
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0257

Vol. 26, No. 3, pp. 928-946
September 2019

Quantum Annealing with Anneal Path Control:

Application to 2-SAT Problems with Known Energy

Landscapes

Ting-Jui Hsu1, Fengping Jin1, Christian Seidel2, Florian Neukart3,
Hans De Raedt4 and Kristel Michielsen1,5,∗

1 Institute for Advanced Simulation, Jülich Supercomputing Centre,
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Abstract. We study the effect of the anneal path control per qubit, a new user control
feature offered on the D-Wave 2000Q quantum annealer, on the performance of quan-
tum annealing for solving optimization problems by numerically solving the time-
dependent Schrödinger equation for the time-dependent Hamiltonian modeling the
annealing problems. The anneal path control is thereby modeled as a modified linear
annealing scheme, resulting in an advanced and retarded scheme. The considered op-
timization problems are 2-SAT problems with 12 Boolean variables, a known unique
ground state and a highly degenerate first excited state. We show that adjustment of
the anneal path control can result in a widening of the minimal spectral gap by one or
two orders of magnitude and an enhancement of the success probability of finding the
solution of the optimization problem. We scrutinize various iterative methods based
on the spin floppiness, the average spin value, and on the average energy and describe
their performance in boosting the quantum annealing process.
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1 Introduction

Quantum annealing is a quantum version of classical simulated annealing [1], using
quantum fluctuations instead of thermal fluctuations, to explore the energy landscape
of an optimization problem [2]. This approach has received enormous interest in the last
two decades [3–14] and is regarded as a second model of quantum computing, which is
quite distinct to the gate-based model of quantum computing [15].

A recent overview of theoretical work on adiabatic quantum computation (annealing)
in closed systems described by various types of Hamiltonians, thereby discussing, among
many other issues, universality and quantum speedup, is given in Ref. [16]. Because
of the ongoing academic discussions about the universality and hypothetical quantum
speedup for different types of Hamiltonians and because in practice, it is not straight-
forward to build devices that are described by the desired Hamiltonian, the efforts to
implement quantum annealing in physical systems for the purpose of actual problem
solving are rather limited compared to those for building gate-based quantum informa-
tion processors.

Since 1999, D-Wave Systems Inc. [17] manufactures quantum annealers as integrated
circuits of superconducting qubits that can be described by the Ising model in the trans-
verse field on a Chimera lattice [18]. This type of quantum annealer was designed for
solving quadratic unconstrained binary optimization problems. Since D-Wave Systems
installed its first commercial system in 2010, the D-Wave quantum processor doubles in
size almost every two years and each new generation of machines comes with new user
control features. Their current processor has more than 2000 qubits. This makes the D-
Wave 2000Q machine an interesting system for researchers to explore, test and utilize it
for all kinds of optimization and machine learning problems [19–30].

The latest D-Wave quantum annealer, the D-Wave 2000Q comes with an increased
user control over the anneal path by means of two new features. The Anneal Offset
feature allows a user to advance or delay the annealing path of individual qubits and the
Anneal Pause & Ramp feature allows a user to first introduce a pause in the annealing
process at a given point in time and of a certain duration and then rapidly quench the
transverse field. The potential of the Anneal Offset feature, which amounts to tuning
the transverse field on an individual qubit basis, has been demonstrated for a 24-qubit
system [24] and for an integer factoring circuit [25]. In Ref. [25], it was shown that it
gives a remarkable improvement over baseline performance, making the computation
more than 1000 times faster in some cases. The Anneal Pause & Ramp feature has been
used in a study of the three-dimensional transverse Ising model [26].

How these user control features influence the quantum dynamics of the system and
affect the performance of solving problems is not well-understood. As mentioned in
Ref. [25], determining an optimal set of anneal offsets for a given optimization problem
is difficult. In Ref. [24], a heuristic algorithm, similar to the one described in Ref. [19], is
used to control the anneal offset. The goal of the present work is (1) to get more insight in
the relation between controlling the quantum dynamics of the system by an anneal offset
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and its influence on finding the solution of an optimization problem, and (2) to assess
the effectiveness of several simple algorithms used to control the annealing offsets. For
these purposes, we consider specially designed 2-SAT problems with 12 Boolean vari-
ables and perform quantum annealing by solving the time-dependent Schrödinger equa-
tion (TDSE). The advantage of this approach is that, on the one hand, for these small
problems with a known and unique solution, we can calculate the lowest levels of the
energy spectrum of the system during the annealing process. This allows us to study
changes in the energy spectrum due to a controlled modification of the annealing pro-
cess. On the other hand, this approach also makes it possible to examine which influence
the modified energy spectrum has on the chance for finding the solution of the 2-SAT
problem. We perform a comparative study for 2-SAT problems with different “hardness”
characteristics to study correlations between the control parameters in the annealing pro-
cess and the success rate of finding the solution. Such correlations could be of great help
in solving other more practical optimization problems on D-Wave quantum processors.

