Lower Bounds of Dirichlet Eigenvalues for General Grushin Type Bi-Subelliptic Operators

Hua Chen*, Hongge Chen, Junfang Wang and Nana Zhang
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received 21 August 2017; Accepted (in revised version) 4 October 2017

Abstract

Let Ω be a bounded open domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega$. Let $X=\left(X_{1}, X_{2}, \cdots, X_{m}\right)$ be a system of general Grushin type vector fields defined on Ω and the boundary $\partial \Omega$ is non-characteristic for X. For $\Delta_{X}=\sum_{j=1}^{m} X_{j}^{2}$, we denote λ_{k} as the k-th eigenvalue for the bi-subelliptic operator Δ_{X}^{2} on Ω. In this paper, by using the sharp sub-elliptic estimates and maximally hypoelliptic estimates, we give the optimal lower bound estimates of λ_{k} for the operator Δ_{X}^{2}.

Key Words: Eigenvalues, degenerate elliptic operators, sub-elliptic estimate, maximally hypoelliptic estimate, bi-subelliptic operator.
AMS Subject Classifications: 35J30, 35J70, 35P15

1 Introduction and main results

Let $X=\left(X_{1}, X_{2}, \cdots, X_{m}\right)$ be the system of general Grushin type vector fields, which is defined on an open domain W in $\mathbb{R}^{n}(n \geq 2)$.

Let $J=\left(j_{1}, \cdots, j_{k}\right), 1 \leq j_{i} \leq m$ be a multi-index, $X^{J}=X_{j_{1}} X_{j_{2}} \cdots X_{j_{k}}$, we denote $|J|=k$ be the length of J, if $|J|=0$, then $X^{J}=i d$. We introduce following function space (cf. $[18,21,23]$):

$$
H_{X}^{2}(W)=\left\{u \in L^{2}(W)\left|X^{J} u \in L^{2}(W),|J| \leq 2\right\}\right.
$$

It is well known that $H_{X}^{2}(W)$ is a Hilbert space with norm $\|u\|_{H_{X}^{2}(W)}^{2}=\sum_{|J| \leq 2}\left\|X^{J} u\right\|_{L^{2}(W)}^{2}$.
Assume the vector fields $X=\left(X_{1}, X_{2}, \cdots, X_{m}\right)$ satisfy Hörmander's condition :
Definition 1.1 (cf. [2,12]). We say that $X=\left(X_{1}, X_{2}, \cdots, X_{m}\right)$ satisfies the Hörmander's condition in W if there exists a positive integer Q, such that for any $|J|=k \leq Q, X$ together with all k-th repeated commutators

$$
X_{J}=\left[X_{j_{1}},\left[X_{j_{2}},\left[X_{j_{3}}, \cdots,\left[X_{j_{k-1}}, X_{j_{k}}\right] \cdots\right]\right]\right]
$$

[^0]span the tangent space at each point of W. Here Q is called the Hörmander index of X in W, which is defined as the smallest positive integer for the Hörmander's condition to be satisfied.

For any bounded open subset $\Omega \subset \subset W$, we define the subspace $H_{X, 0}^{2}(\Omega)$ to be the closure of $C_{0}^{\infty}(\Omega)$ in $H_{X}^{2}(W)$. Since $\partial \Omega$ is smooth and non characteristic for X, we know that $H_{X, 0}^{2}(\Omega)$ is well defined and also a Hilbert space. In this case, we also say that X satisfies the Hörmander's condition on Ω with Hörmander index $1 \leq Q<+\infty$. Thus X is a finitely degenerate system of vector fields on Ω and the finitely degenerate elliptic operator $\Delta_{X}=\sum_{i=1}^{m} X_{i}^{2}$ is a sub-elliptic operator.

The degenerate elliptic operator Δ_{X} has been studied by many authors, e.g., Hörmander [11], Jerison and Sánchez-Calle [13], Métivier [17], Xu [23]. More results for degenerate elliptic operators can be found in [2-6] and [9,10,12,14].

In this paper, we study the following eigenvalues problem for bi-subelliptic operators in $H_{X, 0}^{2}(\Omega)$:

$$
\begin{cases}\Delta_{X}^{2} u=\lambda u & \text { in } \Omega \tag{1.1}\\ u=0, X u=0 & \text { on } \partial \Omega\end{cases}
$$

where X will be the following general Grushin type vector fields (see (1.5) and (1.7) below). In this case we know that for each j, X_{j} is formally skew-adjoint, i.e., $X_{j}^{*}=-X_{j}$. Then there exists a sequence of discrete eigenvalues $\left\{\lambda_{j}\right\}_{j \geq 1}$ for the problem (1.1), which satisfying $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{k} \cdots$ and $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$ (see Proposition 2.5 below).

In the classical case, if $X=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n}}\right)$, then $\Delta_{X}^{2}=\Delta^{2}$ is the standard bi-harmonic operator. In this case our problem is motivated from the following classical clamped plate problem, namely

$$
\begin{cases}\Delta^{2} u=\lambda u & \text { in } \Omega, \tag{1.2}\\ u=\frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Delta=\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}+\cdots+\partial_{x_{n}}^{2}, \frac{\partial u}{\partial \nu}$ denotes the derivative of u with respect to the outer unit normal vector v on $\partial \Omega$.

For the eigenvalues of the clamped plate problem (1.2), Agmon [1] and Pleijel [20] showed the following asymptotic formula

$$
\begin{equation*}
\lambda_{k} \sim \frac{16 \pi^{4}}{\left(B_{n} \operatorname{vol}(\Omega)\right)^{\frac{4}{n}}} k^{\frac{4}{n}} \quad \text { as } k \rightarrow+\infty, \tag{1.3}
\end{equation*}
$$

where B_{n} denotes the volume of the unit ball in R^{n}. In 1985, Levine and Protter [15] proved that

$$
\begin{equation*}
\frac{1}{k} \sum_{i=1}^{k} \lambda_{i} \geq \frac{n}{n+4} \frac{16 \pi^{4}}{\left(B_{n} \operatorname{vol}(\Omega)\right)^{\frac{4}{n}}} k^{\frac{4}{n}} . \tag{1.4}
\end{equation*}
$$

Later in 2012, Cheng and Wei [7] showed that the eigenvalues of the bi-harmonic operator satisfy

$$
\begin{aligned}
\frac{1}{k} \sum_{i=1}^{k} \lambda_{i} \geq & \frac{n}{n+4} \frac{16 \pi^{4}}{\left(B_{n} \operatorname{vol}(\Omega)\right)^{\frac{4}{n}}} k^{\frac{4}{n}} \\
& +\left(\frac{n+2}{12(n+4)}-\frac{1}{1152 n^{2}(n+4)}\right) \frac{\operatorname{vol}(\Omega)}{I(\Omega)} \frac{n}{n+2} \frac{4 \pi^{4}}{\left(B_{n} \operatorname{vol}(\Omega)\right)^{\frac{2}{n}}} k^{\frac{2}{n}} \\
& +\left(\frac{1}{576 n(n+4)}-\frac{1}{27648 n^{2}(n+2)(n+4)}\right)\left(\frac{\operatorname{vol}(\Omega)}{I(\Omega)}\right)^{2},
\end{aligned}
$$

where $I(\Omega)$ is the moment of inertia of Ω.
Next, we consider the situation for the bi-subelliptic operators Δ_{X}^{2}. Before we state our results, we need the following concepts:

Definition 1.2. If X satisfies the Hörmander's condition in W with the Hörmander index $Q \geq 1$. Then for each $1 \leq j \leq Q$ and $x \in W$, we denote $V_{j}(x)$ as the subspace of the tangent space $T_{x}(W)$ spanned by the vector fields X_{J} with $|J| \leq j$. We say the system of the vector fields X satisfies Métivier's condition on Ω if the dimension of $V_{j}(x)$ is constant v_{j} in a neighborhood of each $x \in \bar{\Omega}$, and in this case the Métivier index is defined as

$$
v=\sum_{j=1}^{Q} j\left(v_{j}-v_{j-1}\right), \quad \text { here } \quad v_{0}=0 .
$$

As it well-known that under the Métivier's condition, we can get the asymptotic estimate for the eigenvalues of sub-elliptic operator $-\Delta_{X}$ (cf. [17]). However, for most degenerate vector fields X, the Métivier's condition will be not satisfied. Thus we need to introduce the following generalized Métivier index.

