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Abstract. In this paper, we combine the generalized multiscale finite element method
(GMsFEM) with the balanced truncation (BT) method to address a parameter-
dependent elliptic problem. Basically, in progress of a model reduction we try to ob-
tain accurate solutions with less computational resources. It is realized via a spectral
decomposition from the dominant eigenvalues, that is used for an enrichment of mul-
tiscale basis functions in the GMsFEM. The multiscale bases computations are local-
ized to specified coarse neighborhoods, and follow an offline-online process in which
eigenvalue problems are used to capture the underlying system behaviors. In the BT
on reduced scales, we present a local-global strategy where it requires the observabil-
ity and controllability of solutions to a set of Lyapunov equations. As the Lyapunov
equations need expensive computations, the efficiency of our combined approach is
shown to be readily flexible with respect to the online space and an reduced dimen-
sion. Numerical experiments are provided to validate the robustness of our approach
for the parameter-dependent elliptic model.
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1 Introduction

A variety of research has been devoted to the developments of model reduction for high
simulation, optimal control, and engineering design. Many scientific applications in-
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clude the flow models in porous media and conduction models in composite materials.
These problems are inherently referred to as multiscale in nature, and they exhibit het-
erogeneous and high contrast behaviors. Traditional methods such as finite difference
method, finite element method, or discontinuous Galerkin method, would require the
use of very fine meshes to fully resolve the multiscale nature of media. To an end, the
practical applications are limited by the computational power. Therefore the interest in
developing efficient multiscale and model reduction methods for more computational
efficiency and accuracy are of particular interest.

There are many literatures on model reductions, see e.g. [1–3]. Model reduction per-
forms the discretization on a coarse grid, and it may be capable of incorporating fine-
scale features into coarse-scale schemes. Multiscale methods are used to solve a variety
of computational models. The construction of coarse space is involved in which solu-
tions are sought with the span of multiscale basis functions. Multiscale Finite Element
Method (MsFEM, [4]), Heterogeneous Multiscale Method (HMM, [5]) and related ap-
proaches [6–10] work for a variety of applications and offer an advantage in parallel
computings.

Progress has been made in recent years in developing the multiscale computations.
The Generalized Multiscale Finite Element Method (GMsFEM, see [11]) is a generaliza-
tion of the standard MsFEM, which uses appropriate snapshots and spectral decompo-
sitions for the additional enrichment of multiscale basis functions. Its main idea is to
systematically enrich the initial coarse space with the eigenvectors of local spectral prob-
lems, and gradually accounts for more fine scale details. The enrichment is performed on
a spectral decomposition by the fact that its computational efficiency has been validated
the online space construction for any input parameter is fast and it can be reused for any
force and boundary. Proper Orthogonal Decomposition (POD, see [2, 12–14]), is effective
to be used to find a low rank approximation to a Hilbert space, which is spanned by the
snapshots. In the case of matrix approximation, POD is basically Singular Value Decom-
position (SVD). And POD has been applied widely for a number of linear and nonlinear
problems.

The methodology of GMsFEM has been used in many recent studies [15–25]. Chung,
Efendiev and Li [15] derived an a-posteriori error indicator to develop an adaptive en-
richment for high-contrast flow models. A parameter-dependent, single-phase flow is
studied in [16], in which GMsFEM is used as a local model reduction, and BT is used
as a global model reduction. Hou and Liu [20] provided the harmonic multiscale basis
functions with an optimal approximation, and through singular value decompositions
of some oversampling operators a good efficiency is achieved. In [22] the GMsFEM is
combined with variable-separation techniques, and it presents an iterative algorithm for
solving the parameter independent PDEs repeatedly. Jiang and Li [24] proposed a model
sparse representation based on the mixed GMsFEM with elliptic random inputs, which
improves the online computation and the problem output. Transport flow problem in
perforated domains are considered in [25], a mixed Petrov-Galerkin GMsFEM formula-
tion is used to guarantee mass conservation and stability in model reductions.
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Balanced Truncation (BT, see [1, 2, 12, 14]) is a global model reduction technique that
one can make use of an a-priori error bound and solution stability, from a full system to a
reduced system. This skill involves retaining both the most controllable and observable
states of the system, then the weak states would be truncated off and the reduced model
is solved economically. It recasts the partial differential equations into the system frame-
works, in which an input-output mapping is built. To determine the most dominant state
variables, a coupled set of Lyapunov equations is to be solved for the observability and
controllability Gramians, whose combination is used for constructing a reduced system
via the truncated eigenvectors of specified matrices. Since the associated eigenvalues
decay rapidly, the measurable outputs can be well approximated by solving a reduced
model. However, a disadvantage of BT is that it could be too expensive to compute from
a fully-large system directly. As such, an approach that is based on the GMsFEM with
coarse-scale and applying the BT with reduced-scale is to be presented for the problem.

