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Abstract. A collocation method based on exponential B-splines for two-dimensional

second-order non-linear hyperbolic equations is studied. The initial equation is split

into a system of coupled equations, each of which is transformed into a system of or-

dinary differential equations. The corresponding differential equations are solved by

SSP-RK(2,2) method. It is shown that the method under consideration is uncondition-

ally stable. Numerical experiments demonstrate its efficiency and accuracy.
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1. Introduction

We consider the second order two-dimensional non-linear hyperbolic equation

ut t = ux x + uy y − 2αut − β
2u+ g(x , y, t) + f (u), a < x < b, c < y < d , t > 0 (1.1)

with the initial conditions

u(x , y, 0) = φ(x , y), ut(x , y, 0) =ψ(x , y), a ≤ x ≤ b, c ≤ y ≤ d (1.2)

and the Dirichlet boundary conditions

u(a, y, t) = f1(y, t), u(b, y, t) = f2(y, t), c < y < d , t > 0,

u(x , c, t) = f3(x , t), u(x , d , t) = f4(x , t), a < x < b, t > 0.
(1.3)
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If α > 0 and β > 0, the Eq. (1.1) becomes the telegraph equation and it is damped wave

equation if α > 0 and β = 0.

This equation is used in diffusion processes [10], image processing [28], vapor phase

chromatography [9], dispersal in biological systems [1], and stochastic processes [18,19].

A considerable attention has been paid to the solution of one-, two- and three-dimensional

second order hyperbolic equations. In particular, Mohanty et al. [15–17] developed uncon-

ditionally stable implicit three level methods for one-dimensional second order hyperbolic

problems and unconditionally stable implicit alternating direction methods for two- and

three- dimensional hyperbolic problems. For two-dimensional linear telegraph equations,

Bülbül et al. [4] and Jiwari et al. [12] developed Taylor matrix based methods and a differ-

ential quadrature method, respectively. Considering two-dimensional second-order hyper-

bolic equations, Ding and Zhang [7] proposed a fourth-order compact difference scheme,

Dehghan and Ghesmati [5] studied meshless local weak and strong form methods and De-

hghan and Mohebbi [6] considered a collocation method. In addition, Rashidinia et al. [20]

and Mittal et al. [14] used cubic B-splines in one- and two-dimensional equations, respec-

tively.

Here, we deal with an approximation method based on exponential B-splines. It was

shown by McCartin [13] that exponential splines have a number of advantages — i.e. in

computational aerodynamics they do not produce false oscillations of interpolants that ap-

pear in cubic splines methods. Nevertheless, exponential splines are rarely used in approx-

imate solution of partial differential equations. Thus Ersoy and Idris [8] provided an expo-

nential B-spline based algorithm for the Korteweg-de Vries equation, Singh et al. [21] used

exponential B-splines in collocation method for one dimensional second order hyperbolic

equation. Note that these splines have been introduced by Späth [23], who also consid-

ered their two-dimensional generalisation [24]. In this work an exponential B-spline based

collocation method is applied to the second order two-dimensional non-linear hyperbolic

equation (1.1). Decomposing the Eq. (1.1) into two equations, we discretise them in spa-

tial directions and convert into the systems of ordinary differential equations. The systems

obtained, are solved by SSP-RK(2,2) method — cf. Ref. [25].

The paper is organised as follows. In Section 2, we discuss a two-dimensional expo-

nential B-spline based collocation method, with more details being provided in Section 3.

Section 4 is concerned with the stability analysis. Five numerical examples are considered

in Section 5 and our concluding remarks are in Section 6.

2. Two-Dimensional Exponential B-Spline Collocation Method

We consider the partitions

a = x0 < x1 < · · ·< xN−1 < xN = b, (2.1)

c = y0 < y1 < · · ·< yM−1 < yM = d (2.2)

of the domain Ω = {(x , y) : a ≤ x ≤ b, c ≤ y ≤ d}, where hx = x l − x l−1 = (b − a)/N ,

l = 1,2, · · · , N and hy = ym − ym−1 = (d − c)/M , m = 1,2, · · · , M . Moreover, we use



Unconditionally Stable Numerical Method 197

the partition t j = jk, j = 0,1, · · · , J , k > 0 for time variable. Let Ml(x) and Nm(y) be

the exponential B-splines defined by the partitions (2.1) and (2.2) respectively. Then, the

two-dimensional exponential B-spline is defined as

Bl ,m(x , y) = Ml(x)Nm(y), l = 0,1, · · · , N , m = 0,1, · · · , M . (2.3)