The paper is structured as follows. In Section 2, we introduce the 2-SAT problem and
transform it into an Ising spin Hamiltonian. In Section 3, we introduce the Hamiltonian
describing a quantum annealer and the concepts of spin floppiness, state degeneracy,
perturbative anticrossing and their interrelation. We also describe the method for sim-
ulating the quantum annealing processor to solve the 2-SAT problems. The simulation
results are presented in Section 4. Conclusions are given in Section 5.

2 2-SAT problems

A 2-SAT instance is formulated as a Boolean expression in the form of a conjunction (a
Boolean AND operation) of clauses, where each clause is a disjunction (a Boolean OR
operation) of two literals. The literals are Boolean variables or their negations. In this
paper we consider 2-SAT problems that are designed to be hard for classical annealing
algorithms [31] with j=1,··· ,12 Boolean variables xj=0,1, k=1,··· ,13 clauses and thus 26
literals Lk,l with l = 1,2. The 2-SAT problem is to find a truth assignment to the Boolean
variables that makes the formula G=(L1,1∨L1,2)∧(L2,1∨L2,2)∧···∧(L13,1∨L13,2) true. If
G=1 then the 2-SAT instance is satisfiable.

In order to solve a 2-SAT instance by means of quantum annealing on a D-Wave ma-
chine the problem first has to be encoded in the Ising Hamiltonian. For this purpose
the Boolean variables xj = 0,1 are transformed in the spin variables σz

j =−1,+1 using

xj =(1−σz
j )/2. Next, the problem has to be mapped on the Chimera architecture of the

D-Wave quantum processor. Some of the designed hard 2-SAT problems can be directly
mapped on this architecture and others require the usage of so-called logical qubits for
the mapping. In the direct mapping there is a one to-one correspondence between the
Ising spins in the model and the physical qubits of the quantum processor. In the non-
direct mapping one Ising spin is represented by one logical qubit which consists of a
group of physical qubits.
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2-SAT instances are solvable polynomial in time. Nevertheless, different solvers might
find different 2-SAT instances easy or hard to solve. We consider 2-SAT instances that,
in Ising-spin language, have a known unique ground state (and corresponding energy)
which is separated from a number of first-excited states, this number increasing expo-
nentially with the number of Boolean variables N [31]. For N = 12, the 2-SAT problems
that we consider have minimal spectral gaps in the energy spectrum of the system during
annealing that range between 0.01GHz and 3GHz. For comparison, for D-Wave quantum
processors kBT ranges between 1.5GHz and 3GHz, where kB denotes Boltzmann’s con-
stant and T the finite operating temperature of the D-Wave quantum annealer. Hence,
the considered 2-SAT problems have rather small minimal spectral gaps which makes
them hard to solve by means of quantum annealing.

3 Simulation method

The quantum annealing process can be modeled as a dynamical process of a quantum
spin-1/2 system and can therefore be simulated on a conventional digital computer by
solving the TDSE for a given time-dependent Hamiltonian. We make use of a Suzuki-
Trotter product formula algorithm to solve the TDSE [32].

3.1 Hamiltonian including the anneal offset

In general, the quantum annealing Hamiltonian can be written as a time-dependent lin-
ear combination of an initial Hamiltonian HI and a final Hamiltonian HP encoding the
problem to be solved:

H(t)=A(t/ta)HI+B(t/ta)HP, (3.1)

HI =−
N

∑
i=1

σx
i , (3.2)