In this paper when considering a parameter-dependent model that may require un-
certainty quantifications, in order to avoid direct eigenvalue computations the coarse
space enrichment is divided into offline-online stages. The main goal is to allow for an
efficient online space construction for each fixed parameter. In return, it is not necessary
to recompute all the eigenvectors for separate realizations. The offline space is created
by initially producing a set of snapshot functions in which local problems are solved on
each coarse neighborhood for specified parameters. Then the first offline stage involves
forming a larger-dimensional (as compared to the online space) parameter-independent
offline space. This offline space accounts for a range of parameters that may be used in
the second online stage, and its construction constitutes a one-time preprocessing step.
After that at the online stage, we solve the balanced truncation eigenvalue problems for
given parameters in order to achieve the desired strength finally.

An outline of our proposed method is presented for the procedure.

1. GMsFEM computations:

1.1. Offline process.

1.1.0. Coarse grid generation.
1.1.1. Construction of snapshot space that will be used to compute an offline

space.
1.1.2. Construction of a small dimensional offline space by performing dimen-

sion reduction in the global snapshot space.

1.2. Online process.

1.2.1. For each input parameter, compute multiscale basis functions.
1.2.2. Solution of coarse sub-problems for any force term and boundary condi-

tion.
1.2.3. Offline-online POD coupling completes a coarse model reduction in the

GMsFEM.
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2. BT computations:

2.1. Global model reduction further on the basis of available coarse scale, it pro-
vides the most important state variables for Lyapunov equations in a input-
output mapping.

2.2. Construction of a reduced system via the truncated eigenvectors for specified
and reduced block matrices, and the associated eigenvalues decay rapidly. A
local-global model reduction method is well proposed for the measurable out-
puts in our parameter-dependent PDEs.

The paper is organized as follows. In Section 2 the model is introduced and a prelim-
inary description is given. In Section 3 detailed descriptions in the GMsFEM along with
the BT are provided for local-global reductions. Numerical experiments are presented in
Section 4 to validate the performance. And conclusions are given in Section 5.

2 A preliminary description of the model

2.1 Parameter-dependent elliptic problem

A two dimensional parameter-dependent elliptic equation with high contrast coefficients
is considered. Finding a solution u to

−div
(
κ(x;µ)∇u

)
= f in Ω, (2.1)

where κ(x;µ) is contrast coefficients in 2D space x, µ is used to represent the parameter
dependence and may be random uncertainty. The right side is f , and the problem may
be subject to different boundary conditions. Ω is a domain in R2 and its boundary is ∂Ω.

We divide the domain Ω into a set of quadrilateral finite elements on a coarse grid,
which is denoted by T H. {yi}Nv

i=1 denotes the coarse grid vertices (Nv is the coarse vertices
number), and define the neighborhood of a node yi by

ωi =
⋃
{Kj∈T H; yi∈Kj}, (2.2)

see Fig. 1. Then we refine every coarse element K on the coarse grid T H into more fine
quadrilateral elements k, and denote a fine grid by T h. From on, N, M denotes the coarse
and fine (of every coarse element) partition number in each direction, and H(= 1

N ), h(=
H
M ) denotes the coarse and fine mesh size, respectively.

The standard finite element space is built through using piecewise bilinear polynomi-
als Q1(k) for 2D, and is subordinated to T h as

Vh ={v∈H1(Ω) : v|k ∈Q1(k), ∀k∈T h}. (2.3)

In Galerkin weak formulation, we find u∈Vh such that

a(u,v)=( f ,v), ∀v∈Vh, (2.4)
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Figure 1: Illustration of coarse grid, element and neighborhood.

where
a(u,v)=

∫
Ω

κ(x;µ)∇u·∇v, ( f ,v)=
∫

Ω
f v.

With a very fine partition number in the standard finite element method, it results in a
huge discrete system for solving expensively as

A f (µ)u f =Ff , (2.5)

where
A f (µ)= [a(µ)mn]=Σ

∫
k
κ(x;µ)∇ψm ·∇ψn, Ff =[ fm]=Σ

∫
k

f ψm,

and ψm is the standard bilinear basis function defined on each element k. Here the sub-
script f means that matrices are on a very fine grid, which is different from the sub-
script c/r for the coarse/reduced case later. Now in this way, the stiffness matrix A f

is assembled from all fine elements, whose size is N f×N f , here N f =(NM+1)2 for the
two-dimensional model. We build B, C as the nodal matrices (they are transposed to
each other B=CT, the size of B is N f×N2), which are allocated to the domain boundary
vertices.

A main goal of the paper is to fulfill a suitable model reduction of size Nr such that
Nr�N f for computational efficiency, and to preserve a good performance for the model
(2.1).

2.2 Local-global reduction approach

First, we recall the standard multiscale finite element method. A homogeneous sub-
problem is solved for the multiscale basis functions φ in coarse neighborhoods from{

−div(κ(x;µj)∇φωi
l,j )=0 in ωi,

φωi
l,j =δl,j on ∂ωi,

(2.6)
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where µj (j=1,··· , J) is a set of specified parameters, and the boundary condition δl,j(yi)=
1 when (i=j), δl,j(yi)=0 when (i 6=j). In this way, some useful local information are tracked
through the l-th basis function φl in the form of coarse matrices. Although this standard
multicale method works in a range of situations (see [4, 5, 7, 8]), while for parameter-
dependent problems with high contrast it would show infertilities. This encourages us
to pursue a powerful strategy for the complicated multiscale reduction.