The functions Bl ,m(x , y) are called tensor product B-splines [3]. The exponential B-splines

Ml(x) [24] related to the above partitions with added nodes x−1 and xN+1 are defined by

Ml(x) =





















a1

�

(x l−2− x)−
1

p
(sinh(p(x l−2 − x)))

�

, x ∈ [x l−2, x l−1),

b1 + b2(x l − x) + b3 exp(p(x l − x)) + b4 exp(−p(x l − x)), x ∈ [x l−1, x l),

b1 + b2(x − x l) + b3 exp(p(x − x l)) + b4 exp(−p(x − x l)), x ∈ [x l , x l+1),

a1

�

(x − x l+2)−
1

p
(sinh(p(x − x l+2)))

�

, x ∈ [x l+1, x l+2),

0, otherwise,

(2.4)

where

a1 =
p

2(phx c − s)
, b1 =

phx c

(phx c − s)
,

b2 =
p

2

�

c(c − 1) + s2

(phx c − s)(1− c)

�

,

b3 =
1

4

�

exp(−phx )(1− c) + s(exp(−phx )− 1)

(phx c − s)(1− c)

�

,

b4 =
1

4

�

exp(phx )(c − 1) + s(exp(phx )− 1)

(phx c − s)(1− c)

�

,

s = sinh(phx ), c = cosh(phx ),

and parameter p defines the shape of the corresponding spline functions. The exponential

B-splines Nm(y) are defined analogously but hx shall be replaced by hy . According to the

exponential B-spline collocation method [25], an approximate solution U(x , y, t) of the

problem (1.1)-(1.3) is sought in the form

U(x , y, t) =

N+1
∑

l=−1

M+1
∑

m=−1

cl ,m(t)Bl ,m(x , y), (2.5)

where cl ,m(t) are time dependent coefficients to be determined from collocation equations.

The values of Ml(x) and its first and second derivatives are presented in Table 1 and can be

also used for evaluating the function Nm(y) and its derivatives. Using these representations,

we can evaluate U(x , y, t) and its partial derivatives in spatial directions as follows:

U(x l , ym, t j) = p1

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

+
�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p1

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

�

, (2.6)
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Table 1: Values of exponential B-spline Ml(x) and its derivatives.

x x l−2 x l−1 x l x l+1 x l+2

Ml(x) 0
s − phx

2(phx c − s)
1

s − phx

2(phx c − s)
0

Mx l
(x) 0

p(c − 1)

2(phx c − s)
0 −

p(c − 1)

2(phx c − s)
0

Mx x l
(x) 0

p2s

2(phx c − s)
−

p2s

(phx c − s)

p2s

2(phx c − s)
0

Ux(x l , ym, t j) = m2

�

p1c
j

l+1,m−1
+ c

j

l+1,m
+ p1c

j

l+1,m+1

�

−m2

�

p1c
j

l−1,m−1
+ c

j

l−1,m

+ p1c
j

l−1,m+1

�

, (2.7)

Ux x(x l , ym, t j) = m3p1

�

c
j

l−1,m−1
− 2c

j

l ,m−1
+ c

j

l+1,m−1

�

+m3

�

c
j

l−1,m
− 2c

j

l ,m
+ c

j

l+1,m

�

+m3p1

�

c
j

l−1,m+1
− 2c

j

l ,m+1
+ c

j

l+1,m+1

�

, (2.8)

Uy(x l , ym, t j) = p2

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

�

− p2

�

m1c
j

l−1,m−1
+ c

j

l ,m−1

+m1c
j

l+1,m−1

�

, (2.9)

Uy y(x l , ym, t j) = p3

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

− 2p3

�

m1c
j

l−1,m
+ c

j

l ,m

+m1c
j

l+1,m

�

+ p3

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

�

, (2.10)

Ut(x l , ym, t j) = p1

�

m1 ċ
j

l−1,m−1
+ ċ

j

l ,m−1
+m1 ċ

j

l+1,m−1

�

+
�

m1 ċ
j

l−1,m
+ ċ

j

l ,m
+m1 ċ

j

l+1,m

�

+ p1

�

m1 ċ
j

l−1,m+1
+ ċ

j

l ,m+1
+m1 ċ

j

l+1,m+1

�

, (2.11)

where c
j

l ,m
= cl ,m(t j) and

m1 =
s− phx

2(phx c − s)
, m2 =

p(c − 1)

2(phx c − s)
, m3 =

p2s

2(phx c − s)
,

p1 =
s− phy

2(phy c − s)
, p2 =

p(c − 1)

2(phy c − s)
, p3 =

p2s

2(phy c − s)
.