Definition 1.3. If X satisfies the Hörmander's condition in W with the Hörmander index $Q \geq 1$. Then for each $1 \leq j \leq Q$ and $x \in W$, we denote $V_{j}(x)$ as the subspace of the tangent space $T_{x}(W)$ spanned by the vector fields X_{J} with $|J| \leq j$. We denote that

$$
v(x)=\sum_{j=1}^{Q} j\left(v_{j}(x)-v_{j-1}(x)\right), \quad \text { with } \quad v_{0}(x)=0,
$$

where $v_{j}(x)$ is the dimension of $V_{j}(x)$. Then we define

$$
\widetilde{v}=\max _{x \in \bar{\Omega}} v(x),
$$

as the generalized Métivier index. It is obvious that $\tilde{v}=v$ if X satisfies the Métivier's condition on Ω.

Recently, in case of X to be some special Grushin vector fields Chen and Zhou [8] obtained lower bound estimates of eigenvalues for the bi-subelliptic operator Δ_{X}^{2}. In this paper, we shall study the similar problem for more general Grushin type vector fields X. In the first part of this paper, we shall study the bi-subelliptic operators Δ_{X}^{2} in case of

$$
\begin{equation*}
X=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n-1}}, f(\bar{x}) \partial_{x_{n}}\right), \tag{1.5}
\end{equation*}
$$

where $f(\bar{x})=\sum_{|\alpha| \leq s} a_{\alpha} \bar{x}^{\alpha}$ is a multivariate polynomial of \bar{x} with order $s, \bar{x}=\left(x_{1}, \cdots, x_{n-1}\right)$, $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n-1}\right) \in Z_{+}^{n-1},|\alpha|=\alpha_{1}+\cdots+\alpha_{n-1}, a_{\alpha}$ are constants. We suppose that
$\left(H_{1}\right)$: If $f(\bar{x})$ has a unique zero point at origin $\bar{x}=0$ in Ω only, and there exists a unique multi-index α_{0} with $\left|\alpha_{0}\right|=s_{0} \leq s$, satisfying $\left.\partial_{\bar{x}}^{\alpha_{0}} f(\bar{x})\right|_{\bar{x}=0} \neq 0$ and $\left.\partial_{\bar{x}}^{\alpha} f(\bar{x})\right|_{\bar{x}=0}=0$ for any $|\alpha|<\left|\alpha_{0}\right|$.

Thus we have the following result.
Theorem 1.1. Let $X=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n-1}}, f(\bar{x}) \partial_{x_{n}}\right), \bar{x}=\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$. Under the condition $\left(H_{1}\right)$ above, X satisfies the Hörmander's condition with its Hörmander index $Q=s_{0}+1$, and the generalized Métivier index of X is $\tilde{v}=Q+n-1$. Suppose λ_{j} is the j-th eigenvalue of the problem (1.1), then for all $k \geq 1$,

$$
\begin{equation*}
\sum_{j=1}^{k} \lambda_{j} \geq \bar{C}(Q) k^{1+\frac{4}{\bar{j}}}-\frac{C_{2}(Q)}{C_{1}(Q)} k \tag{1.6}
\end{equation*}
$$

where

$$
\bar{C}(Q)=\frac{A_{Q}}{C_{1}(Q) n^{2}(n+Q+3)}\left(\frac{(2 \pi)^{n}}{Q \omega_{n-1}|\Omega|_{n}}\right)^{\frac{4}{n+Q-1}}(n+Q-1)^{\frac{n+Q+3}{n+Q-1}}
$$

and

$$
A_{Q}= \begin{cases}\min \left\{1, n^{\frac{3-Q}{2}}\right\}, & Q \geq 2 \\ n, & Q=1 .\end{cases}
$$

Here $C_{1}(Q), C_{2}(Q)$ are the constants in Proposition 2.3 below, ω_{n-1} is the area of the unit sphere in \mathbb{R}^{n}, and $|\Omega|_{n}$ is the volume of Ω.

Remark 1.1. (1) Since $k \lambda_{k} \geq \sum_{j=1}^{k} \lambda_{j}$, then Theorem 1.1 shows that the eigenvalues λ_{k} satisfy

$$
\lambda_{k} \geq \bar{C}(Q) k^{\frac{4}{\bar{b}}}-\frac{C_{2}(Q)}{C_{1}(Q)}, \quad \text { for all } k \geq 1
$$

(2) If $Q \geq 1$, we can deduce from Definition 1.3 that $n+Q-1 \leq \tilde{v} \leq n Q$. Thus in our case in Theorem $1.1 \tilde{v}=n+Q-1$ is the smallest. That means the lower bound estimates (1.6) will be optimal.
(3) If $f(\bar{x})=1$ in Theorem 1.1, then $Q=1, \Delta_{X}^{2}=\Delta^{2}$ is the standard bi-harmonic operator. Then $C_{1}(Q)=1, C_{2}(Q)=0$ and $\bar{C}(Q)=\frac{16 \pi^{4} n}{n+4}\left(\frac{\omega_{n-1}|\Omega|_{n}}{n}\right)^{-4 / n}$. Thus the result of Theorem 1.1 will be the same to the result of (1.4) in Levine and Protter [15].

In the second part, we shall study the bi-subelliptic operators Δ_{X}^{2} for more general cases, namely

$$
\begin{equation*}
X=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n-p}}, f_{1}\left(\bar{x}_{(p)}\right) \partial_{x_{n-p+1}} \cdots, f_{p}\left(\bar{x}_{(p)}\right) \partial_{x_{n}}\right), \tag{1.7}
\end{equation*}
$$

where $\bar{x}_{(p)}=\left(x_{1}, \cdots, x_{n-p}\right)$,

$$
f_{j}\left(\bar{x}_{(p)}\right)=\sum_{|\alpha| \leq s_{j}} a_{j \alpha} \bar{x}_{(p)^{\alpha}}^{\alpha} \quad(1 \leq j \leq p<n),
$$

are multivariate polynomials of $\bar{x}_{(p)}$ with order s_{j}. Thus X is more general Grushin type degenerate vector fields with p degenerate directions. We suppose that
$\left(H_{2}\right)$: For each $j, 1 \leq j \leq p<n$, if $f_{j}\left(\bar{x}_{(p)}\right)$ has a unique zero point at origin $\bar{x}_{(p)}=0$ in Ω only, and there exists a unique multi-index $\alpha_{0 j}$ with $\left|\alpha_{0 j}\right|=s_{0 j} \leq s_{j}$, satisfying $\left.\partial_{\bar{x}_{(p)}}^{\alpha_{0 j}} f_{j}\left(\bar{x}_{(p)}\right)\right|_{\bar{x}_{(p)}=0} \neq$ 0 and $\left.\partial_{\bar{x}_{(p)}}^{\alpha} f_{j}\left(\bar{x}_{(p)}\right)\right|_{\tilde{x}_{(p)}=0}=0$ for any $|\alpha|<\left|\alpha_{0 j}\right|$.