To be more specific, we would build a so-called mapping matrix which is carrying
on the necessary microscopic information. Details are to be provided later in (3.12) of
Section 3, the mapping matrix is R∈RNc×N f (whose row size Nc�N f ) satisfying

Ac(µ)uc =Fc, (2.7)

where Ac(µ)=RA f (µ)RT, Fc=RFf , and the size of Ac is Nc×Nc. Here subscript c means
on the coarse grid we apply the standard multiscale/generalized multiscale method to
get a numerical solution. It should be noted that in the latter generalized multiscale
scheme we should carry out a necessary eigenvalue computation, which makes the ma-
trix R have a bit larger size. Through enriching the dominant eigenfunctions it guaran-
tees a higher resolution. To this point, on the basis of original fine matrices B,C whose
corresponding coarse ones are formed as Bc =RB, Cc =CRT.

Next is to carry out the matrices reduction further as

Ar(µ)ur =Fr, (2.8)

where Ar(µ)=UAc(µ)V, Fr =UFc, whose size of Ar is Nr×Nr, and Nr (�Nc�N f ) can
be chosen in Section 4. Here U, V are from a singular value decomposition to be defined
in (3.28), with UV = INr . Set Br =UBc, Cr =CcV, these matrices and vectors are reduced
again to save computational costs (especially in Lyapunov equations for observability
and controllability). While at the same time, the simulation accuracy is shown from our
novel method.

3 GMsFEM and balanced truncation

The GMsFEM [11] is a general framework that generalizes the MsFEM [4] in the sense
that multiple basis functions can be systematically added to each coarse region, by flexi-
bly enriching the coarse spaces via necessary eigenvalue computations.

In this generalized method, we first use a coarse partition and calculate a snapshot
space in each coarse neighborhood. We should perform an appropriate spectral decom-
position and select multiscale basis functions which are corresponding to the dominant
eigenvalues. In this way the snapshot space is built to represent the solution space, and
they may include all possible local fine-grid functions or harmonic functions. In the fol-
lowing, we just make options for an optimal subspace with respect to the acceptable
tolerances.
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The generalized multiscale method can be divided into two stages: offline and on-
line. At the offline stage, a small dimensional construction uses the snapshot space and
requires solving local spectral decompositions. The space can be re-used to capture the
essential fine-scale features. Then a space reduction is performed and the dominant
modes are acted as the multiscale basis functions, for any input parameter which is fit-
ting our parameter-dependent problem perfectly. At the online stage, when a force term
and boundary condition are given, the above offline basis functions are used to obtain
an approximate solution. One can also adaptively select the basis functions in various
coarse regions, in order to seek a better efficiency and accuracy.

The theory behind the offline and online spaces is the selection of spectral sub-
problems and the snapshot space construction. Many multiscale problems with high
contrast may have very small eigenvalues and thus, we would like to include the eigen-
vectors associated with small eigenvalues to be surely enriched in the coarse space. Con-
sequencely, the multiscale basis functions are constructed via multiplying the dominant
eigenmodes by the partition of unity functions.

On the other hand, a direct approach of balanced truncation [2, 13] to a parameter-
dependent problem would be prohibitively expensive or even not feasible since Lya-
punov equations are to be solved. In particular, solving these equations on the fine scale
from varying permeability, boundary condition, and forcing term will quickly become
prohibitive. In turn, in this paper we propose the uses of a generalized multiscale and
offline-online balanced truncation in order to obtain the inexpensive and accurate results.

Our balanced reduction is based on the GMsFEM. It allows to construct an indepen-
dent set of online basis functions in which a coarse solution may be sought. As a result,
the global system would be posed on a coarse scale to avoid to implement the balanced
truncation on a fine scale directly. After two stages of the GMsFEM, the process yields
a small dimension subspace for each fixed parameter µ in essence. As such, multiscale
coarse solutions may be efficiently computed for specified inputs. We note that this con-
tribution is served to further decrease the computational cost, which is associated with
the balanced truncation of model reductions.