3. Description of the Numerical Method

Writing u
j

l ,m
for u(x l , ym) at the time level t j we represent Eq. (1.1) as

u
j

t t l ,m
= u

j

x x l ,m
+ u

j

y y l ,m
− 2αu

j

t l ,m
− β2u

j

l ,m
+ g

j

l ,m
+ f
�

u
j

l ,m

�

. (3.1)

It can be split into the system of two equations – viz.

u
j

t l ,m
= v

j

l ,m
,

v
j

t l ,m
= u

j

x x l ,m
+ u

j

y y l ,m
− 2αu

j

t l ,m
− β2u

j

l ,m
+ g

j

l ,m
+ f
�

u
j

l ,m

�

.
(3.2)
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Substituting (2.6), (2.8), (2.10) and (2.11) in the Eq. (3.2) yields

v
j

l ,m
= p1

�

m1 ċ
j

l−1,m−1
+ ċ

j

l ,m−1
+m1 ċ

j

l+1,m−1

�

+
�

m1 ċ
j

l−1,m
+ ċ

j

l ,m
+m1 ċ

j

l+1,m

�

+ p1

�

m1 ċ
j

l−1,m+1
+ ċ

j

l ,m+1
+m1 ċ

j

l+1,m+1

�

,

v̇
j

l ,m
= m3p1

�

c
j

l−1,m−1
− 2c

j

l ,m−1
+ c

j

l+1,m−1

�

+m3

�

c
j

l−1,m
− 2c

j

l ,m
+ c

j

l+1,m

�

+m3p1

�

c
j

l−1,m+1
− 2c

j

l ,m+1
+ c

j

l+1,m+1

�

+ p3

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

− 2p3

�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p3

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

�

− 2αv
j

l ,m
− β2
�

p1

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

+
�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p1

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

��

+ g
j

l ,m

+ f
�

p1

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

+
�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p1

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

��

, l = 0, · · · , N , m= 0, · · · , M .

(3.3)

Note that the system (3.3) consists of (N + 1)(M + 1) equations with (N + 3)(M + 3) un-

knowns. In order to eliminate additional unknowns, we redefine two-dimensional expo-

nential B-spline functions accommodating the boundary conditions — viz. we rewrite the

approximate solution as

U(x , y, t) =

N
∑

l=0

M
∑

m=0

cl ,m(t)B̃l ,m(x , y) =

N
∑

l=0

M
∑

m=0

cl ,m(t)M̃l (x)Ñm(y), (3.4)

where B̃l ,m(x , y) = M̃l(x)Ñm(y) with M̃l(x) and Ñm(y) defined by

M̃l(x) =

















M0(x) + 2M−1(x) for l = 0,

M1(x)−M−1(x) for l = 1,

Ml(x) for l = 2, · · · , N − 2,

MN−1(x)−MN+1(x) for l = N − 1,

MN (x) + 2MN+1(x) for l = N .

(3.5)

Ñm(y) =

















N0(y) + 2N−1(y) for m = 0,

N1(y)− N−1(y) for m = 1,

Nm(y) for m = 2, · · · , M − 2,

NM−1(y)− NM+1(y) for m = M − 1,

NM (y) + 2NM+1(y) for m = M .

(3.6)

The matrices arising from representations (3.4) are tri-diagonal and can be easily handled.

The set of functions {B̃l ,m : l = 0,1, · · · , N ; m = 0,1, · · · , M} forms a basis for the vector

space of all exponential splines defined over the domain Ω. It follows from the collocation
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method and the Eqs. (3.4)-(3.6) that the approximations U
j

t l ,m
of u

j

t l ,m
can be represented

as

U
j

t l ,m
=

N
∑

l=0

M
∑

m=0

ċ
j

l ,m
B̃l ,m(x , y). (3.7)

Finally, using the values of Ml(x), Nm(y) and their derivatives and substituting (3.4)-(3.7)

into the Eq. (3.2) we arrive at the following systems of ordinary differential equations

v
j

l ,m
=























(1+ 2m1)(1+ 2p1)ċ
j

l ,m
, l = 0, N , m = 0, M ,

�

1+ 2m1

��

p1 ċ
j

l ,m−1
+ ċ

j

l ,m
+ p1 ċ

j

l ,m+1

�

, l = 0, N , m= 1, · · · , M − 1,
�

1+ 2p1

��

m1 ċ
j

l−1,m
+ ċ

j

l ,m
+m1 ċ

j

l+1,m

�

, l = 1, · · · , N − 1, m = 0, M ,

p1

�

m1 ċ
j

l−1,m−1
+ ċ

j

l ,m−1
+m1 ċ

j

l+1,m−1

�

+
�

m1 ċ
j

l−1,m
+ ċ

j

l ,m
+m1 ċ

j

l+1,m

�

+ p1

�

m1 ċ
j

l−1,m+1
+ ċ

j

l ,m+1
+m1 ċ

j

l+1,m+1

�

,

l = 1, · · · , N − 1, m = 1, · · · , M − 1,

(3.8)

