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STRONG CONVERGENCE AND STABILITY OF THE

SEMI-TAMED AND TAMED EULER SCHEMES FOR

STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS

UNDER NON-GLOBAL LIPSCHITZ CONDITION

ANTOINE TAMBUE AND JEAN DANIEL MUKAM

Abstract. We consider the explicit numerical approximations of stochastic differential equations

(SDEs) driven by Brownian process and Poisson jump. It is well known that under non-global

Lipschitz condition, Euler Explicit method fails to converge strongly to the exact solution of such
SDEs without jumps, while implicit Euler method converges but requires much computational

efforts. We investigate the strong convergence, the linear and nonlinear exponential stabilities

of tamed Euler and semi-tamed methods for stochastic differential equation driven by Brownian
process and Poisson jumps, both in compensated and non compensated forms. We prove that

under non-global Lipschitz condition and superlinearly growing drift term, these schemes converge
strongly with the standard one-half order. Numerical simulations to substain the theoretical results

are provided.

Key words. Stochastic differential equation, strong convergence, linear stability, exponential

stability, jump processes, one-sided Lipschitz.

1. Introduction

In this work, we consider jump-diffusion Itô’s stochastic differential equations
(SDEs) of the form in the interval [0, T ]

dX(t) = f(X(t−))dt+ g(X(t−))dW (t) + h(X(t−))dN(t), X(0) = X0.(1)

Here W (t) is a m-dimensional Brownian motion, f : Rd −→ Rd, d ∈ N satisfies the
one-sided Lipschitz condition and the polynomial growth condition, the functions
g : Rd −→ Rd×m and h : Rd −→ Rd satisfy the globally Lipschitz, and N(t) is a one
dimensional Poisson process with parameter λ. Extension to vector-valued jumps
with independent entries is straightforward. The one-sided Lipschitz function f
can be decomposed as f = u + v, where the function u : Rd −→ Rd is the global
Lipschitz continuous part and v : Rd −→ Rd is the non-global Lipschitz continuous
part, see e.g. [25]. Using this decomposition, we can rewrite the jump-diffusion
SDEs (1) in the following equivalent form

X(t) =
(
u(X(t−) + v(X(t−))

)
dt+ g(X(t−))dW (t) + h(X(t−))dN(t).(2)

This decomposition will be used only for semi-tamed schemes. Equations of type
(1) arise in a range of scientific, engineering and financial applications [3, 1, 14].
Most of such equations do not have explicit solutions and therefore one requires
numerical schemes for their approximations. Their numerical analysis has been
studied in [6, 24, 5, 19] with implicit and explicit schemes where strong and weak
convergence have been investigated. The implementation of implicit schemes re-
quires significantly more computational effort than the explicit Euler-type approx-
imations as Newton method is usually required to solve nonlinear systems at each
time iteration in implicit schemes. The standard explicit method for approximating
SDEs of type (1) is the Euler-Maruyama method [19]. Recently it has been proved
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(see [13, 11]) that the Euler-Maruyama method often fails to converge strongly to
the exact solution of nonlinear SDEs of the form (1) without jump term when at
least one of the functions f and g grows superlinearly. To overcome this drawback
of the Euler-Maruyama method, numerical approximation, with computational cost
close to that of the Euler-Maruyama method and which converges strongly even
in the case the function f is superlinearly growing was first introduced in [12] and
strong convergence was investigated. Further investigations have been performed
in the litterature (see for example [21, 9, 25] and references therein), where in [21]
the time step ∆t in [12] is replaced by its power ∆tα, α ∈ (0, 1/2] in the denom-
inator of the taming drift term. Recently the work in [21] has been extended for
SDEs driven by compensated Levy noise in [2, 15]. The condition α ∈ (0, 1/2] is
key in the convergence proofs in [2, 21, 15], so the proofs cannot be extended for
α ∈ [1/2, 1]. Strong and weak convergences are not the only features of numerical
techniques. Stability is also a good feature as the information about time step size
for which does a particular numerical method replicate the stability properties of
the exact solution is valuable. The linear stability is an extension of the determin-
istic A-stability while exponential stability can guarantee that errors introduced in
one time step will decay exponentially in future time steps, exponential stability
also implies asymptotic stability [8]. By the Chebyshev inequality and the Borel–
Cantelli lemma, it is well known that exponential mean-square stability implies
almost sure stability [8]. The stability of classical implicit and explicit methods
for (1) are well understood [6, 8, 24]. Although the strong convergence of tamed
schemes with and without jump have been studied, a rigorous stability properties
have not yet been investigated to the best of our knowledge.

