
√

t)√
π(1+t)

−2t
3
2 .

The exact solution is y(t)= ln(1+t).
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Figure 1: Example 5.1: Approximation solutions with different α and exact solution of y(t) with α = 1 (a).
Comparison between approximate solution and exact solution of y′(t).
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Figure 2: Example 5.1: The errors of numerical and exact solution y(t) (a) and the errors of numerical and

exact solution y′(t) (b) versus the number of collocation points in L∞ and L2
ω norms.

The numerical results can be seen from Fig. 3. These results indicate that the spectral
accuracy is obtained for this problem, although the given functions f (t) and g(t) are not
very smooth.
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numerical and exact solution y(t) versus the number of collocation points in L∞ and L2
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