and

v̇
j

l ,m
=

















































































− 2αv
j

l ,m
− β2(1+ 2m1)(1+ 2p1)c

j

l ,m
+ g

j

l ,m

+ f
�

(1+ 2m1)(1+ 2p1)c
j

l ,m

�

, l = 0, N , m = 0, M ,

− 2αv
j

l ,m
− β2
�

1+ 2m1

��

p1c
j

l ,m−1
+ c

j

l ,m
+ p1c

j

l ,m+1

�

+ g
j

l ,m

+ f
�
�

1+ 2m1

��

p1c
j

l ,m−1
+ c

j

l ,m
+ p1c

j

l ,m+1

�
�

,

l = 0, N , m = 1, · · · , M − 1,

− 2αv
j

l ,m
− β2
�

1+ 2p1

��

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ g
j

l ,m

+ f
��

1+ 2p1

��

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

��

,

l = 1, · · · , N − 1, m = 0, M ,

m3p1

�

c
j

l−1,m−1
− 2c

j

l ,m−1
+ c

j

l+1,m−1

�

+m3

�

c
j

l−1,m
− 2c

j

l ,m
+ c

j

l+1,m

�

+m3p1

�

c
j

l−1,m+1
− 2c

j

l ,m+1
+ c

j

l+1,m+1

�

+ p3

�

m1c
j

l−1,m−1
+ c

j

l ,m−1

+m1c
j

l+1,m−1

�

− 2p3

�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p3

�

m1c
j

l−1,m+1

+ c
j

l ,m+1
+m1c

j

l+1,m+1

�

− 2αv
j

l ,m
− β2
�

p1

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

+
�

m1c
j

l−1,m
+ c

j

l ,m
+m1c

j

l+1,m

�

+ p1

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

��

+ g
j

l ,m
+ f
�

p1

�

m1c
j

l−1,m−1
+ c

j

l ,m−1
+m1c

j

l+1,m−1

�

+
�

m1c
j

l−1,m
+ c

j

l ,m

+ m1c
j

l+1,m

�

+ p1

�

m1c
j

l−1,m+1
+ c

j

l ,m+1
+m1c

j

l+1,m+1

��

,

l = 1, · · · , N − 1, m = 1, · · · , M − 1.

(3.9)
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The matrix form of the Eqs. (3.8) and (3.9) is

AĊ j = V j , j = 1,2, · · · , (3.10)

V̇ j = G j , j = 1,2, · · · , (3.11)

where

A=













(1+ 2m1)X1 0

X2 X3 X2

. . .
. . .

. . .

X2 X3 X2

0 (1+ 2m1)X1













,

X1 =













(1+ 2p1)

p1 1 p1

. . .
. . .

. . .

p1 1 p1

(1+ 2p1)













,

X2 =













m1(1+ 2p1)

m1p1 p1 m1p1

. . .
. . .

. . .

m1p1 p1 m1p1

m1(1+ 2p1)













,

X3 =













(1+ 2p1)

m1 1 m1

. . .
. . .

. . .

m1 1 m1

(1+ 2p1)













,

G j =
�

G
j

0,0
, G

j

0,1
, · · · , G

j

0,M
, G

j

1,0
, G

j

1,1
, · · · , G

j

1,M
, · · · · · · , G

j

N ,0
, G

j

N ,1
, . . . , G

j

N ,M

�⊺

the components of G j are the right-hand sides in the Eq. (3.9) and "⊺" denotes the transpo-

sition operation. Analogously

V j =
�

v
j

0,0
, v

j

0,1
, · · · , v

j

0,M
, v

j

1,0
, v

j

1,1
, · · · , v

j

1,M
, · · · · · · , v

j

N ,0
, v

j

N ,1
, · · · , v

j

N ,M

�⊺

,

C j =
�

c
j

0,0
, c

j

0,1
, · · · , c

j

0,M
, c

j

1,0
, c

j

1,1
, · · · , c

j

1,M
, · · · · · · , c

j

N ,0
, c

j

N ,1
, · · · , c

j

N ,M

�⊺

.