The aim of this paper is to study the strong convergence of tamed schemes driven
by Brownian process and Poisson jump for α ∈ [1/2, 1], and to provide a rigorous
study of the linear and exponential stabilities of semi-tamed and tamed schemes for
α ∈ [0, 1]. Following closely the breakthrough idea in [12], we provide the strong
convergence of the tamed schemes and the corresponding semi tamed schemes both
in compensated and non compensated forms for α ∈ [1/2, 1]. The extensions are
not straightforward as several technical lemmas are needed. Numerical experiments
show that the semi-tamed works better than the tamed and compensated tamed
schemes. Numerical results also show that the tamed and the compensated tamed
Euler scheme have good stability behavior when α approaches 1. Therefore, our
tamed schemes with α ∈ [1/2, 1] have better stability property than the tamed
schemes presented in [2] for α ∈ (0, 1/2].

The paper is organized as follows. Section 2 presents the classical result of
existence and uniqueness of the solution X of (1). The compensated and non
compensated tamed schemes and semi-tamed scheme are presented in Section 3
along with their strong convergences. The linear stability of the schemes is provided
in Section 4 while the nonlinear exponential stability is provided in Section 5. We
end in Section 6 by providing some numerical simulations.

2. Notations, assumptions and well posedness

Throughout this work, (Ω,F ,P) denotes a complete probability space with a
filtration (Ft)t≥0. For all x, y ∈ Rd, we denote by 〈x, y〉 = x1y1 +x2y2 + · · ·+xdyd,

‖x‖ = 〈x, x〉1/2, ‖A‖ = sup
x∈Rd,‖x‖≤1

‖Ax‖ for allA ∈ Rm×d. a∨b represents max{a, b}.

We use also the following convention :
∑n
i=u = 0 for u > n.

We first ensure that SDEs (1) is well-posed. The following assumption is needed.
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Assumption 2.1. We assume that:
(A.1) For all p > 0, there exists Mp > 0 such that E‖X0‖p ≤ Mp, and f, g, h ∈
C1(Rd).
(A.2) The functions g, h and u satisfy the following global Lipschitz condition

‖g(x)− g(y)‖ ∨ ‖h(x)− h(y)‖ ∨ ‖u(x)− u(y)‖ ≤ C‖x− y‖ ∀ x, y ∈ Rd.

(A.3) The function f satisfies the following one-sided Lipschitz condition

〈x− y, f(x)− f(y)〉 ≤ C‖x− y‖2 ∀ x, y ∈ Rd.

(A.4) The function f satisfies the following superlinear growth condition

‖f(x)− f(y)‖ ≤ C(1 + ‖x‖c + ‖y‖c)‖x− y‖ ∀ x, y ∈ Rd,

where C and c are positive constants.

Remark 2.1. Note that from Assumption 2.1, u satisfies the global Lipchitz con-
dition, and f satisfies the one-sided Lipschitz condition and the superlinear growth
condition, which implies that the function v satisfies the one-sided Lipschitz condi-
tion (A.3) and the superlinear growth condition (A.4) in Assumption 2.1.

Theorem 2.1. Under the conditions (A.1), (A.2) and (A.3) of Assumption 2.1,
the SDE (1) has a unique solution with all bounded moments.

Proof. See [4] for the existence and the uniqueness and [6, Lemma 1] for the bound-
edness of the moments of the solution. �

3. Numerical Schemes and main results

We consider the SDEs (1) in the current non compensated form. Applying the
tamed Euler scheme (as in [12]) in the drift term of (1) yields the following schemes
that we will call non compensated tamed scheme (NCTS)

(3) XM
n+1 = XM

n +
∆tf(XM

n )

1 + ∆tα‖f(XN
n )‖

+ g(XM
n )∆WM

n + h(XM
n )∆NM

n ,

where ∆t = T/M is the time step-size, M ∈ N is the number of time subdivisions,
α ∈ [1/2, 1], ∆WM

n = W (tn+1)−W (tn) and ∆NM
n = N(tn+1)−N(tn). Applying

the semi-tamed Euler scheme (as in [25]) in the non globally Lipschitz part v of the
drift term of (2) yields the following scheme that we will call semi-tamed scheme
(STS)

ZMn+1 = ZMn + u(ZMn )∆t+
∆tv(ZMn )

1 + ∆tα‖v(ZMn )‖ + g(ZMn )∆Wn + h(ZMn )∆NM
n .(4)