3.1 Generalized multiscale finite element method

3.1.1 Offline process

At this stage, we first construct a snapshot space subordinated to each coarse neighbor-
hood ωi in the domain. The snapshot space construction involves solving the local prob-
lems from a set of input parameters. Being different from the standard multiscale method
for solving the homogeneous local problem (2.6), now an eigenvalue decomposition is in-
troduced in this generalized multiscale method. First, we solve snapshot functions from
a spectral problem: to find (λ

ωi ,snap
l,j ,φωi ,snap

l,j )∈R×Vωi ,snap, such that

−div(κ(x;µj)∇φ
ωi ,snap
l,j )=λ

ωi ,snap
l,j φ

ωi ,snap
l,j in ωi, (3.1)
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note that zero Neumann boundary condition is applied to solve eigenvalue problems,
except in the discontinuous case when Dirichlet condition is used on the global domain
boundaries. It is well known that solving all the eigenfunctions of a large matrix are ex-
hausting for (3.1), so we keep the first Li eigenfunctions that correspond to the dominant
eigenvalues λl,j (l=1,··· ,Li) in order to construct a snapshot space. The snapshot space
Vωi ,snap related to the neighborhood ωi, is generated from the multiscale eigenfunctions
as

Vωi ,snap=span{φωi ,snap
l,j : l=1,··· ,Li, j=1,··· , J}. (3.2)

Next we reorder the snapshot functions, through using a single index as the matrix
columns to create an updated

Rωi ,snap=
[
φ

ωi ,snap
1 ,··· ,φωi ,snap

Lsnap

]
, (3.3)

where Lsnap denotes the functions number that are kept in the snapshot matrix construc-
tion. For brevity, we omit the superscript ωi from Vsnap, Rsnap. But it is assumed through-
out the paper, the offline and online computations are localized to the respective coarse
neighborhoods.

The discretized form of local problem (3.1) is

A(µj)φ
ωi ,snap
l,j =λ

ωi ,snap
l,j M(µj)φ

ωi ,snap
l,j in ωi, (3.4)

where
A(µj)=

∫
ωi

κ(x;µj)∇ψm ·∇ψn, M(µj)=
∫

ωi

κ̃(x;µj)ψmψn,

and ψm denotes the standard bilinear, fine-scale basis functions, κ̃ will be defined in the
next Subsection (3.9).

Next, we perform a dimension reduction of the snapshot space in using an auxiliary
spectral decomposition in order to construct an offline space. To be specific, we seek a
subspace of the snapshot space such that it can approximate any element in an appropri-
ate sense. The main objective is to efficiently construct a set of multiscale basis functions
for each parameter µ. We reiterate the offline bilinear forms to be parameter-independent,
such that there is no need to reconstruct the offline space for each value µ. It follows that
the eigenvalue problem can be described as

AoffΦoff
l =λoff

l MoffΦoff
l , (3.5)

where

Aoff=
∫

ωi

κ(x;µ)∇φ
snap
m ·∇φ

snap
n =RsnapA(µ)(Rsnap)T,

Moff=
∫

ωi

κ̃(x;µ)φsnap
m φ

snap
n =RsnapM(µ)(Rsnap)T,
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here κ(x;µ) and κ̃(x;µ) are domain-based averaged coefficients. A and M denote similar
fine scale matrices as defined in (3.4), except that averaged coefficients are used. The
smallest Loff eigenvalues are picked up in (3.5) and form the corresponding eigenvectors
by setting φoff

l =∑j Φoff
l,j φ

snap
j (l=1,··· ,Loff, j=1,··· ,Lsnap), where Φoff

l,j are the coordinates
of the vector Φoff

l . In this way we create the offline matrix

Roff=
[
φoff

1 ,··· ,φoff
Loff

]
. (3.6)

3.1.2 Online process

With the available offline space, next we construct the associated online space on each
coarse neighborhood for a specified parameter µ. In principle, we assume the online
space is a small dimensional subspace for computational efficiency. We reiterate at the
online stage, the reduced-order bilinear forms are chosen to be parameter-dependent.
The following eigenvalue problem is obtained

Aon(µ)Φon
l =λon

l Mon(µ)Φon
l , (3.7)

where

Aon(µ)=
∫

ωi

κ(x;µ)∇φoff
m ·∇φoff

n =RoffA(µ)(Roff)T,

Mon(µ)=
∫

ωi

κ̃(x;µ)φoff
m φoff

n =RoffM(µ)(Roff)T,

here κ(x;µ) and κ̃(x;µ) now depend on the specified µ value, A(µ) and M(µ) are specified
fine scale matrices in (3.4).

Finally, to generate the online space we choose the smallest Lon eigenvalues from
(3.7) and finalize the corresponding eigenvectors by setting φon

l =∑j Φon
l,j φoff

j (l=1,··· ,Lon,
j= 1,··· ,Loff), where Φon

l,j are the coordinates of the vector Φon
l . It should be noted that

the matrices size in (3.7) solely depends on the dimension of the offline subspace. This
results in the declining cost of the online space in contrast to the more expensive original,
one is using the localized fine computations directly.