HP =−
N

∑
i=1

hz
i σz

i −
N

∑
i,j=1

Jz
ijσ

z
i σz

j , (3.3)

where ta denotes the total annealing time, σ
x,y,z
i are Pauli matrices, hz

i and Jz
ij are real-

valued parameters, and i, j = 1,··· ,N label the qubits. During the quantum annealing
process, A(t/ta) starts from 1 and slowly decreases to 0, and B(t/ta) starts from 0 and
slowly increases to 1, where A(t/ta) and B(t/ta) are specified in dimensionless units.
Here we consider a linear annealing scheme for the quantum annealing process so that
A(t/ta) = 1−t/ta and B(t/ta) = t/ta. The anneal offset is implemented by modifying



932 T.-J. Hsu et al. / Commun. Comput. Phys., 26 (2019), pp. 928-946

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
(t

/t a
),

 B
(t

/t a
)

t/ta

Figure 1: (Color online) Linear (green), retarded (red) and advanced (blue) annealing schemes for qubit i. The
dashed lines indicate Ai(t/ta) = 1−(t/ta)1+γi with γi =−0.5, 0, and 0.5 (bottom to top). The solid lines

indicate Bi(t/ta)=(t/ta)1+γi with γi =−0.5, 0, and 0.5 (top to bottom).

A(t/ta) and B(t/ta) for each qubit i, resulting in the Hamiltonian

H(t)=−
N

∑
i=1

Ai(t/ta)σ
x
i −

N

∑
i=1

Bi(t/ta)h
z
i σz

i

−
N

∑
i,j=1

Jz
ij

√
Bi(t/ta)Bj(t/ta)σ

z
i σz

j , (3.4)

where Ai(t/ta)= 1−(t/ta)1+γi and Bi(t/ta)= (t/ta)1+γi . Examples of linear (γi = 0), re-
tarded (γi =0.5), and advanced (γi =−0.5) annealing schemes are shown in Fig. 1.

3.2 Solving the time-dependent Schrödinger equation

The whole system evolves according to the TDSE

ih̄
∂

∂t
|Ψ(t)〉=H(t)|Ψ(t)〉 , (3.5)

where h̄ is set to unity. The units used in the simulation are dimensionless but in Section 4
we present the simulation results in units appropriate for the D-Wave machine. For the
time-dependent Hamiltonian H(t), the TDSE is solved by using a small time interval τ
and

|Ψ(t+τ)〉=U(t,τ)|Ψ(t)〉≈ e−iτH(t+τ/2) |Ψ(t)〉 , (3.6)

where H(t+τ/2) is regarded as time-independent, taking its value at time t+τ/2, and
U(t,τ)≈ e−iτH(t+τ/2) is the time-evolution operator.

For small systems, U(t,τ) can be calculated by exact diagonalization of the Hamilto-
nian. For large systems, when there is not enough memory to store H or U(t,τ), we use
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the second-order Suzuki-Trotter product formula [32]

Ũ2(t,τ)=
N

∏
j=1

e
iτ[A(t/ta+τ/2/ta)σx

j +Bj(t/ta+τ/2/ta)hz
j σz

j ]/2

×
N

∏
j,k=1

e
iτ[
√

Bj(t/ta+τ/2/ta)Bk(t/ta+τ/2/ta)Jz
j,kσz

j σz
k ]

×
N

∏
j=1

e
iτ[A(t/ta+τ/2/ta)σx

j +Bj(t/ta+τ/2/ta)hz
j σz

j ]/2
, (3.7)

to approximate the time-evolution operator U(t,τ). This error of this approximation is
bounded by ||Ũ2(t,τ)−U(t,τ)||≤ c2τ3, where c2 is a positive constant [32].

3.3 Floppiness, degeneracy, and perturbative anticrossing

In an Ising-spin model, a spin is said to be floppy if flipping the spin results in another
classical state with the same energy. Hence, spin floppiness relates to state degeneracy.
In Ref. [24], an argument, based on first-order perturbation calculations, is given to re-
late observed probabilities of qubit floppiness to the energy change of degenerate ex-
cited states. According to a first-order perturbative calculation [24], there is a relation
between a reduction in excited state energy and of the minimal spectral gap, and floppi-
ness, namely

∆′=
1

2

N

∑
i=1

A(t/ta)Fi, (3.8)

where Fi is the fraction of degenerate states in which the i-th qubit is floppy.
As the performance of quantum annealing is primarily determined by the minimum

spectral gap between the ground state and the first excited state, we only consider the
floppiness of spins in the first excited states of the problem Hamiltonian. This motivates
our choice for considering 2-SAT problems which have a known ground state and a large
number of first-excited states (see Section 2). For these problems, during the annealing
process a perturbative anticrossing could be formed, creating an extremely small minimal
spectral gap between the ground state and the first excited state and causing a slowdown
in solving the optimization problem.