Thus we have
Theorem 1.2. Under the condition $\left(H_{2}\right)$ above, the vector fields X satisfies the Hörmander's condition with its Hörmander index $Q=\max \left\{s_{01}, s_{02}, \cdots, s_{0 p}\right\}+1$, and the generalized Métivier index $\tilde{v}=n+\sum_{j=1}^{p} s_{0 j}$. Suppose λ_{j} is the j-th eigenvalue of the problem (1.1), then for all $k \geq 1$,

$$
\begin{equation*}
\sum_{j=1}^{k} \lambda_{j} \geq \widehat{C}(Q) k^{1+\frac{4}{\bar{b}}}-\frac{C_{4}(Q)}{C_{3}(Q)} k \tag{1.8}
\end{equation*}
$$

where

$$
\widehat{C}(Q)=\frac{2^{n}}{5 C_{3}(Q) n^{\frac{6+\tilde{\tau}}{2}}}\left(\frac{\tilde{v}}{\omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}\right)^{\frac{4+\tilde{\tilde{v}}}{\bar{\sigma}}}\left(\frac{(2 \pi)^{n}}{|\Omega|_{n}}\right)^{\frac{4}{\bar{v}}}
$$

where $\tilde{v}=n+\sum_{j=1}^{p} s_{0 j}, C_{3}(Q)$ and $C_{4}(Q)$ are the corresponding sub-elliptic estimate constants in Proposition 2.4, ω_{n-1} is the area of the unit sphere in $\mathbb{R}^{n},|\Omega|_{n}$ is the volume of Ω.

Remark 1.2. Since $k \lambda_{k} \geq \sum_{j=1}^{k} \lambda_{j}$, then Theorem 1.2 shows that the eigenvalues λ_{k} satisfy

$$
\lambda_{k} \geq \widehat{C}(Q) k^{\frac{4}{\bar{p}}}-\frac{C_{4}(Q)}{C_{3}(Q)}, \quad \text { for all } k \geq 1
$$

Our paper is organized as follows. In Section 2, we introduce some preliminaries about subelliptic estimates and discreteness of the Dirichlet eigenvalues for the operator $-\Delta_{X}^{2}$. In Section 3, we prove Theorem 1.1. Finally, we prove Theorem 1.2 in Section 4.

2 Preliminaries

Proposition 2.1. Let the system of vector fields $X=\left(X_{1}, \cdots, X_{m}\right)$ satisfies the Hörmander's condition on Ω with its Hörmander index $Q \geq 1$, then the following estimate

$$
\begin{equation*}
\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}^{2} \leq C(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\widetilde{C}(Q)\|u\|_{L^{2}(\Omega)}^{2} \tag{2.1}
\end{equation*}
$$

holds for all $u \in C_{0}^{\infty}(\Omega)$, where $\nabla=\left(\partial_{x_{1}}, \cdots, \partial_{x_{m}}\right),|\nabla|^{\frac{2}{Q}}$ is a pseudo-differential operator with the symbol $|\xi|^{\frac{2}{Q}}$, the constants $C(Q)>0, \widetilde{C}(Q) \geq 0$ depending on Q.

Proof. Refer to [12] and [21], the subelliptic operator $\Delta_{X}=\sum_{i=1}^{m} X_{i}^{2}$ satisfies the following sub-elliptic estimate for any $u \in C_{0}^{\infty}(\Omega)$,

$$
\|u\|_{(2 \epsilon)} \leq C_{1}\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}+C_{2}\|u\|_{L^{2}(\Omega)}
$$

with $\epsilon=\frac{1}{Q}$, where $\|u\|_{(2 \epsilon)}$ is the Sobolev norm of order 2ϵ. On the other hand, we have

$$
\begin{aligned}
\|u\|_{\left(\frac{2}{Q}\right)} & =\left(\int_{n}\left(1+|\xi|^{2}\right)^{\frac{2}{Q}}|\widehat{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \\
& \geq\left(\int_{n}|\xi|^{\frac{4}{Q}}|\widehat{u}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \\
& =\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}(n)}=\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

By using the Cauchy-Schwarz inequality we get the following estimate

$$
\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}^{2} \leq C(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\widetilde{C}(Q)\|u\|_{L^{2}(\Omega)}^{2}
$$

Thus, we complete the proof.
Proposition 2.2. (cf. [19,21] and [22]) Let the system of vector fields $X=\left(X_{1}, \cdots, X_{m}\right)$ satisfies the Hörmander's condition on Ω, then the operator $\Delta_{X}=\sum_{i=1}^{m} X_{i}^{2}$ is maximally hypo-elliptic, i.e., there exists a constant $C>0$, such that for any $u \in C_{0}^{\infty}(\Omega)$ we have the following maximally hypo-elliptic estimate

$$
\sum_{|\alpha| \leq 2}\left\|X^{\alpha} u\right\|_{L^{2}(\Omega)}^{2} \leq C\left(\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right)
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ is a multi-index with $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ and $X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}$.

Proposition 2.3. Let $X=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n-1}} f(\bar{x}) \partial_{x_{n}}\right), \bar{x}=\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$. Here $f(\bar{x})$ is a multivariate polynomial and satisfies the condition $\left(H_{1}\right)$ above. Then X satisfies the Hörmander's condition with its Hörmander index $Q \geq 1$, and we can deduce the following sub-elliptic estimate

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left\|\partial_{x_{j}}^{2} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\left|\partial_{x_{n}}\right|^{\frac{2}{\ell}} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{1}(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+C_{2}(Q)\|u\|_{L^{2}(\Omega)^{\prime}}^{2} \tag{2.2}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(\Omega)$, where $\left|\partial_{x_{n}}\right|^{\frac{2}{8}}$ is a pseudo-differential operator with the symbol $\left|\xi_{n}\right|^{\frac{2}{Q}}$, $C_{1}(Q)>0, C_{2}(Q) \geq 0$ are constants depending on Q.

Proof. From the Plancherel's formula, we have

$$
\begin{align*}
\left\|\left|\partial_{x_{n}}\right|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}^{2} & =\left\|\left|\xi_{n}\right|^{\frac{2}{Q}} \widehat{u}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \leq\left\||\xi|^{\frac{2}{Q} \widehat{u}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\||\nabla|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}^{2} . \tag{2.3}
\end{align*}
$$

Also, from the maximally hypo-elliptic estimate of Proposition 2.2 we can deduce that

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left\|\partial_{x_{j}}^{2} u\right\|_{L^{2}(\Omega)}^{2} \leq \sum_{|\alpha| \leq 2}\left\|X^{\alpha} u\right\|_{L^{2}(\Omega)}^{2} \leq C\left(\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right) \tag{2.4}
\end{equation*}
$$

Combining (2.1), (2.3) and (2.4) we can deduce that

$$
\sum_{j=1}^{n-1}\left\|\partial_{x_{j}}^{2} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\left|\partial_{x_{n}}\right|^{\frac{2}{Q}} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{1}(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+C_{2}(Q)\|u\|_{L^{2}(\Omega)}^{2}
$$

Thus, we complete the proof.
Proposition 2.4. Let $X=\left(\partial_{x_{1}, \cdots,} \partial_{x_{n-p}}, f_{1}\left(\bar{x}_{(p)}\right) \partial_{x_{n-p+1}}, \cdots, f_{p}\left(\bar{x}_{(p)}\right) \partial_{x_{n}}\right)$, $\bar{x}_{(p)}=$ $\left(x_{1}, x_{2}, \cdots, x_{n-p}\right)$. Here $f_{j}\left(\bar{x}_{(p)}\right)$ (for $\left.1 \leq j \leq p<n\right)$ are multivariate polynomials which satisfying the condition (H2) above. Then X satisfies the Hörmander's condition with its Hörmander index $Q \geq 1$, and we get the following sub-elliptic estimate

$$
\begin{equation*}
\sum_{i=1}^{n-p}\left\|\partial_{x_{i}}^{2} u\right\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{p}\left\|\left|\partial_{x_{n-p+j}}\right|^{\frac{2}{0_{j}+1}} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{3}(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+C_{4}(Q)\|u\|_{L^{2}(\Omega)^{\prime}}^{2} \tag{2.5}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(\Omega)$, where $\left|\partial_{x_{j}}\right|^{\frac{2}{r}}$ is a pseudo-differential operator with the symbol $\left|\xi_{j}\right|^{\frac{2}{r}}$, and the constants $C_{3}(Q)>0, C_{4}(Q) \geq 0$ depending on Q.