To start computations, we need to choose initial vectors V0 and C0. They can be obtai-

ned from the initial condition (1.2) — viz.

u0
t l ,m
= v0

l ,m
=ψl ,m, l = 0, · · · , N , m= 0, · · · , M , (3.12)

u0
l ,m
= φl ,m, l = 0, · · · , N , m= 0, · · · , M . (3.13)
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Thus we derive the approximation U0
l ,m
= φl ,m of u0

l ,m
in the form

U0
l ,m
=























(1+ 2m1)(1+ 2p1)c
0
l ,m

, l = 0, N , m= 0, M ,
�

1+ 2m1

��

p1c0
l ,m−1

+ c0
l ,m
+ p1c0

l ,m+1

�

, l = 0, N , m = 1, · · · , M − 1,
�

1+ 2p1

��

m1c0
l−1,m

+ c0
l ,m
+m1c0

l+1,m

�

, l = 1, · · · , N − 1, m = 0, M ,

p1

�

m1c0
l−1,m−1

+ c0
l ,m−1

+m1c0
l+1,m−1

�

+
�

m1c0
l−1,m

+ c0
l ,m
+m1c0

l+1,m

�

+p1

�

m1c0
l−1,m+1

+ c0
l ,m+1

+m1c0
l+1,m+1

�

,

l = 1, · · · , N − 1, m = 1, · · · , M − 1.

(3.14)

The system of Eqs. (3.14) has either tri-diagonal structure or block tri-diagonal structure

and it can be solved either by using tri-diagonal solver or split into the following system of

equations with tri-diagonal matrices:

p1c∗
l ,m−1

+ c∗
l ,m
+ p1c∗

l ,m−1
= U0

l ,m
, l = 1, · · · , N − 1, m = 1, · · · , M − 1, (3.15)

c∗
l ,m
= m1c0

l−1,m
+ c0

l ,m
+m1c0

l+1,m
, l = 1, · · · , N − 1, m= 1, · · · , M − 1, (3.16)

where c∗
l ,m

are intermediate values and the corresponding boundary conditions can be de-

rived from (3.16). We first solve the Eq. (3.15) for c∗
l ,m

and then (3.16) for c0
l ,m

.

The same splitting can be used to derive Ċ j from the Eq. (3.10) for j = 1,2, · · · . Finally,

V j and C j are found by two-step strong stability-preserving Runge-Kutta method of the

second order (SSP-RK(2,2)).

4. Stability Analysis

To verify the stability of the method, we apply it to the following equations

u
j

t t l ,m
= u

j

x x l ,m
+ u

j

y y l ,m
− 2αu

j

t l ,m
− β2u

j

l ,m
+ g

j

l ,m
,

l, m = 0,1, · · · , N , β > 0

with the initial and Dirichlet boundary conditions (1.2), (1.3). As the result, we obtain the

Eqs. (3.10), (3.11) with f ≡ 0. Setting hx = hy = h leads to m1 = p1, m2 = p2, m3 = p3

and combining (3.10) and (3.11) yields

AĊ j =BC j +F , (4.1)

where

A =

�

A1 0

0 I

�

, B =

�

0 I

P −2αI

�

,

C j =

�

C j

V j

�

, F j =

�

0

g j

�

,

P = −β2A1 +m3A2 +m3A3,
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A1 =













(1+ 2m1)X1

m1X1 X1 m1X1

. . .
. . .

. . .

m1X1 X1 m1X1

(1+ 2m1)X1













,

A2 =













0

m1X2 X2 m1X2

. . .
. . .

. . .

m1X2 X2 m1X2

0













,

A3 =













0

X3 −2X3 X3

. . .
. . .

. . .

X3 −2X3 X3

0













,

X1 =













(1+ 2m1)

m1 1 m1

. . .
. . .

. . .

m1 1 m1

(1+ 2m1)













,

X2 =













0

1 −2 1
.. .

. . .
. . .

1 −2 1

0













, X3 =













0

m1 1 m1

. . .
. . .

. . .

m1 1 m1

0













.

The Taylor series expansions of sinh(ph) and cosh(ph) show that 0 < m1 < 1/2, m2 > 0

and m3 > 0 for all p,h > 0. Moreover, one can prove by mathematical induction that all

principal minors of the real-valued symmetric matrix X1 are positive, so that all its eigenval-

ues are also positive. Moreover, X2 and X3 are, respectively, real negative and real positive

semi-definite matrices. Therefore, they correspondingly have non-positive and non nega-

tive eigenvalues. Now, we refer to a result in [22, pp. 107]. The components of matrix A1

have a common set of N +1 linearly independent eigenvectors and if λ is an eigenvalue of

X1, then the eigenvalues of matrix A1 are given by the eigenvalues of the matrix













(1+ 2m1)λ

m1λ λ m1λ
. . .