A way to prevent the occurrence of such anticrossings is to make use of an anneal
offset for individual qubits. In Ref. [24] it has been suggested to reduce ∆′ by decreasing
Ai(t/ta) for qubit i for which Fi is high relative to Fj of other qubits j. In other words, an
advanced anneal offset Ai(t/ta) should be applied to qubits with a high Fi.

3.4 Simulation procedure

We use in-house software to solve the TDSE with the non-uniform quantum annealing
Hamiltonian described in Section 3.1. In this section, we describe the simulation proce-
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dure to solve the 2-SAT problems by a non-uniform quantum annealing process, thereby
mimicking the procedure performed on a D-Wave machine.

First, we compute the parameters hz
i and Jz

ij of the selected 2-SAT problem and fix the

anneal offsets γi, and supply them as input to the software which simulates the anneal-
ing process. The software solves the TDSE for these input parameters and produces a
number of output events. These events consist of strings of 0s and 1s, representing the
spin states, and the energies corresponding to these spin states. Besides these events,
which are similar to the ones provided by a D-Wave machine, the software also calcu-
lates the probability of finding the ground state (corresponding to the optimal solution)
of the problem Hamiltonian and the average energy 〈E(t/ta)〉. Finally, we use the output
events to compute the single-qubit average σz

i , the final average energy E f , and the flop-
piness µi of a single qubit i. The latter is given by the ratio of the number of pairs of the
degenerate first excited states and the total number of first excited states. The single-qubit
average σz

i and the final average energy E f based on the generated output events will be
very close to the values calculated directly from the final wave function if the number of
output events is large.

The energy spectra of the time-dependent Hamiltonians are calculated by exact diag-
onalization or by the Lanczos method.

4 Simulation results

The simulation results are presented in two parts. The first part includes the results ob-
tained by applying an anneal offset to individual qubits. The second part includes the
results obtained by applying the anneal offset to all the qubits in the system. Systematic
iterative methods have been used to dynamically adjust the annealing offsets for each
qubit.

4.1 Anneal offset applied to individual qubits

For illustrative purposes, we select one particular problem, problem number 487 (see the
Appendix for the explicit Hamiltonian HP), of the set of 2-SAT problems with 12 Boolean
variables and 13 clauses and having one unique ground state and a large number of first
excited states. We adjust the annealing offset γi for the i-th qubit (i,=1,··· ,12) while not
touching the others, i.e. γj 6=i =0. The total annealing time is set to ta =5ns. Fig. 2 shows
the probability for finding the ground state, the absolute value of the single-qubit average
|σz

i | and the floppiness as a function of the anneal offset for each qubit.

We observe that altering the linear annealing scheme for each individual qubit shows
a correlation between the success probability of finding the ground state, the single-qubit
average and floppiness of the considered qubit. For γ=−1, A(t/ta) = 0 and B(t/ta) =
1. Hence, the results for γ close to −1 should not be taken into consideration. Except
for qubits 1, 5, 11, the success probability for finding the ground state increases for a
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Figure 2: (Color online) Absolute value of the single-qubit average (green), floppiness (blue) and the probability
for finding the ground state (red) as a function of the anneal offset γ for each spin in the 12-spin 2-SAT problem
with number 487.
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decreasing anneal offset (advanced annealing). The floppiness of these qubits decreases
monotonically for γ< 0. When the floppiness is large, the absolute value of the single-
qubit average must be close to 0. For qubits 1, 5, and 11 the floppiness is small for γ<0.
For γ>0, the floppiness of these three qubits does not show any systematic behavior.

4.2 Annealing offset applied to all qubits

Based on the observations described in Section 4.1 and on the perturbative analysis [24],
we developed strategies to enhance the probability of finding the ground state based
on the value of the floppiness and the absolute value of the single-qubit average. Both
the floppiness and the absolute value of the single-qubit average can be obtained from
simulating the annealing process or by performing the annealing process on a D-Wave
machine.