Proof. We consider the system of vector fields $\tilde{X}=\left(\partial_{x_{1}}, \cdots, \partial_{x_{n-p}}, f_{j}\left(\bar{x}_{(p)}\right) \partial_{x_{n-p+j}}\right)($ for $1 \leq$ $j \leq p<n)$ defined on the projection $\Omega_{x_{j}^{\prime}}$ of Ω on the direction $x_{j}^{\prime}=\left(x_{1}, \cdots, x_{n-p}, x_{n-p+j}\right)$. Similar to Proposition 2.3, for all $j(1 \leq j \leq p)$, we have

$$
\sum_{i=1}^{n-p}\left\|\partial_{x_{i}}^{2} u\right\|_{L^{2}\left(\Omega_{x_{j}^{\prime}}\right)}^{2}+\left\|\left|\partial_{x_{n-p+j}}\right|^{\frac{2}{s_{0 j}+1}} u\right\|_{L^{2}\left(\Omega_{x_{j}^{\prime}}\right)}^{2} \leq \widehat{C}_{1}(Q)\left\|\Delta_{\tilde{X}} u\right\|_{L^{2}\left(\Omega_{x_{j}^{\prime}}\right)}^{2}+\widehat{C}_{2}(Q)\|u\|_{L^{2}\left(\Omega_{x_{j}^{\prime}}\right)}^{2}
$$

Then for all $j(1 \leq j \leq p)$, we have

$$
\begin{equation*}
\sum_{i=1}^{n-p}\left\|\partial_{x_{i}}^{2} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\left|\partial_{x_{n-p+j}}\right|^{\frac{2}{s_{j}+1}} u\right\|_{L^{2}(\Omega)}^{2} \leq \widehat{C}_{1}(Q)\left\|\Delta_{\tilde{X}} u\right\|_{L^{2}(\Omega)}^{2}+\widehat{C}_{2}(Q)\|u\|_{L^{2}(\Omega)}^{2} \tag{2.6}
\end{equation*}
$$

By using the Cauchy-Schwarz inequality and Proposition 2.2, there exists a constant $C_{3}>0$ such that

$$
\left\|\Delta_{\tilde{X}} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{3} \sum_{|\alpha| \leq 2}\left\|X^{\alpha} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{3} C\left(\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right)
$$

where C is given in Proposition 2.2. Finally, we get the following sub-elliptic estimate from (2.6)

$$
\sum_{i=1}^{n-p}\left\|\partial_{x_{i}}^{2} u\right\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{p}\left\|\left|\partial_{x_{n-p+j}}\right|^{\frac{2}{s_{0 j}+1}} u\right\|_{L^{2}(\Omega)}^{2} \leq C_{3}(Q)\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+C_{4}(Q)\|u\|_{L^{2}(\Omega)}^{2}
$$

Thus, we complete the proof.
Next, for the Dirichlet eigenvalues problem (1.1), we have
Proposition 2.5. The Dirichlet eigenvalues problem (1.1) has a sequence of discrete eigenvalues $\left\{\lambda_{j}\right\}_{j \geq 1}$, which satisfying $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{k} \cdots$ and $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. Also, the corresponding eigenfunctions $\left\{\phi_{k}(x)\right\}_{k \geq 1}$ constitute an orthonormal basis of $L^{2}(\Omega)$ and an orthogonal basis of $H_{X, 0}^{2}(\Omega)$.

The proof of Proposition 2.5 depends the following lemma:
Lemma 2.1. If $u \in H_{X, 0}^{2}(\Omega)$, then for $1 \leq j \leq m, X_{j} u \in H_{X, 0}^{1}(\Omega)$.
Proof. Since $u \in H_{X, 0}^{2}(\Omega)$, we have $X_{i}\left(X_{j} u\right) \in L^{2}(\Omega)$ for any $1 \leq i, j \leq m$, and $\left(X_{j} u\right) \in L^{2}(\Omega)$. That implies $X_{j} u \in H_{X}^{1}(\Omega)$. Now, $u \in H_{X, 0}^{2}(\Omega)$, then there exists a sequence $\varphi_{i} \in C_{0}^{\infty}(\Omega)$ which converges to u in $H_{X, 0}^{2}(\Omega)$. That means $X_{j} \varphi_{i} \rightarrow X_{j} u$ in $H_{X}^{1}(\Omega)$. Observe that $X_{j} \varphi_{i} \in$ $H_{X, 0}^{1}(\Omega)$ and $H_{X, 0}^{1}(\Omega)$ is a Hilbert space, thus we have $X_{j} u \in H_{X, 0}^{1}(\Omega)$.

Proof of Proposition 2.5. We know that the definition domain of Δ_{X}^{2} is

$$
\operatorname{dom}\left(\Delta_{X}^{2}\right)=\left\{u \in H_{X, 0}^{2}(\Omega) \mid \Delta_{X}^{2} u \in L^{2}(\Omega)\right\}
$$

Thus, for X_{j} to be formally skew-adjoint, then for any function $u \in C_{0}^{\infty}(\Omega)$ and $v \in$ $\operatorname{dom}\left(\Delta_{X}^{2}\right)$, we have

$$
\begin{aligned}
\int_{\Omega} u \Delta_{X}^{2} v d x & =\int_{\Omega} v \Delta_{X}^{2} u d x \\
& =\int_{\Omega} v \Delta_{X}\left(\Delta_{X} u\right) d x=\sum_{j=1}^{m} \int_{\Omega} v \cdot X_{j}^{2}\left(\Delta_{X} u\right) d x
\end{aligned}
$$

Since $v \in H_{X, 0}^{2} \subset H_{X, 0}^{1}(\Omega)$, and from the result of Lemma 2.1, $X_{j} v \in H_{X, 0}^{1}(\Omega)$. Then the equation above gives

$$
\int_{\Omega} u \Delta_{X}^{2} v d x=-\sum_{j=1}^{m} \int_{\Omega} X_{j} v \cdot X_{j}\left(\Delta_{X} u\right) d x=\sum_{j=1}^{m} \int_{\Omega} X_{j}^{2} v \cdot\left(\Delta_{X} u\right) d x
$$

that gives the following Green formula:

$$
\begin{equation*}
\int_{\Omega} u \Delta_{X}^{2} v d x=\int_{\Omega} \Delta_{X} u \cdot \Delta_{X} v d x, \quad \text { for } u \in H_{X, 0}^{2}(\Omega), \quad v \in \operatorname{dom}\left(\Delta_{X}^{2}\right) . \tag{2.7}
\end{equation*}
$$

On the other hand, for $u \in H_{X, 0}^{2}(\Omega)$,

$$
\|u\|_{H_{X}^{2}}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+\sum_{i=1}^{m}\left\|X_{i} u\right\|_{L^{2}(\Omega)}^{2}+\sum_{i, j=1}^{m}\left\|X_{i} X_{j} u\right\|_{L^{2}(\Omega)}^{2} .
$$