Recall that the compensated poisson process N(t) := N(t) − λt is a martingale
and satisfies the the following properties

E
(
N(t+ s)−N(t)

)
= 0 E|N(t+ s)−N(t)|2 = λs, s, t > 0.(5)

We can easily check that the quadratic variation of N(t) is [N,N ]t = N(t).
We can therefore rewrite the jump-diffusion SDEs (1) in the following equivalent

form

dX(t) = fλ(X(t−)dt+ g(X(t−)dW (t) + h(X(t−)dN(t),(6)

where fλ(x) = f(x) +λh(x). Note that as f , the function fλ satisfies the one-sided
Lipschitz condition (A.3) and the superlinear growth (A.4). Applying the tamed
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Euler scheme in the drift term of (6) as in [12] yields the following updated scheme
for jump SDEs (1) that we will call compensated tamed scheme (CTS)

YMn+1 = YMn +
∆tfλ(YMn )

1 + ∆tα‖fλ(YMn )‖
+ g(YMn )∆WM

n + h(YMn )∆N
M

n ,(7)

where ∆N
M

n = N(tn+1)−N(tn).
Note that if the equivalent model (2) is putting in the compensated form, and

the semi-tamed method is applied on the non globally Lipschitz part v of the drift
term f , we will obtain the same scheme as in (4).

We define the continuous time interpolations of the discrete numerical approxi-
mations of (3), (4) and (7) respectively by

X
M

t = XM
n +

(t− n∆t)f(XM
n )

1 + ∆tα‖f(XM
n )‖

+ g(XM
n )(Wt −Wn∆t)

+h(XM
n )(Nt −Nn∆t),(8)

Z
M

t = ZMn + (t− n∆t)

(
u(ZMn ) +

v(ZMn )

1 + ∆tα‖v(ZMn )‖

)
+g(ZMn )(Wt −Wn∆t) + h(ZMn )(Nt −Nn∆t),(9)

and

Y
M

t = YMn +
(t− n∆t)fλ(YMn )

1 + ∆tα‖fλ(YMn )‖
+ g(YMn )(Wt −Wn∆t)

+h(YMn )(N t −Nn∆t),(10)

for all t ∈ [n∆t, (n+ 1)∆t), n ∈ {0, · · · ,M − 1}.
The main result of this section is given in the following theorem.

Theorem 3.1. [Main result ]
Let Xt be the exact solution of (1) and χMt the discrete continuous form of the nu-

merical approximations given by (8),(9) and (10) (χMt = X
M

t for scheme NCTS,

χMt = Z
M

t for scheme STS and χMt = Y
M

t for scheme CTS). Under Assump-
tion 2.1, for all p ∈ [1,+∞) there exists a constant Cp > 0 independent of ∆t such
that (

E

[
sup
t∈[0,T ]

‖Xt − χMt ‖p
])1/p

≤ Cp∆t1/2, ∆t = T/M.(11)

3.1. Proof of Theorem 3.1 for χMt = Y
M

t . Before giving the proof of Theo-
rem 3.1, some preparatory results are needed. Here we consider the compensated
tamed scheme (CTS) given by (7).

3.1.1. Preparatory results. Throughout this work the following notations will
be used with slight modification in the next section

αMk := 1{‖YM
k ‖≥1}

〈
YMk
‖YMk ‖

,
g(YMk )

‖YMk ‖
∆WM

k

〉
, k = 0, · · · ,M

βMk := 1{‖YM
k ||≥1}

〈
YMk
‖YMk ‖

,
h(YMk )

||YMk ‖
∆N

M

k

〉
, k = 0, · · · ,M

β := (1 +K + 2C +KTC + TC + T‖fλ(0)‖+ ‖g(0)‖+ ‖h(0)‖)4
,
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DMn := (β + ‖X0‖) exp

(
3β

2
+ sup
m∈{0,··· ,n}

n−1∑
k=m

[
3β

2
‖∆WM

k ‖
2 +

3β

2
|∆NM

k |+ αMk + βMk

])
,

ΩMn :=
{
ω ∈ Ω : sup

k∈{0,1,··· ,n−1}
DMk (ω) ≤M1/2c, sup

k∈{0,1,··· ,n−1}

(
‖∆WM

k (ω)‖ ∨ |∆NM
k (ω)|

)
≤ 1
}
.

The aims of this section is to update all lemmas used in [12] and provide new
lemmas for Poisson jump.

Lemma 3.1. For all a, b ≥ 0, the following inequality holds

1 + a+ b2 ≤ ea+
√

2b.