. . .
. . .

m1λ λ m1λ

(1+ 2m1)λ













. (4.2)
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Clearly, eigenvalues of the matrix (4.2) are positive and hence the eigenvalues of A1 are

positive. Analogous considerations show that the eigenvalues of A2 and A3 are non-positive.

It follows that the eigenvalues of matrix P are negative. Further, the matrix A is a strictly

diagonally dominant, so it is invertible. Multiplying Eq. (4.1) byA −1, we obtain

Ċ j =A −1BC j +A −1F , (4.3)

where

A −1B =

�

0 A−1
1

P −2αI

�

.

In order to establish the stability of the method, we show that the eigenvalues of coefficient

matrixA −1B have negative real part. If Λ = p+ iq is an eigenvalue ofA −1B and [X Y]⊺

is the corresponding eigenvector, then

�

0 A−1
1

P −2αI

��

X

Y

�

= Λ

�

X

Y

�

, (4.4)

and, consequently,

PA−1
1 Y= Λ(Λ+ 2α)Y. (4.5)

Hence, Λ(Λ + 2α) is an eigenvalue of PA−1
1 . Taking into account that PA−1

1 has only real

negative eigenvalues, we obtain that

q(p+α) = 0 and p(p + 2α)− q2 < 0.

This system has two sets of solutions — viz.

1. q is an arbitrary real number and p = −α;

2. q = 0 and (p+α)2 < α2.

Due to the assumption α > 0, in either case we get p < 0. Hence, the real part of Λ is

negative. By Routh-Hurwitz criteria [11] we conclude that the proposed method is uncon-

ditionally stable.

5. Numerical Experiments

Now we want to test the accuracy and efficiency of the method above. In what follows,

a discrete l2- and the maximum-norm are used to evaluate the errors of the method — viz.

ER(l2) =

√

√

√

√hx hy

N
∑

l=0

M
∑

m=0

(Ul ,m− ul ,m)
2, ER(M) =max

l ,m

�

�Ul ,m− ul ,m

�

� .

We also provide the graphs of numerical and exact solutions and compare the results with

previous studies. Computations are carried out on a laptop with Intel Pentium processor,

2.0 GHz CPU and 2 GB RAM using in MATLAB 13 software.



Unconditionally Stable Numerical Method 205

Example 5.1. Consider the following problem

ut t = ux x + uy y − 2ut − u+ 2(cos(t)− sin(t)) sin(x) sin(y), 0≤ x , y ≤ 1

subject to initial and boundary conditions

u(x , y, 0) = sin(x) sin(y), ut(x , y, 0) = 0, 0≤ x , y ≤ 1,

u(0, y, t) = 0, u(1, y, t) = cos(t) sin(1) sin(y), 0≤ y ≤ 1, t ≥ 0,

u(x , 0, t) = 0, u(x , 1, t) = cos(t) sin(x) sin(1), 0≤ x ≤ 1, t ≥ 0.

The analytic solution of this problem is u(x , y, t) = cos(t) sin(x) sin(y).

Tables 2 and 3 show the errors ER(l2) and ER(M) at different time levels and these re-

sults are better than those obtained in [14]. Fig. 1 demonstrates the numerical and analytic

solutions at the time t = 3. It is clear that the numerical and analytic solutions are in good

agreement with each other.

Example 5.2. Consider the following problem

ut t = ux x + uy y − 2αut − β
2u+ (−2α+ β2 − 1)e−t sinh(x) sinh(y), 0≤ x , y ≤ 1

with initial and boundary conditions

u(x , y, 0) = sinh(x) sinh(y), ut(x , y, 0) = − sinh(x) sinh(y), 0≤ x , y ≤ 1,

u(0, y, t) = 0, u(1, y, t) = e−t sinh(1) sinh(y), 0≤ y ≤ 1, t ≥ 0,

u(x , 0, t) = 0, u(x , 1, t) = e−t sinh(x) sinh(1), 0≤ x ≤ 1, t ≥ 0.

The analytic solution of this problem is

u(x , y, t) = e−t sinh(x) sinh(y).

Table 4 shows the errors ER(l2) and ER(M) at different time levels and the results are

better than the corresponding results of Mittal and Bhatia [14]. We also compute the errors

ER(l2) and ER(M) at different time levels for the parameters α = 5,β = 5,hx = 0.1,hy =

0.05, k = 0.01, p = 0.1 and display them in Table 5. Fig. 2 demonstrates numerical and

analytic solutions at the time t = 2.