Thus we have

$$
\begin{equation*}
\|u\|_{H_{X}^{2}} \geq\|u\|_{L^{2}(\Omega)}+\sum_{j=1}^{m}\left\|X_{j}^{2} u\right\|_{L^{2}(\Omega)} \geq\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)} \tag{2.8}
\end{equation*}
$$

By maximally hypoellipticity of Δ_{X} (also see Proposition 2.2 above), we have following estimate for any $u \in H_{X, 0}^{2}(\Omega)$,

$$
\begin{equation*}
\|u\|_{H_{X}^{2}}^{2}=\sum_{|\alpha| \leq 2}\left\|X^{\alpha} u\right\|_{L^{2}(\Omega)}^{2} \leq C\left(\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right) \tag{2.9}
\end{equation*}
$$

Furthermore, the Poincaré inequality gives

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq C_{1}\|X u\|_{L^{2}(\Omega)}^{2} \leq C_{1}\left|\left(\Delta_{X} u, u\right)\right| \leq C_{1}\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)} \cdot\|u\|_{L^{2}(\Omega)} .
$$

Thus for any $0<\epsilon<1$ there is $C_{\epsilon}>0$, such that

$$
\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)} \cdot\|u\|_{L^{2}(\Omega)} \leq C_{\epsilon}\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2}+\epsilon\|u\|_{L^{2}(\Omega)}^{2}
$$

That means from (2.9) that there exists $C_{2}>0$, such that

$$
\begin{equation*}
\|u\|_{H_{X}^{2}}^{2} \leq C_{2}\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2} . \tag{2.10}
\end{equation*}
$$

Hence from (2.8) and (2.10) one has for any $u \in H_{X, 0}^{2}(\Omega)$,

$$
\begin{equation*}
\left\|\Delta_{\mathrm{X}} u\right\| \leq\|u\|_{H_{X}^{2}} \leq C_{3}\left\|\Delta_{\mathrm{X}} u\right\| . \tag{2.11}
\end{equation*}
$$

Thus we define that

$$
\begin{equation*}
[u, \varphi]=\left(\Delta_{X} u, \Delta_{X} \varphi\right), \tag{2.12}
\end{equation*}
$$

then $[\because \cdot \cdot]$ is another inner product, and $H_{X, 0}^{2}(\Omega)$ with this inner product is complete.
Now, we choose $u, v \in \operatorname{dom}\left(\Delta_{X}^{2}\right)$, then

$$
\left(\Delta_{X}^{2} u, v\right)=\left(\Delta_{X} u, \Delta_{X} v\right)=\left(\Delta_{X}^{2} v, u\right) .
$$

Hence, Δ_{X}^{2} is symmetric operator in $\operatorname{dom}\left(\Delta_{X}^{2}\right)$. Also

$$
\left(\Delta_{X}^{2} u, u\right)=\left(\Delta_{X} u, \Delta_{X} u\right) \geq 0,
$$

which implies that Δ_{X}^{2} is positive in $\operatorname{dom}\left(\Delta_{X}^{2}\right)$.
Next, for any given $f \in L^{2}(\Omega)$ and any $\varphi \in H_{X, 0}^{2}(\Omega)$, we define a functional $f(\varphi)=(f, \varphi)$. Since

$$
|(f, \varphi)| \leq\|f\|_{L^{2}(\Omega)} \cdot\|\varphi\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)} \cdot\|\varphi\|_{H_{X}^{2}(\Omega)}
$$

then the functional (f, φ) is a continuous linear functional on Hilbert space $H_{X, 0}^{2}(\Omega)$. By Riesz representation theorem, there exists a unique $u \in H_{X, 0}^{2}(\Omega)$ such that

$$
(f, \varphi)=[u, \varphi]=\left(\Delta_{X} u, \Delta_{X} \varphi\right) .
$$

Thus the Green formula (2.7) gives that

$$
\begin{equation*}
\left(\Delta_{X}^{2} u, \varphi\right)=\left(\Delta_{X} u, \Delta_{X} \varphi\right)=(f, \varphi) \tag{2.13}
\end{equation*}
$$

holds for any $\varphi \in C_{0}^{\infty}(\Omega)$. That implies $\Delta_{X}^{2} u=f$, i.e., $u \in \operatorname{dom}\left(\Delta_{X}^{2}\right)$. This proves the existence of the resolvent operator $R:=\left(\Delta_{X}^{2}\right)^{-1}$, and $R f=u$.

On the other hand, if we choose $\varphi=u$ in (2.13), then $(R f, f)=(u, f)=\left\|\Delta_{X} u\right\|_{L^{2}(\Omega)}^{2} \geq 0$. R is positive in $L^{2}(\Omega)$. Meanwhile we have

$$
\|R f\|_{L^{2}(\Omega)}^{2}=\|u\|_{L^{2}(\Omega)}^{2} \leq C\|f\|_{L^{2}(\Omega)}\|R f\|_{L^{2}(\Omega)},
$$

this implies that R is bounded in $L^{2}(\Omega)$. In order to prove the operator R is self-adjoint, it suffices to prove that R is symmetric, i.e.,

$$
(R f, g)=(f, R g) \text { for all } f, g \in L^{2}(\Omega) .
$$

Let $R f=u, R g=v$, and choosing $\varphi=v$ in (2.13), we obtain

$$
\left(\Delta_{X} u, \Delta_{X} v\right)=(f, R g) .
$$

Since the left hand side is symmetric in u and v, we conclude that the right side is symmetric in f and g. That implies that R is symmetric. Also, we know that the operator $R^{-1}:=\Delta_{X}^{2}$ is a self-adjoint on $\operatorname{dom}\left(\Delta_{X}^{2}\right)$.

Similarly, we can prove that the inverse operator $\left(\Delta_{X}^{2}+\alpha \cdot i d\right)^{-1}$ exists and is bounded for any $\alpha \geq 0$. We see that $-\alpha$ is a regular value of Δ_{X}^{2}, hence spec $\left(\Delta_{X}^{2}\right) \subset(0,+\infty)$. Moreover, we can deduce that $R: L^{2}(\Omega) \rightarrow H_{X, 0}^{2}(\Omega)$ is continuous, this is because that

$$
\|R f\|_{H_{X}^{2}}^{2} \leq C\left(\left\|\Delta_{X}(R f)\right\|_{L^{2}(\Omega)}^{2}\right) \leq C(f, R f) \leq C\|f\|_{L^{2}(\Omega)}\|R f\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}\|R f\|_{H_{X}^{2}(\Omega)} .
$$

By using the subelliptic estimate, we know that $H_{X, 0}^{2}$ can be continuously embedded into the standard Sobolev space $H^{\frac{2}{Q}}(\Omega)$, and $H^{\frac{2}{Q}}(\Omega)$ can be compactly embedded into $L^{2}(\Omega)$. Hence R is a compact operator from $L^{2}(\Omega)$ to $L^{2}(\Omega)$. By spectral theory we know that R has positive discrete eigenvalues $\mu_{i}, \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{k} \geq \cdots$ and $\mu_{k} \rightarrow 0$ as $k \rightarrow+\infty$; and the corresponding eigenfunctions ϕ_{i} of R form an orthonormal basis of $L^{2}(\Omega)$, namely

$$
R \phi_{i}=\mu_{i} \phi_{i} .
$$

That means the eigenfunctions $\left\{\phi_{i}\right\}_{i \geq 1}$ will be the orthogonal basis of $H_{X, 0}^{2}(\Omega)$. Finally we let $\lambda_{i}=\mu_{i}^{-1}$, then λ_{i} are the Dirichlet eigenvalues of Δ_{X}^{2} which will be discrete and satisfying $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots$, and $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. The proof of Proposition 2.5 is completed.