We first consider the probability of floppiness µi. We have tested various iterative
methods based on the floppiness. The best method we found so far is:

1. Choose a static offset magnitude α=−0.02.

2. Initialize each anneal offset γi,0 to 0.

3. For the iterations k=1,··· ,m,

(a) Perform a quantum annealing run and save µi,k.

(b) Adjust each anneal offset, according to µi,k: γi,k+1=γi,k+αµi,k.

This method directly uses the information of µi from the previous run, and updates the
anneal offset for each qubit accordingly. We apply this method to three typical 2-SAT
problems, namely to those with numbers 487, 26, and 301 (see the Appendix for the
explicit Hamiltonian HP) having small, median, and large minimal spectral gaps, respec-
tively.

In Fig. 3(a), we show for these three problems, the probability for finding the ground
state as a function of the number of iteration steps k for the annealing time ta =5ns. For
the three 2-SAT problems the success probability increases with the number of iterations,
demonstrating that the iterative method works. For the hardest problem (problem 487),
the change in the success probability is of one order of magnitude. The big change in
success probability can be understood from studying the energy spectra and the average
system energy for different numbers of iteration k in the annealing process, correspond-
ing to different anneal offsets. Figs. 3(b-d) show the energy spectra for k = 1,15, and
40, respectively. With increasing iteration number k the critical point shifts to the left (de-
creasing t/ta) and the minimal spectral gap increases. This indicates that the perturbative
anticrossing is eliminated. For the uniform linear annealing scheme, the average system
energy follows the ground state energy up to the critical point, then makes a Landau-
Zener transition to end up close to the energy of the first excited state of the problem
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Figure 3: (Color online) (a) Probability for finding the ground state by annealing for a time ta = 5ns as a
function of the number of iterations k using an iterative method based on the floppiness for three different
2-SAT problems; (b) energy spectrum of 2-SAT problem 487 for a linear annealing process (∆=0.84GHz); (c)
annealing process with an anneal offset using k= 15 iterations (∆= 3.97GHz); (d) annealing process with an
anneal offset using k=40 iterations (∆=8.36GHz). The red squares denote the average energy of the system
during the annealing process.

Hamiltonian at the end of the annealing process. During the 15th iteration step, the aver-
age system energy lies between the energy of the ground state and the first excited state
after passing the critical point. During the 40th iteration step, the average system energy
nicely follows the ground state energy during the whole annealing process.

Results for a total annealing time ta=0.5ns are shown in Fig. 4. The results are similar
to the ones shown in Fig. 3, but for none of the three problems the success probability
reaches one for this short annealing time. This agrees with the observation that even
during the 40th iteration step the average system energy does not follow the ground
state of the system during the annealing process. At the end of the annealing process the
average system energy lies in between the ground state energy and the energy of the first
excited state of the problem Hamiltonian.

Results for an even shorter total annealing time ta=0.05ns are shown in Fig. 5. These
results are very different from the results shown in Figs. 3 and 4. First, for none of the
three 2-SAT problems a reasonable success probability is obtained. For all iteration num-
bers, the average energy of the system is rather high and corresponds to the one of the



938 T.-J. Hsu et al. / Commun. Comput. Phys., 26 (2019), pp. 928-946

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

S
uc

ce
ss

 p
ro

ba
bi

lit
y

k

(a)

Problem 301
Problem 26

Problem 487

-280

-260

-240

-220

-200

-180

-160

-140

 0  0.2  0.4  0.6  0.8  1

E
ne

rg
y 

(G
H

z)

t/ta

(b)

-280

-260

-240

-220

-200

-180

-160

-140

 0  0.2  0.4  0.6  0.8  1

E
ne

rg
y 

(G
H

z)

t/ta

(c)

-280

-260

-240

-220

-200

-180

-160

-140

-120

 0  0.2  0.4  0.6  0.8  1

E
ne

rg
y 

(G
H

z)

t/ta

(d)

Figure 4: (Color online) Same as Fig. 3 for ta=0.5ns.

higher excited states. Hence, the information obtained from the final sampling is far from
related to the first-excited state(s), a requirement for performing the perturbative analy-
sis and leads to a failure of the iterative method. Although the minimal spectral gap still
opens up with an increasing number of iterations, as seen from the figure, for such a
fast annealing time the average system energy is unable to follow the ground state of the
system.