3.1.3 Offline-online POD coupling

In order to enrich the online basis functions into a reduced-order global formulation of
(2.1), we denote χi as the standard multiscale partition of unity functions which are from{ −div

(
κ(x;µ)∇χi

)
=0 in K∈ωi,

χi = gi on ∂K,
(3.8)

where gi is a continuous boundary condition and is bilinear on each edge of ∂K. Using
the initial partition of unity we define the summed pointwise energy κ̃ as

κ̃=κ
Nv

∑
i=1

H2|∇χi|2. (3.9)
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Again, H is the coarse mesh size and Nv is the coarse vertices number. In order to con-
struct the global coarse-grid solution space, we multiply the partition of unity functions
by the online eigenfunctions to form the final multiscale basis functions

φi,l =χiφ
on
l , i=1,··· ,Nv, l=1,··· ,Lon. (3.10)

Then the online space follows

Von=span{φi,l : i=1,··· ,Nv, l=1,··· ,Lon}. (3.11)

Using a single index notation we denote Von = span{φk}Nc
k=1, where Nc denotes the total

number of multiscale basis functions in the coarse scale formulation. Recalling in (2.7)
we now finalize the mapping matrix R to be used in the global reduction

R=[φ1,··· ,φNc ], (3.12)

where φk represents the nodal vector of each generalized multiscale basis function. This
matrix R (whose size is Nc×N f ) is now plugged in (2.7), which can be enriched with the
most dominant eigenfunctions and meaningful microscopic behaviors. This would lead
to simulation advantages later on.

This completes the coarse model reduction in the GMsFEM. In the next subsection,
we would like to carry on a further model reduction in a BT.

3.2 Balanced truncation for further reduction

3.2.1 Lyapunov equation and its property

Lyapunov equation is of scientific importance in model reduction, control theory, stochas-
tic analysis, and so on. Large matrices would arise from a large system directly. For
example, the discretization by the standard finite element method on very fine grid re-
sults in a Lyapunov equation with the stiffness matrix A f , whose size N f×N f would be
very large. A major challenge for solving the problem is that the unknown dense matrix
W has N2

f entries. The huge storage and solution cost for Lyapnov equations would be
problematic, see [26–28].

In this paper, we are focused on a new local-global model reduction method for the
combination of GMsFEM and balanced truncation method. Since we start to solve the
Lyapunov equation on the basis of GMsFE coarse neighborhoods for Ac, instead of on
the very fine elements for A f , in this way a great deal of storage costs have been saved.
Then the balanced truncation is used to solve a unknown matrix W. For simplicity we
omit subscripts of above matrices A f or Ac in the following.

For the standard Lyapunov equation

AW+WAT =Z, (3.13)

typically the eigenvalues of W decay very rapidly when the right side Z has a low rank.
This decay is strongly related to the approximation error from the balanced truncation.
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In general, the matrix W is dense even if the system is sparse. However in the following
propositions, we could obtain some useful block sparse matrices.

From the matrix approximation, we set

W=UW̃UT, A=UÃUT, (3.14)

and
W̃=UTWU, Ã=UT AU, (3.15)

where UTU= I, then

UTZU=UT(AW+WAT)U=UT AWU+UTWATU

=UT AUW̃UTU+UTUW̃UT ATU

=UT AUW̃+W̃UT ATU

=ÃW̃+W̃ÃT = Z̃, (3.16)

which means Z̃ is an approximation to Z.
To this point, we provide a joint measure of controllability and observability for solv-

ing Lyapunov equations. We point out that these equations are not based on the fine
matrices, but are based on the coarse matrices Ac(µ), Bc, Cc defined in (2.7). For equa-
tions

Ac(µ)Wcon+Wcon
(

Ac(µ)
)T

+Bc(Bc)
T =0, (3.17a)(

Ac(µ)
)TWobs+WobsAc(µ)+(Cc)

TCc =0, (3.17b)

where Wcon is a controllability Gramian, Wobs is an observability Gramian [2, 13], and
in (3.13) Z is dependent on the forms of Bc, Cc. The solutions of these two Lyapunov
equations play an important role in the model reduction and in our balanced truncation
particularly.

In general the computations of dense matrices are of order O(n3), some works are
developed to efficiently compute the solutions by reducing its computational complex-
ity [27, 29]. But these are iterative methods and often low rank approximations, while
in our high contrast case it is hard to provide highly satisfactory approximations. In
Matlab code lyap, it transforms the matrices to complex Schur forms, computes the solu-
tions of resulting triangular systems, and may transform the solutions back if necessary.
It has high rank approximations, and the solutions of Lyapunov equation have numer-
ical connections to the dominant eigenvalues. We apply Wcon = lyap(Ac,Bc(Bc)T) and
Wobs = lyap((Ac)T,(Cc)TCc) to fulfill these advantages in the experiments. Since these
matrices Ac, Bc, Cc are on coarse scale, the sizes of Wcon, Wobs are just Nc×Nc.

Once the two Gramians Wcon, Wobs are available, they may be expressed in the form
of Cholesky singular value decompositions to get Lcon, Lobs as

Wcon=LconLT
con, (3.18a)

Wobs=LobsLT
obs, (3.18b)
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and

LT
obsLcon=UΣVT =

[
U1 U2

][Σ1 O
O O

][
VT

1
VT

2

]
=U1Σ1VT

1 , (3.19)

where U, V are to be specified soon. We set Scon=LconV1Σ−1/2
1 , Sobs=Σ−1/2

1 UT
1 LT

obs, where
UT

1 U1 =VT
1 V1 = INr , and the subscript r means the reduced case. Here some properties

and proofs are provided.