3 Proof of Theorem 1.1

Lemma 3.1 (cf. [3,16]). For the system of vector fields $X=\left(X_{1}, \cdots, X_{m}\right)$, if $\left\{\phi_{j}\right\}_{j=1}^{k}$ are the set of orthonormal eigenfunctions corresponding to the eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{k}$. Define

$$
\Phi(x, y)=\sum_{j=1}^{k} \phi_{j}(x) \phi_{j}(y) .
$$

Then for $\widehat{\Phi}(z, y)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \Phi(x, y) e^{-i x \cdot z} d x$ to be the partial Fourier transformation of $\Phi(x, y)$ with respect to the x-variable, we have

$$
\int_{\Omega} \int_{\mathbb{R}^{n}}|\widehat{\Phi}(z, y)|^{2} d z d y=k \quad \text { and } \quad \int_{\Omega}|\widehat{\Phi}(z, y)|^{2} d y \leq(2 \pi)^{-n}|\Omega|_{n}
$$

Lemma 3.2 (cf. [8]). Let f be a real-valued function defined on \mathbb{R}^{n} with $0 \leq f \leq M_{1}$, and for $Q \in \mathbb{N}^{+}$,

$$
\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{n-1} z_{j}^{2}+\left|z_{n}\right|^{\frac{2}{Q}}\right)^{2} f(z) d z \leq M_{2}
$$

Then

$$
\int_{\mathbb{R}^{n}} f(z) d z \leq \frac{\left(Q M_{1} \omega_{n-1}\right)^{\frac{4}{n+Q+3}}}{n+Q-1}\left(\frac{n(n+Q+3)}{A_{Q}}\right)^{\frac{n+Q-1}{n+Q+3}} M_{2}^{\frac{n+Q-1}{n+Q+3}},
$$

where ω_{n-1} is the area of the unit sphere in \mathbb{R}^{n}, and

$$
A_{Q}= \begin{cases}\min \left\{1, n^{\frac{3-Q}{2}}\right\}, & Q \geq 2, \\ n, & Q=1 .\end{cases}
$$

Proof of Theorem 1.1. From the results of Proposition 2.5, let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be a sequence of the eigenvalues for the problem (1.1), and $\left\{\phi_{k}(x)\right\}_{k \geq 1}$ be the corresponding eigenfunctions, then $\left\{\phi_{k}(x)\right\}_{k \geq 1}$ constitute an orthogonal basis of $H_{X, 0}^{2}(\Omega)$.

Let

$$
\Phi(x, y)=\sum_{j=1}^{k} \phi_{j}(x) \phi_{j}(y),
$$

by Cauchy-Schwarz inequality we have

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-1} z_{j}^{2}+\left|z_{n}\right|^{\frac{2}{Q}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \\
\leq & n \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-1} z_{j}^{4}+\left|z_{n}\right|^{\frac{4}{Q}}\right)|\widehat{\Phi}(z, y)|^{2} d y d z . \tag{3.1}
\end{align*}
$$

Next, by using integration-by-parts, we have

$$
\begin{align*}
\sum_{j=1}^{k} \lambda_{j} & =\sum_{j=1}^{k} \int_{\Omega} \lambda_{j} \phi_{j}(x) \cdot \phi_{j}(x) d x=\sum_{j=1}^{k} \int_{\Omega} \Delta_{X}^{2} \phi_{j}(x) \cdot \phi_{j}(x) d x \\
& =\sum_{j=1}^{k} \int_{\Omega} X\left(\Delta_{X} \phi_{j}(x)\right) \cdot X \phi_{j}(x) d x=\sum_{j=1}^{k} \int_{\Omega} \Delta_{X} \phi_{j}(x) \cdot \Delta_{X} \phi_{j}(x) d x \\
& =\int_{\Omega} \int_{\Omega} \sum_{j=1}^{k}\left|\Delta_{X} \phi_{j}(x) \phi_{j}(y)\right|^{2} d x d y=\int_{\Omega} \int_{\Omega}\left|\Delta_{X} \Phi(x, y)\right|^{2} d x d y . \tag{3.2}
\end{align*}
$$

Then by using Plancherel's formula and Proposition 2.3, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-1} z_{j}^{2}+\left|z_{n}\right|^{\frac{2}{Q}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \\
\leq & n \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-1} z_{j}^{4}+\left|z_{n}\right|^{\frac{4}{Q}}\right)|\widehat{\Phi}(z, y)|^{2} d y d z \\
= & n \int_{n} \int_{\Omega}\left(\sum_{j=1}^{n-1}\left|\partial_{x_{j}}^{2} \Phi(x, y)\right|^{2}+\left|\left|\partial_{x_{n}}\right|^{\frac{2}{Q}} \Phi(x, y)\right|^{2}\right) d y d x \\
= & n \int_{\Omega} \int_{\Omega}\left(\sum_{j=1}^{n-1}\left|\partial_{x_{j}}^{2} \Phi(x, y)\right|^{2}+\left|\left|\partial_{x_{n}}\right|^{\frac{2}{Q}} \Phi(x, y)\right|^{2}\right) d y d x \\
\leq & n\left[C_{1}(Q) \int_{\Omega} \int_{\Omega}\left|\Delta_{X} \Phi(x, y)\right|^{2} d x d y+C_{2}(Q) \int_{\Omega} \int_{\Omega}|\Phi(x, y)|^{2} d x d y\right] . \tag{3.3}
\end{align*}
$$

Thus from (3.2) and Lemma 3.1 above, we can deduce that

$$
\int_{n} \int_{\Omega}\left(\sum_{j=1}^{n-1} z_{j}^{2}+\left|z_{n}\right|^{\frac{2}{Q}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \leq n\left(C_{1}(Q) \sum_{j=1}^{k} \lambda_{j}+C_{2}(Q) k\right) .
$$

Next, we choose

$$
f(z)=\int_{\Omega}|\widehat{\Phi}(z, y)|^{2} d y, \quad M_{1}=(2 \pi)^{-n}|\Omega|_{n}, \quad M_{2}=n\left(C_{1}(Q) \sum_{j=1}^{k} \lambda_{j}+C_{2}(Q) k\right) .
$$

Then from the result of Lemma 3.2, we know that for any $k \geq 1$,

$$
\leq \frac{Q \omega_{n-1}(2 \pi)^{-n}|\Omega|_{n}}{n+Q-1}\left(\frac{n(n+Q+3)}{(2 \pi)^{-n}|\Omega|_{n} Q A_{Q} \omega_{n-1}}\right)^{\frac{n+Q-1}{n+Q+3}}\left(n\left(C_{1}(Q) \sum_{j=1}^{k} \lambda_{j}+C_{2}(Q) k\right)\right)^{\frac{n+Q-1}{n+Q+3}} .
$$

This means, for any $k \geq 1$,

$$
\sum_{j=1}^{k} \lambda_{j} \geq \widetilde{C}(Q) k^{1+\frac{4}{\bar{b}}}-\frac{C_{2}(Q)}{C_{1}(Q)} k
$$

with

$$
\widetilde{C}(Q)=\frac{A_{Q}}{C_{1}(Q) n^{2}(n+Q+3)}\left(\frac{(2 \pi)^{n}}{Q \omega_{n-1}|\Omega|_{n}}\right)^{\frac{4}{n+Q-1}}(n+Q-1)^{\frac{n+Q+3}{n+Q-1}} .
$$

The proof of Theorem 1.1 is completed.