From Fig. 2, we have seen that the behavior of the absolute value of the single-qubit
average shows some similarities with the success probability and the floppiness when
varying the anneal offset for individual qubits. For this reason, we might also use |σz

i | to
update the anneal offsets γi. Some of the results are similar as those shown in Figs. 3, 4,
and 5 (results not shown). However, some of them indicate worse performance compared
to the performance using the floppiness of the qubits in case the anneal offset is applied
to all qubits. This means that the information coming from the absolute value of the
single-qubit average cannot be used reliably to define an iterative annealing process with
an anneal offset. Therefore, we do not show any results based on the absolute value of
the single-qubit average.

The above results strongly suggest that only information obtained from the first ex-
cited states is useful to improve the outcome of the annealing process by an anneal offset.
If instead of the global minimum, only a near-optimal solution is desired, we already
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Figure 5: (Color online) Same as Fig. 3 for ta=0.05ns.

obtain this near-optimal solution from the first excited states. In terms of energy, the
near-optimal solution is very close to the optimal solution and one could try to use a
stochastic approximation algorithm, such as the Kiefer-Wolfowitz algorithm, to find this
optimal solution starting from the near-optimal solution. We use as the cost function for
updating the anneal offsets, the average energy E f , obtained from the final events. The
method works as follows

1. Initialize each anneal offset γi,0 to 0.

2. For iteration k=1,··· ,m,

(a) For each spin, perform two quantum annealing runs with γi,k = γi,k+ck and
γi,k =γi,k−ck, and save the corresponding average energy as E f (γi,k+ck) and

E f (γi,k−ck).

(b) Adjust each anneal offset as follows

γi,k=γi,k+αk

(
E f (γi,k+ck)−E f (γi,k−ck)

2ck

)
. (4.1)
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Figure 6: (Color online) Probability for finding the ground state of three different 2-SAT problems as a function
of the number of iterations k using an iterative method based on the Kiefer-Wolfowitz algorithm for different
annealing times: (a) ta=0.05ns; (b) ta =0.5ns; and (c) ta =5ns.

The parameters αk and ck are taken to be k−1 and k−1/3, respectively. From the update
formula for the anneal offset it can be seen that the Kiefer-Wolfowitz algorithm can be
considered as a gradient-like method with the gradient generated by a finite difference
scheme.

The results of applying this iterative method for solving the three 2-SAT problems
are shown in Fig. 6. At first sight, the performance of the Kiefer-Wolfowitz algorithm
competes with the iterative method based on the floppiness of the qubits (see Figs. 3, 4,
and 5). However, the method based on the Kiefer-Wolfowitz algorithm is computational
intensive because within each iteration, the number of quantum annealing runs to be
performed is proportional to the size of the spin system. An interesting case is 2-SAT
problem 487, the hardest instance. If, for this problem, the anneal offset is tuned by the
iterative method based on the spin floppiness, then the probability to find the ground
state shows a very big increase as a function of the number of iterations (see Fig. 3(d))
compared to the increase obtained for the other two 2-SAT instances. If, for problem
487, the anneal offset is obtained by the iterative method based on the Kiefer-Wolfowitz
algorithm, then the success probability does not show this big increase as a function of the
number of iterations. An explanation for this observation could be that the parameters
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αk and ck are not well chosen because the energy differences become rather small for this
hard problem. Therefore, without a proper procedure to choose the parameters αk and
ck, the algorithm may require much more iteration steps to converge to a (near) optimal
solution. For a long annealing time (ta =5ns) the final state has a large overlap with the
first excited state. This means that at the end of the annealing process the system is in
a state close to the global minimum of the (classical) problem Hamiltonian and then the
gradient-like method works well. If the final system state is far away from the global
minimum, as is the case for the short annealing times, then this algorithm will not work
because then it is easy to get stuck in local minima.

From the analysis of the simulation results, it is clear that the best strategy to enhance
the performance of the quantum annealing process is to first anneal with longer anneal-
ing times. If annealing longer (in practice one can only anneal for a given fixed time) does
not help, which could be due to various effects such as temperature effects for example,
then one could consider to perform quantum annealing with an adaptive anneal offset
determined by an iterative method. However, from the investigation of the average sys-
tem energy as a function of the number of iterations it is also clear that this approach
only works if at the start of the iterative process the average system energy lies in be-
tween the ground state energy and the energy of the first exited state. In other words, the
average system energy should fall in the Landau-Zener regime. This constraint is also an
assumption in the degeneracy calculation in Ref. [24].