Example 5.3. Consider the following problem

ut t = ux x + uy y − 2αut − β
2u+ (−3 cos(t)− 2α sin(t + β2 cos(t))

× sinh(x) sinh(y), 0≤ x , y ≤ 1

with initial and boundary conditions

u(x , y, 0) = sinh(x) sinh(y), ut(x , y, 0) = 0, 0≤ x , y ≤ 1,

u(0, y, t) = 0, u(1, y, t) = cos(t) sinh(1) sinh(y), 0≤ y ≤ 1, t ≥ 0,

u(x , 0, t) = 0, u(x , 1, t) = cos(t) sinh(x) sinh(1), 0≤ x ≤ 1, t ≥ 0.

The analytic solution of this problem is u(x , y, t) = cos(t) sinh(x) sinh(y).
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Figure 1: Example 5.1: Numeri
al (left) and analyti
 (right) solution at t = 3; hx = hy = 0.05, k = 0.001,
p = 0.1.

Table 2: Errors in Example 5.1, hx = 0.1, hy = 0.1, k = 0.01.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

(in sec)

1 2.4712e-04 5.7512e-04 0.2 9.9722e-04 2.2746e-03

2 1.1357e-04 3.9570e-04 0.3 1.0926e-03 2.8706e-03

5 9.3523e-05 2.7283e-04 0.7 1.1562e-03 2.9942e-03

7 3.4398e-04 7.9583e-04 1.0 7.2867e-04 1.8781e-03

10 3.7713e-04 8.8167e-04 1.4 5.8889e-04 1.5158e-03

Table 3: Errors in Example 5.1, hx = 0.05, hy = 0.05, k = 0.001.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

(in sec)

1 6.4842e-05 1.4964e-04 20.3 9.8870e-05 2.4964e-04

2 3.3664e-05 1.1061e-04 39.4 1.2148e-04 3.2296e-04

5 2.3932e-05 7.6386e-05 97.9 1.2762e-04 3.3205e-04

Table 4: Errors in Example 5.2, hx = 0.1, hy = 0.1, k = 0.01.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

(in sec)

.5 2.9367e-04 1.0000e-03 0.4 8.3931e-04 3.3019e-03

1 2.1044e-04 6.2936e-04 0.8 6.0254e-04 2.0597e-03

2 8.4709e-05 2.3382e-04 1.2 2.4167e-04 7.6531e-04

3 3.1721e-05 8.6166e-05 1.7 8.9534e-05 2.7920e-04

5 4.3121e-06 1.1666e-05 2.8 1.2168e-05 3.7800e-05
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Figure 2: Example 5.2: Numeri
al (left) and analyti
 (right) solution at t = 2; α = 10,β = 5, hx = hy =

0.05, k = 0.001, p = 0.5.

Table 5: Errors in Example 5.2, hx = 0.1, hy = 0.05, k = 0.01.

t(sec) ER(l2) ER(M) CPU time (in sec)

.5 2.2064e-04 6.9912e-04 0.7

1 1.2546e-04 4.2288e-04 1.3

2 4.6257e-05 1.5561e-04 2.7

3 6.2593e-06 2.1058e-05 5.3

5 2.3027e-06 7.7469e-06 6.7

Table 6: Errors in Example 5.3, hx = 0.05, hy = 0.05, k = 0.001.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

α = 10,β = 5

1 7.1987e-05 2.7433e-04 19.5 1.7174e-04 5.6395e-04

2 3.0963e-05 1.8481e-04 38.6 1.6468e-04 5.1298e-04

5 1.9137e-05 1.2015e-04 101.7 1.7737e-04 5.5627e-04

7 9.3055e-05 3.7430e-04 136.7 1.4200e-04 4.7231e-04

10 9.9908e-05 4.1338e-04 195.5 1.2241e-04 4.1222e-04

α = 50,β = 5

1 6.6613e-05 3.0759e-04 19.5 1.6766e-04 5.6874e-04

2 2.4542e-05 1.3383e-04 38.5 1.7109e-04 5.2572e-04

5 3.5198e-05 1.2266e-05 101.6 1.8420e-04 5.6940e-04

7 8.7977e-05 4.0534e-04 136.4 1.3760e-04 4.7587e-04

10 9.0059e-05 4.3761e-04 195.1 1.1691e-04 4.1396e-04

We set α = 10,β = 5 and α = 50,β = 5 and compute the errors ER(l2) and ER(M)

at different time levels. The results presented in Table 6 are clearly better than the ones

in [14].
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Example 5.4. Consider the following problem

ut t = ux x + uy y − 2ut − u− 2ex+y−t , 0≤ x , y ≤ 1

with initial and boundary conditions

u(x , y, 0) = ex+y , ut(x , y, 0) = −ex+y , 0≤ x , y ≤ 1,

u(0, y, t) = e y−t , u(1, y, t) = e1+y−t , 0≤ y ≤ 1, t ≥ 0,

u(x , 0, t) = ex−t , u(x , 1, t) = ex+1−t , 0≤ x ≤ 1, t ≥ 0.