4 Proof of Theorem 1.2

Lemma 4.1. Let f be a real-valued function defined on \mathbb{R}^{n} with $0 \leq f \leq M_{1}$, and for $p, q \in \mathbb{N}^{+}$,

$$
\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{0 j}+1}}\right)^{2} f(z) d z \leq M_{2} .
$$

Then

$$
\int_{\mathbb{R}^{n}} f(z) d z \leq \frac{\omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}{\tilde{v}}\left(\frac{5 n^{\frac{4+\tilde{v}}{2}}}{2^{n}}\right)^{\frac{\tilde{\tilde{v}}}{4+\overline{\tilde{v}}}} M_{1}^{\frac{4}{4+\bar{v}}} M_{2}^{\frac{\tilde{\delta}}{4+\tilde{v}}},
$$

where $\tilde{v}=n+\sum_{j=1}^{p} s_{0 j}, \omega_{n-1}$ is the area of the unit sphere in \mathbb{R}^{n}.
Proof. First, we choose R such that

$$
\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\left.\right|_{0 j}+1}}\right)^{2} g(z) d z=M_{2}
$$

where

$$
g(z)= \begin{cases}M_{1}, & \sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{0_{j}+1}} \leq R^{2} \\ 0, & \sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{0_{j}+1}}>R^{2}\end{cases}
$$

Then

$$
\left[\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2}-R^{4}\right](f(z)-g(z)) \geq 0 .
$$

Hence we have

$$
R^{4} \int_{\mathbb{R}^{n}}(f(z)-g(z)) d z \leq \int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2}(f(z)-g(z)) d z \leq 0 .
$$

That means

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(z) d z \leq \int_{\mathbb{R}^{n}} g(z) d z \tag{4.1}
\end{equation*}
$$

Now we have

$$
M_{2}=\int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2} g(z) d z=M_{1} \int_{\widetilde{B}_{R}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2} d z,
$$

where

$$
\widetilde{B}_{R}=\left\{z \in \mathbb{R}^{n}, \quad \sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{s_{0 j}+1}} \leq R^{2}\right\} .
$$

Next, we change the variables as follows,

$$
z_{i}=z_{i}^{\prime} \quad(i=1,2, \cdots, n-p), \quad z_{n-p+j}=\operatorname{sgn}\left(z_{n-p+j}^{\prime}\right)\left|z_{n-p+j}^{\prime}\right|^{s_{0 j}+1}, \quad(j=1,2, \cdots, p) .
$$

Then we have the following determinant of Jacobian,

$$
\left|\operatorname{det}\left(\frac{\partial\left(z_{1}, \cdots, z_{n}\right)}{\partial\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)}\right)\right|=\prod_{j=1}^{p}\left(s_{0 j}+1\right)\left|z_{n-p+j}^{\prime}\right|^{s_{0 j}} .
$$

Hence

$$
\begin{aligned}
M_{2} & =M_{1} \int_{\widetilde{B}_{R}}\left(\sum_{i=1}^{n-p} z_{i}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{s_{0 j}+1}}\right)^{2} d z \\
& =M_{1} \prod_{j=1}^{p}\left(s_{0 j}+1\right) \int_{B_{R}}|z|^{4} \prod_{j=1}^{p}\left|z_{n-p+j}\right|^{s_{j} j} d z \\
& \geq M_{1} \prod_{j=1}^{p}\left(s_{0 j}+1\right) \int_{A_{R}}|z|^{4} \prod_{j=1}^{p}\left|z_{n-p+j}\right|^{s_{0 j} j} d z
\end{aligned}
$$

where

$$
B_{R}=\left\{z \in \mathbb{R}^{n},|z| \leq R\right\}, \quad A_{R}=\left\{z \in \mathbb{R}^{n},\left|z_{j}\right| \leq \frac{R}{\sqrt{n}}, j=1, \cdots, n\right\} .
$$

By a direct calculation, we have

$$
\begin{aligned}
& \int_{A_{R}}|z|^{4} \prod_{j=1}^{p}\left|z_{n-p+j}\right|^{s_{0 j}} d z \\
\geq & \int_{A_{R}}\left|z_{1}\right|^{4} \prod_{j=1}^{p}\left|z_{n-p+j}\right|^{s_{0 j} j} d z \\
= & \int_{0}^{\frac{R}{\sqrt{n}}}\left|z_{1}\right|^{4} d z_{1} \times \prod_{j=1}^{p}\left(2 \int_{0}^{\frac{R}{\sqrt{n}}}\left|z_{n-p+j}\right|^{s_{0 j}} d z_{n-p+j}\right) \times\left(2 \int_{0}^{\frac{R}{\sqrt{n}}} 1 d z\right)^{n-p-1} \\
= & \frac{2^{n}}{5} \frac{1}{\prod_{j=1}^{p}\left(s_{0 j}+1\right)} n^{-\frac{n+4+\sum_{j=1}^{p}}{2} s_{0 j}} R^{n+4+\sum_{j=1}^{p} s_{0 j}}=\frac{2^{n}}{5} \frac{1}{\prod_{j=1}^{p}\left(s_{0 j}+1\right)} n^{-\frac{4+\tilde{\tilde{v}}}{2}} R^{4+\tilde{v}} .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
M_{2} \geq \frac{2^{n} M_{1}}{5} n^{-\frac{4+\tilde{v}}{2}} R^{4+\tilde{v}} \tag{4.2}
\end{equation*}
$$

From the definition of $g(z)$, we know that

$$
\begin{align*}
\int_{\mathbb{R}^{n}} g(z) d z & =M_{1} \int_{\widetilde{B}_{R}} d z=M_{1} \prod_{j=1}^{p}\left(s_{0 j}+1\right) \int_{B_{R}} \prod_{j=1}^{p}\left|z_{n-p+j}\right|^{\mid s_{0} j} d z \\
& \leq M_{1} \prod_{j=1}^{p}\left(s_{0 j}+1\right) \int_{B_{R}}|z|^{\sum_{j=1}^{p} s_{0 j}} d z=M_{1} \prod_{j=1}^{p}\left(s_{0 j}+1\right) \int_{0}^{R} \omega_{n-1} r^{n-1+\sum_{j=1}^{p} s_{0 j}} d r \\
& =\frac{M_{1} \omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}{n+\sum_{j=1}^{p} s_{0 j}} R^{n+\sum_{j=1}^{p} s_{0 j}}=\frac{M_{1} \omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}{\tilde{v}} R^{\tilde{v}} . \tag{4.3}
\end{align*}
$$

From (4.1), (4.2) and (4.3), we obtain

$$
\int_{\mathbb{R}^{n}} f(z) d z \leq \int_{\mathbb{R}^{n}} g(z) d z \leq \frac{\omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}{\tilde{v}}\left(\frac{5 n^{\frac{4+\tilde{v}}{2}}}{2^{n}}\right)^{\frac{\tilde{y}}{4+\tilde{\delta}}} M_{1}^{\frac{4}{4+\tilde{\delta}}} M_{2}^{\frac{\tilde{\delta}}{4+\tilde{\delta}}},
$$

where $\tilde{v}=n+\sum_{j=1}^{p} s_{0 j}$. Lemma 4.1 is proved.
Proof of Theorem 1.2. Let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be a sequence of the eigenvalues for the problem (1.1), $\left\{\phi_{k}(x)\right\}_{k \geq 1}$ be the corresponding eigenfunctions. Then $\left\{\phi_{k}(x)\right\}_{k \geq 1}$ constitute an orthogonal basis of $H_{X, 0}^{2}(\Omega)$.