For testing the performance of the iterative method based on the spin floppiness on
even harder problems, we reduce the minimal spectral gap of the 2-SAT problems by
introducing a factor C

H=A(t/ta)HI+B(t/ta)(CHP). (4.2)

By assigning to C a value smaller than one, the energy gap between the ground state and
the first excited state shrinks. We consider C = 0.1. Figs. 7 and 8 depict the results for
annealing times ta =5ns and ta =0.5ns, respectively. Comparing the energy spectra with
those presented in Figs. 3 and 4 shows that the critical point moves to the right and that
the minimum spectral gap is smaller. This means that the problem indeed became harder
and that this situation corresponds even better to a perturbative anticrossing. Also for
this case it is clear that the iterative approach only works if at the start of the iterative
process the average system energy falls in the Landau-Zener regime.

5 Conclusions

The quantum annealing method with an adaptive anneal offset is practical method for
enhancing the performance of the annealing method for systems for which perturbative
anticrossings dominate the slow-down mechanism of quantum annealing. For such sys-
tems, like for example the special 2-SAT problems that we considered, the first excited
state is largely degenerate. Adjusting the anneal offset for qubits with a high floppiness
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Figure 7: (Color online) (a) Probability for finding the ground state by annealing for a time ta=5ns as a function
of the number of iterations k using an iterative method based on the floppiness for three 2-SAT problems with
C= 0.1; (b,c) energy spectrum of the 2-SAT problem 487 for an annealing process with an anneal offset for
k=15 iterations; (d,e) energy spectrum of the 2-SAT problem 487 for an annealing process with an anneal offset
for k=40 iterations. The red squares denote the average energy of the system during the annealing process.
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Figure 8: (Color online) Same as Fig. 7 for ta=0.5ns.

can enlarge the minimal spectral gap by one or two orders of magnitude and therefore
enhance the performance of the quantum annealing method.

Under certain circumstances, as for example when a system is coupled to an environ-
ment, simply increasing the annealing time will not tremendously improve the probabil-
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ity for finding the ground state. In such a case, an iterative quantum annealing method
based on the floppiness of the qubits could be considered to drive the system to the
ground state. For comparison, we also implemented the Kiefer-Wolfowitz algorithm. We
have demonstrated that it is a stable method with the drawback that the required number
of annealing runs is proportional to the system size.

Note that in this work, we did not investigate the scaling behavior of the iterative
quantum annealing method based on the floppiness of the qubits. This would require a
systematic problem-size-dependent investigation. In this respect, it is worth noting that
for a particular mean-field-type model, Susa et al. showed that a certain type of inhomo-
geneous driving of the transverse field erases first-order quantum phase transitions, and
brings an exponential speedup for quantum annealing [33].
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Appendix

Here we present the detail of the problem Hamiltonian investigated in the main text. The
parameters hz

i and Jz
ij in HP (see Eq. (3.3)) are listed in Tables 1 and 2.

Table 1: The parameters hz
i in HP (see Eq. (3.3)) for 2-SAT problems with 12 Boolean variables with numbers

487, 26, and 301.

Problem 487 Problem 26 Problem 301

i hz
i hz

i hz
i

1 -2 0 0

2 -1 -1 0

3 1 0 0

4 -1 -1 0

5 -2 1 1

6 1 -1 0

7 -1 0 1

8 1 1 0

9 1 0 1

10 1 -1 1

11 -2 0 0

12 0 0 0
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Table 2: The parameters Jz
ij in HP (see Eq. (3.3)) for 2-SAT problems with 12 Boolean variables with numbers

487, 26, and 301.

Problem 487 Problem 26 Problem 301

i j Jz
ij i j Jz

ij i j Jz
ij

1 4 -1 1 9 1 1 2 -1

1 6 1 1 11 -1 1 3 1

1 8 1 2 11 1 2 4 -1

1 11 1 3 4 1 3 8 1

2 6 0 3 6 1 4 12 1

2 11 -1 4 8 1 5 12 1

3 5 1 4 10 -1 6 7 1

5 7 -1 5 12 -1 6 10 -1

5 11 1 6 7 -1 8 11 -1

5 12 1 6 12 -1 9 10 -1

9 11 1 7 9 -1 10 11 1

10 12 1 8 12 0 11 12 0

1 2 0 1 2 0 1 4 0
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