The analytic solution of this problem is u(x , y, t) = ex+y−t .

Tables 7 and 8 show the errors ER(l2) and ER(M) at different time levels. Note that

the results are better than in [14].

Table 7: Errors in Example 5.4, hx = 0.1, hy = 0.1, k = 0.01.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

(in sec)

1 1.4000e-03 3.5000e-03 0.5 1.4441e-02 2.9996e-02

2 1.3000e-03 2.0000e-03 1.2 1.3898e-03 3.9711e-03

3 2.4578e-04 5.9770e-04 1.6 1.3018e-03 2.2178e-03

5 4.9201e-05 9.5647e-05 2.6 1.1112e-04 2.0618e-05

7 3.9652e-06 1.0328e-05 3.6 1.3695e-05 3.0052e-05

10 2.2358e-07 5.1364e-07 5.2 1.4408e-06 2.5354e-06

Table 8: Errors in Example 5.4, hx = 0.05, hy = 0.05, k = 0.001.

t(sec) Proposed Method Method [14]

ER(l2) ER(M) CPU time ER(l2) ER(M)

(in sec)

1 6.1984e-04 1.0000e-03 19.0 3.2351e-03 7.4749e-03

2 3.4117e-04 6.8395e-04 37.7 2.8518e-04 1.0361e-03

3 5.4693e-05 1.4320e-04 56.0 3.1028e-04 5.7859e-04

4 2.7132e-05 6.8738e-05 74.7 9.0898e-05 2.7645e-04

5 1.6631e-05 3.3196e-05 94.0 2.4495e-05 6.7234e-05

7 6.2659e-07 2.3688e-06 130.9 2.5376e-06 8.2203e-06

10 2.9384e-08 1.0065e-07 187.6 3.6505e-06 8.5897e-06

Example 5.5. Consider the non-linear problem

ut t = ux x + uy y − 2αut − β
2u+ (1+ β2)x2 y2 sinh(t)− 2x2 + y2 sinh(t)

+ 2αx2 y2 cosh(t)− sin(u), 0≤ x , y ≤ 1
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with initial and boundary conditions

u(x , y, 0) = 0, ut(x , y, 0) = x2 y2, 0≤ x , y ≤ 1,

u(0, y, t) = 0, u(1, y, t) = y2 sinh(t), 0≤ y ≤ 1, t ≥ 0,

u(x , 0, t) = 0, u(x , 1, t) = x2 sinh(t), 0≤ x ≤ 1, t ≥ 0.

The analytic solution of this problem is u(x , y, t) = x2 y2 sinh(t).

Choose α = 10, β = 50. Table 9 shows the errors at different time levels. Another

advantage of the method is the low computational time needed to obtain accurate results.

Fig. 3 demonstrates numerical and analytic solutions at the time t = 1 and confirms the

accuracy of the method.

Table 9: Errors in Example 5.5, hx = 0.025, hy = 0.05, k = 0.001.

t ER(l2) ER(M) CPU time(sec)

0.5 3.8513e-05 1.8915e-04 3.4

1 8.4138e-05 3.9704e-04 6.5

2 1.8463e-04 6.0858e-04 12.4

3 2.7815e-04 1.7000e-03 20.6

4 5.7082e-04 4.0000e-03 27.4

5 1.5000e-03 1.1100e-02 34.1

Figure 3: Example 5.5: Numeri
al (left) and analyti
 (right) solution at t = 1.

6. Concluding Remarks

We studied a collocation method for two-dimensional second-order non-linear hyper-

bolic equations. The method is based on exponential B-splines and, to the best of au-

thors’ knowledge, has not been exploited before. We split the initial second order two-

dimensional non-linear hyperbolic equation into a system of coupled equations and then
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transform them into systems of ordinary differential equations. The corresponding equa-

tions are solved by SSP-RK(2,2) method. We also showed that this method is uncondition-

ally stable. Numerical examples demonstrate the efficiency and accuracy of the method.
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