Proposition 3.1. Suppose matrices are of full rank n, then both Scon, Sobs are revertible,

S−1
con=Sobs, (3.20)

and
SobsWconST

obs=ST
conWobsScon=Σ1, (3.21)

furthermore

ST
obsSobsWconST

obsSobs=ST
obsST

conWobsSconSobs=M1, (3.22a)

SconSobsWconST
obsST

con=SconST
conWobsSconST

con=M2. (3.22b)

Proof. Since

SobsScon=Σ−1/2
1 UT

1 LT
obs ·LconV1Σ−1/2

1

=Σ−1/2
1 UT

1 U1Σ1VT
1 V1Σ−1/2

1 = In,

they are both revertible. For (3.21) the second term

ST
conWobsScon=Σ−1/2

1 VT
1 LT

conLobsLT
obsLconV1Σ−1/2

1

=Σ−1/2
1 VT

1 V1Σ1UT
1 U1Σ1VT

1 V1Σ−1/2
1 =Σ1,

and SobsWconST
obs is similar. For (3.22a) the second term

ST
obsST

conWobsSconSobs=ST
obsΣ1Sobs=LobsU1Σ−1/2

1 Σ1Σ−1/2
1 UT

1 LT
obs :=M1,

and others can be obtained similarly.

Proposition 3.2. Suppose LT
obsLcon whose rank r < n, then there exists matrices Scon2 ∈

Rn×(n−r), Sobs2∈R(n−r)×n such that for

X=
[
Scon Scon2

]
, Y=

[
Sobs
Sobs2

]
,

it has
X−1=Y, (3.23)

and

XTWobsX=

[
Σ1 O
O M3

]
, YWconYT =

[
Σ1 O
O M4

]
, (3.24)

furthermore

XTWobsWconYT =YWconWobsX=

[
Σ2

1 O
O O

]
. (3.25)
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Proof. Choose Scon2 whose columns form a basis for the nullspace of Sobs, such that
SobsScon2=O. Set Sobs2 as the last n−r rows of X−1, follows that Sobs2Scon=O. Then

XY=
[
Scon Scon2

][ Sobs
Sobs2

]
=
[
SconSobs+Scon2Sobs2

]
= In,

YX=

[
Sobs
Sobs2

][
Scon Scon2

]
=

[
SobsScon SobsScon2
Sobs2Scon Sobs2Scon2

]
=

[
Ir O
O In−r

]
= In,

from Proposition 3.1 and above that they are revertible.
For (3.24) the first term

XTWobsX=

[
ST

con
ST

con2

]
Wobs

[
Scon Scon2

]
=

[
ST

conWobsScon ST
conWobsScon2

ST
con2WobsScon ST

con2WobsScon2

]
,

where the first entry

ST
conWobsScon=Σ−1/2

1 VT
1 LT

conLobsLT
obsLconV1Σ−1/2

1

=Σ−1/2
1 VT

1 V1Σ1UT
1 U1Σ1VT

1 V1Σ−1/2
1 =Σ1,

the second entry

ST
conWobsScon2=Σ−1/2

1 VT
1 LT

conLobsLT
obsScon2

=Σ−1/2
1 VT

1 V1Σ1UT
1 LT

obsScon2=Σ1SobsScon2=O,

the fourth entry
ST

con2WobsScon2=ST
con2LobsLT

obsScon2 :=M3,

and YWconYT is similar. For (3.25) the first term

XTWobsWconYT =

[
ST

con
ST

con2

]
LobsLT

obs ·LconLT
con
[
ST

obs ST
obs2

]
=

[
ST

conLobsLT
obsLconLT

conST
obs ST

conLobsLT
obsLconLT

conST
obs2

ST
con2LobsLT

obsLconLT
conST

obs ST
con2LobsLT

obsLconLT
conST

obs2

]
,

where the first entry

ST
conLobsLT

obsLconLT
conST

obs

=Σ−1/2
1 VT

1 LT
conLobsLT

obsLconLT
conLobsU1Σ−1/2

1

=Σ−1/2
1 VT

1 V1Σ1UT
1 U1Σ1VT

1 V1Σ1UT
1 U1Σ−1/2

1 =Σ2
1,
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the second entry

ST
conLobsLT

obsLconLT
conST

obs2

=Σ−1/2
1 VT

1 LT
conLobsLT

obsLconLT
conST

obs2

=Σ−1/2
1 VT

1 V1Σ1UT
1 U1Σ1VT

1 LT
conST

obs2

=Σ3/2
1 VT

1 LT
conST

obs2

=Σ2
1ST

conST
obs2=O,

and the fourth entry

ST
con2LobsLT

obsLconLT
conST

obs2

=ST
con2LobsU1Σ1VT

1 LT
conST

obs2

=ST
con2ST

obsΣ2
1ST

conST
obs2=O,

and the other YWconWobsX is similar.

Remark 3.1. From the above propositions, these block sparse matrices are helpful in the
construction of the reduced matrices. Once the approximations are obtained, we can
apply for the singular value decomposition and eigenvalue computation further. The
reduced model from the coarse version would be shown effective for our parameter-
dependent model in the experiments later on.