Let $\Phi(x, y)=\sum_{j=1}^{k} \phi_{j}(x) \phi_{j}(y)$. Thus, by using the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p} z_{j}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{s_{0 j}+1}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \\
\leq & n \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p} z_{j}^{4}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{4}{s_{0 j}+1}}\right)|\widehat{\Phi}(z, y)|^{2} d y d z . \tag{4.4}
\end{align*}
$$

Similar to the result of (3.2), we obtain that

$$
\begin{equation*}
\sum_{j=1}^{k} \lambda_{j}=\int_{\Omega} \int_{\Omega}\left|\Delta_{X} \Phi(x, y)\right|^{2} d x d y \tag{4.5}
\end{equation*}
$$

Then by using Plancherel's formula and Proposition 2.4, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p} z_{j}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \\
\leq & n \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p} z_{j}^{4}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{4}{\delta_{j}+1}}\right)|\widehat{\Phi}(z, y)|^{2} d y d z
\end{aligned}
$$

$$
\begin{aligned}
& =n \int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p}\left|\partial_{x_{j}}^{2} \Phi(x, y)\right|^{2}+\left.\left.\sum_{j=1}^{p}| | \partial_{x_{n-p+j}}\right|^{\frac{2}{\delta_{j+1}}} \Phi(x, y)\right|^{2}\right) d y d x \\
& =n \int_{\Omega} \int_{\Omega}\left(\sum_{j=1}^{n-p}\left|\partial_{x_{j}}^{2} \Phi(x, y)\right|^{2}+\left.\left.\sum_{j=1}^{p}| | \partial_{x_{n-p+j}}\right|^{\frac{2}{\delta_{0 j}+1}} \Phi(x, y)\right|^{2}\right) d y d x \\
& \leq n\left[C_{3}(Q) \int_{\Omega} \int_{\Omega}\left|\Delta_{X} \Phi(x, y)\right|^{2} d x d y+C_{4}(Q) \int_{\Omega} \int_{\Omega}|\Phi(x, y)|^{2} d x d y\right] .
\end{aligned}
$$

Thus from (4.5) and Lemma 3.1 above, we can deduce that

$$
\int_{\mathbb{R}^{n}} \int_{\Omega}\left(\sum_{j=1}^{n-p} z_{j}^{2}+\sum_{j=1}^{p}\left|z_{n-p+j}\right|^{\frac{2}{\delta_{j}+1}}\right)^{2}|\widehat{\Phi}(z, y)|^{2} d y d z \leq n\left(C_{3}(Q) \sum_{j=1}^{k} \lambda_{i}+C_{4}(Q) k\right) .
$$

Finally, we choose

$$
f(z)=\int_{\Omega}|\widehat{\Phi}(z, y)|^{2} d y, \quad M_{1}=(2 \pi)^{-n}|\Omega|_{n}, \quad M_{2}=n\left(C_{3}(Q) \sum_{i=1}^{k} \lambda_{i}+C_{4}(Q) k\right) .
$$

Then from the Lemma 4.1, we have for any $k \geq 1$,

$$
k \leq \frac{\omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}{\tilde{v}}\left((2 \pi)^{-n}|\Omega|_{n}\right)^{\frac{4}{4+\bar{\jmath}}}\left(\frac{5 n^{\frac{4+\tilde{v}}{2}}}{2^{n}}\right)^{\frac{\tilde{\delta}}{4+\tilde{\delta}}}\left(n\left(C_{3}(Q) \sum_{j=1}^{k} \lambda_{j}+C_{4}(Q) k\right)\right)^{\frac{\tilde{\psi}}{4+\tilde{v}}}
$$

This means, for any $k \geq 1$,

$$
\sum_{j=1}^{k} \lambda_{j} \geq \widehat{C}(Q) k^{1+\frac{4}{\partial}}-\frac{C_{4}(Q)}{C_{3}(Q)} k
$$

where $\tilde{v}=n+\sum_{j=1}^{p} s_{0 j}$, and

$$
\widehat{C}(Q)=\frac{2^{n}}{5 C_{3}(Q) n^{\frac{6+\tilde{\delta}}{2}}}\left(\frac{\tilde{v}}{\omega_{n-1} \prod_{j=1}^{p}\left(s_{0 j}+1\right)}\right)^{\frac{4+\tilde{\delta}}{\bar{j}}}\left(\frac{(2 \pi)^{n}}{|\Omega|_{n}}\right)^{\frac{4}{\bar{v}}}
$$

The proof of Theorem 1.2 is completed.

Acknowledgements

The authors would like to thank the referee for the suggestions. Also, this work is supported by National Natural Science Foundation of China (Grants Nos. 11631011 and 11626251).

References

[1] Agmon, S., On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems, Commun. Pure Appl. Math., 18 (1965), 627-663.
[2] Bramanti, M., An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Springer, New York, (2014).
[3] Chen, H. and Luo, P., Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators, Calc. Var. Partial Differ. Eqs., 54 (2015), 2831-2852.
[4] Chen, H., Luo, P. and Tian, S., Lower bounds of Dirichlet eigenvalues for degenerate elliptic operators and degenerate Schrödinger operators, Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, (2013).
[5] Chen, H., Liu, X. and Wei, Y., Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differ. Eqs., 252 (2012), 4289-4314.
[6] Chen, H., Qiao, R., Luo, P. and Xiao, D., Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators, Sci. China Math., 57 (2014), 2235-2246.
[7] Cheng, Q. M., Wei, G. X., Upper and lower bounds for eigenvalues of the clamped plate problem, arxiv:1201.6103v1 [math.DG] (2012).
[8] Chen, H. and Zhou, Y. F., Lower bounds of eigenvalues for a class of bi-subelliptic operators, J. Differ. Eqs., 262 (2017), 5860-5879.
[9] Fefferman, C. and Phong, D., Subelliptic eigenvalue problems. In: Proceedings of the Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Series, 590606 (1981).
[10] Hansson, A. M. and Laptev, A., Sharp Spectral Inequalities for the Heisenberg Laplacian, LMS Lectore Note Series (354), 100-115, Cambridge University Press, Cambridge (2008).
[11] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
[12] Jerison, D. and Sánchez-Calle, A., Subelliptic second order differential operators, Complex Analysis III (1987).
[13] Jerison, D. and Sánchez-Calle, A., Estimates for the heat kernel for sum of squares of vector fields, Indiana Univ. Math. J., 35 (1986), 835-854.
[14] Kohn, J. J., Subellipticity of $\bar{\partial}-$ Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math., 142 (1979), 79-122.
[15] Levine, H. A. and Protter, M. H., Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Meth. Appl. Sci., 7 (1985), 210-222.
[16] Li, P. and Yau, S. T., On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 88 (1983), 309-318.
[17] Métivier, G., Fonction spectrale d'oérateurs non elliptiques, Commun. PDE., 1 (1976), 467519.
[18] Morimoto, Y. and $\mathrm{Xu}, \mathrm{C} . \mathrm{J} .$, Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators, Astérisque, 234 (2003), 245-264.
[19] Nier, F. and Helffer, B., Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Springer Science \& Business Media, (2005).
[20] Pleijel, A., On the eigenvalues and eigenfunctions of elastic plates, Commun. Pure Appl. Math., 3 (1950), 1-10.
[21] Rothschild, L. P. and Stein, L. P., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137 (1977), 248-315.
[22] Rothschild, L. P., A criterion for hypoellipticity of operators constructed from vector fields, Commun. PDE., 4(6) (1979), 645-699.
[23] Xu, C. J., Regularity problem for quasi-linear second order subelliptic equations, Commun. Pure Appl. Math., 45 (1992), 77-96.

[^0]: *Corresponding author. Email addresses: chenhua@whu.edu.cn (H. Chen), hongge_chen@whu.edu.cn (H. G.
 Chen), wangjunfang@whu.edu.cn (J. F. Wang), zhangnana@whu.edu.cn (N. N. Zhang)