3.2.2 Balanced reduction

On the basis of coarse matrices (compared with the fine ones), we have a platform to
carry on the matrices reduction. In our case, we find the first Nr ordered eigenvalues and
normalized eigenvectors of the matrix LT

conWobsLcon, by solving

LT
conWobsLconξi =λiξi, i=1,··· ,Nr. (3.26)

The eigenvalues and eigenvectors are given by

{λi} and {ζi}={σ−1
i ξT

i LT
conLT

obs}, (3.27)

where σi =λ1/2
i . With the eigenvalues and eigenvectors in place, we construct the above-

mentioned matrices U and V in (2.8) as

U=

 σ−1/2
1 ζ1

...
σ−1/2

Nr
ζNr

Lobs, V=Lcon
[
ξ1σ−1/2

1 ···ξNr σ
−1/2
Nr

]
, (3.28)

whose size is Nr×Nc and Nc×Nr, respectively.
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As a result, the reduced model is formed in the matrices Ar(µ)=UAc(µ)V, and Br =
UBc, Cr =CcV, where r depends on the decay of eigenvalues and is specifically selected
in the numerical experiment. In particular, we reach the reduced scale since Ar(µ) has a
size of Nr×Nr, compared with the coarse scale Ac(µ) with a size of Nc×Nc, and the fine
scale A f (µ) with a size of N f×N f .

The balanced truncation has better efficiency in numerical simulations. Their a-priori
error estimates simply depend on the decay of eigenvalues in (3.26). And particularly,
the error estimates rely on the magnitude of all truncated eigenvalues summation. On
the other hand, the BT has its own limitations. Since the Lyapunov equations in (3.17)
require costly computations for unknown Wcon and Wobs, and followed by the singular
value decompositions, especially for the fine case. In particular, applying BT directly to a
huge input-output system may not be feasible in real applications.

Therefore in this paper, a proposed combination of GMsFEM-BT method for the
parameter-dependent problem is developed to avoid a huge system computation, while
it maintaining a proper accuracy at the same time. Since the approach is applied to an
online coarse scale system, which has already been reduced via using the GMsFEM, its
computational cost would be significantly reduced.

4 Numerical experiments

In this section numerical results are presented to show the performance of our method.
We use Matlab 2014 to address all codes. Computations are performed on a desktop
workstation, with Intel Core i5 3.20GHz processor and 8GB RAM. A permeability coeffi-
cient is assumed as

κ(x;µ)=µ1κ1(x)+µ2κ2(x), (4.1)

where

κ1(x)=10·
 2+1.8sin

(
2πx
ε1

)
2+1.8cos

(
2πy
ε2

)+ 2+1.8cos
(

2πy
ε1

)
2+1.8sin

(
2πx
ε2

)
, (4.2a)

κ2(x)=10·
 2+1.8sin

(
2πx
ε3

)
2+1.8cos

(
2πy
ε4

)+ 2+1.8cos
(

2πy
ε3

)
2+1.8sin

(
2πx
ε4

)
, (4.2b)

and the pair (µ1,µ2) may be randomly picked from [0,1]2, and let ε1 =0.2, ε2 =0.08, ε3 =
0.125, ε4=0.0078125.

A resulting permeability field exhibits a periodic contrast structure (and may be ex-
tended to randomized structure too), see Fig. 2. And a non-homogeneous boundary
condition g is defined, g=10x on lower x=[0,1] and y=0; g=10(1+y) on right x=1 and
y=[0,1]; g=10(1+x) on upper x=[0,1] and y=1; g=10y on left x=0 and y=[0,1].
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Figure 2: Coefficients κ1(x), κ2(x) and κ(x;µ).

To solve the model (2.1), first we divide the domain Ω=[0,1]×[0,1] into NM×NM=
160×160 fine elements and use the FEM to solve a fully-resolved system (2.5). This com-
putation is typically the most expensive, and is used as a reference for testing the per-
formance of the proposed method. Next in a coarse scale scheme, the MsFEM and GMs-
FEM are applied respectively to obtain the corresponding outputs from (2.7). In both
approaches we bisect the coarse partition N=4,8,16 and keep the fine partition M=10 in
each coarse element K. In contrast, with the helps of spectral computation and multiscale
basis functions enrichment, the latter generalized approach would show its advantages.
Finally, we solve Lyapunov equations on the basis of coarse matrices, and carry on the
BT from (2.8) in a further reduced scale to test the abilities of our GMsFEM-BT.

In implementation of the GMsFEM, in order to generate the necessary snapshot space
for the offline-online stages we use three equally spaced points in each dimension and
keep the eigenfunctions number Li = 10 in (3.2), then for two dimensional case it has
Lsnap=32∗10=90 in (3.3). According to different error tolerances of the experiment setting
we may flexibly decide the desired outputs, through selecting the dominant eigenfunc-
tions from the snapshot space Vsnap to build the mapping matrices. In each coarse neigh-
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Figure 3: Solutions of reference, MsFEM, GMsFEM on coarse partition N=8, respectively.

borhood, the optimal number of eigenfunctions Lon is less than the maximum Lsnap. In
the BT with a further reduction, after solving the Lyapunov equations for a controllability
Wcon and a observability Wobs on coarse scales, we use the singular value decompositions
to build U, V in (3.28), whose size is smaller Nr.

We are interested in comparing the outputs from the fully resolved fine system, the
coarse system and the reduced system. Since the coarse partition refinement is N=4,8,16
and the same fine partition is M= 10 in each coarse element, in this way in both direc-
tions the coarse vertices number is Nv = (N+1)2 = 25,81,289. The size of fine system
is N f = (NM+1)2 = 1681,6561,25921, while the corresponding size of coarse system is
Nc = 118,598,2679(�N f ). We should point out that Nc in the GMsFEM are determined
from setting the tolerances of offline and online both at 10−3. In contrast, the size of
reduced system is Nr, which is just the specified smaller integers later.

Figs. 3 and 4 show the reference, MsFEM, GMsFEM solutions and errors. The refer-
ence is from fully solved fine system, while the standard/generalized MsFEM solutions
are from much more coarse system and they are well approximate to the reference. It is
verified with the beneficial spectral computation for dominant eigenfunctions and mul-
tiscale enrichments, the GMsFEM performs much better. We list the norm errors from
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Figure 4: Errors of MsFEM and GMsFEM on coarse partition N=8, and error distribution of the latter method.

MsFEM and GMsFEM with the grid refinement in Table 1. These error percentage to
the reference show the convergence and stability of GMsFEM, which is superior to the
divergence of MsFEM, see Fig. 5.

In Fig. 6 results are presented for the reference on the fine partition NM=160, GMs-
FEM on the coarse partition N = 8 and BT on the different reductions Nr. We observe
that in Table 2 on small Nr such as 20 and 60, the BT does not behave very well. With
the increase of Nr it demonstrates the capability to capture more necessary details of the

Table 1: Percentages of norm error from MsFEM and GMsFEM (number of local basis functions per coarse
neighborhood is 10), on different partition number N.

coarse partition N norm MsFEM error (%) GMsFEM error (%)

4 L2 0.29 0.25
H1 11.12 9.49

8 L2 0.38 0.16
H1 16.55 9.04

16 L2 0.54 0.11
H1 26.63 8.77
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Figure 5: Convergence history of norms from MsFEM and GMsFEM.
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Figure 6: Outputs of reference, GMsFEM coarse and BT reduction with different Nr.

reference, and its error percentage is less than 0.02%.
It should be noted that the size of BT is of the maximum Nr = 220, compared to the

size of GMsFEM with Nc=2679 or the size of FEM with N f =25921. At the meantime, we
note the fact that the BT works on the basis of the GMsFEM’s coarse scale, and it would
cost some time for solving Lyapunov equations and singular value decompositions. And
if the BT works on the basis of the FEM’s very fine scale, the computational cost would
be much higher.

Finally in this section, we provide the CPU time for the partition of N = 8 and M=
10. From Table 3 it is obvious that the FEM spends the most time on a fully fine grid
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Table 2: Error percentages from GMsFEM and BT.

GMsFEM GMsFEM-BT error on different Nr (%)
error (%) Nr =20 Nr =60 Nr =100 Nr =140 Nr =180 Nr =220

0.13 0.97 0.33 0.15 0.056 0.025 0.014

Table 3: Comparisons of CPU time.

FEM MsFEM GMsFEM (online) BT
size 6561 81 598 20 60 140 220

time (s) 8.60 0.12 0.92 0.00048 0.0020 0.0060 0.0088
Lyapunov solve GMsFEM-BT

time (s) 4.17 0.9205 0.9220 0.9260 0.9288

size of 6561 to obtain a reference. The MsFEM and GMsFEM spend less time to obtain
their numerical results. However, the GMsFEM has to construct the snapshot space and
couple the offline-online stages with eigenvalue computations. This process definitely
consumes resources to bring a good accuracy. In the end, a Lyapunov solver on the basis
of GMsFEM size 598 (neither on the FEM, nor on the MsFEM) shows its promise. After
that, the reduced size of BT system is available, and the desired balance for both accuracy
and efficiency of our proposed GMsFEM-BT is demonstrated with the numerical results.

5 Conclusions

In this paper, a combined approach of generalized MsFEM and balanced truncation is
proposed to solve the parameter-dependent elliptic problem. With the benefits of spec-
tral computation from dominant eigenfunctions, the GMsFEM provides a good platform
and serves as a local model reduction tool. Then the BT is served as a further global model
reduction in which the input-output mapping is used for incorporating the underlying
system information, and it requires the singular value decomposition of Lyapunov equa-
tions solution. From the theory and experiment, our GMsFEM-BT is shown to be quite
flexible with respect to the online space tolerance and reduced matrix size, and it may
reach a suitable balance between the accuracy and efficiency for complicated multiscale
problems.
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