Proof. See [22, 17]. �

Lemma 3.2. The following inequality holds for all M ∈ N and all n ∈ {0, 1, · · · ,M}

1ΩM
n
‖YMn ‖ ≤ DM

n ,(12)

where DM
n and ΩMn are given in (12).

Proof. The proof follows the same lines as [12, Lemma 3.1]. Details can be found
in [22, 17]. �

The proofs of the following can be found in [12, 17].

Lemma 3.3. The following inequality holds

sup
M∈N,M≥4βpT

E

[
exp

(
βp

M−1∑
k=0

‖∆WM
k ‖2

)]
<∞, p ∈ [1,∞).

Lemma 3.4. Let αMn : Ω −→ R, M ∈ N, n ∈ {0, 1, · · · ,M} be the process defined
in (12). The following inequality holds

sup
z∈{−1,1}

sup
M∈N

∥∥∥∥∥ sup
n∈{0,1,··· ,M}

exp

(
z

n−1∑
k=0

αMk

)∥∥∥∥∥
Lp(Ω,R)

<∞, p ∈ [2,+∞).

Lemma 3.5. Let c ∈ R, the following equality holds

E[exp(c∆N
M

n )] = exp

[
(ec + c− 1)λT

M

]
, M ∈ N, n ∈ {0, · · · ,M}.

Proof. The proof follows from the moment generating function of a Poisson process.
See [22, 17] for details. �

Lemma 3.6. The following inequality holds

E
[
exp

(
pz1{‖x‖≥1}

〈
x

‖x‖ ,
h(x)

‖x‖ ∆N
M
n

〉)]
≤ exp

λ
(
ep(C+‖h(0)‖) + p(C + ‖h(0)‖

)
M

 ,
for all M ∈ N, z ∈ {−1, 1}, all p ∈ [1,+∞) and all n ∈ {0, · · · ,M}.

Proof. The proof follows the same lines as that of [12, (49)] by using Lemma 3.5.
See [22, 17] for details. �

Lemma 3.7. Let βMn : Ω −→ R be the process defined as in (12) for all M ∈ N
and all n ∈ {0, · · · ,M}. The following inequality holds

sup
z∈{−1,1}

sup
M∈N

∥∥∥∥∥ sup
n∈{0,··· ,M}

exp

(
z

n−1∑
k=0

βMk

)∥∥∥∥∥
Lp(Ω,R)

< +∞, p ∈ (1,∞).
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Proof. The proof follows the same lines as that of [12, Lemma 3.4] by using Lemma 3.6.
Details can be found in [22, 17]. �

Lemma 3.8. The following inequality holds

sup
M∈N

E

[
exp

(
pβ

M−1∑
k=0

|∆NM

k |

)]
< +∞, p ∈ [1,+∞).

Proof. Using the independence and the stationarity of ∆N
M

k , along with Lemma 3.5,
it follows that

sup
M∈N

E

[
exp

(
pβ

M−1∑
k=0

|∆NM

k |

)]
= sup

M∈N

(
M−1∏
k=0

E[exp(pβ|∆NM

k |)]

)

= sup
M∈N

[(
E[exp(pβ|∆NM

k |)]
)M]

= sup
M∈N

[(
exp

[
(epβ + pβ − 1)λT

M

])M]
= exp[λT

(
epβ + pβ − 1

)
] < +∞.

�

Inspired by [12, Lemma 3.5], we have the following estimation.

Lemma 3.9. [Uniformly bounded moments of the process DM
n ]

Let DM
n : Ω −→ [0,∞), M ∈ N, n ∈ {0, 1, · · · ,M} be the process defined in (12),

then we have

sup
M∈N,M≥8λpT

∥∥∥∥∥ sup
n∈{0,1,··· ,M}

DM
n

∥∥∥∥∥
Lp(Ω,R)

<∞, p ∈ [1,∞).

Proof. The proof follows the same lines as that of [12, Lemma 3.5] by using addi-
tionally Lemma 3.7. See [22, 17] for details. �

The following lemma is an extension of [12, Lemma 3.6]. Here, we include the
jump part.

Lemma 3.10. Let ΩMM ∈ F , M ∈ N be the process defined in (12). The following
holds

sup
M∈N

(
MpP[(ΩMM )c]

)
< +∞, p ∈ [1,∞).

Proof. The proof follows the same lines as [12, Lemma 3.6]. Details can be found
in [22, 17]. �

The following lemma can be found in [20, Theorem 48 pp 193] or in [14, Theorem
1.1, pp 1].

Lemma 3.11. [Burkholder-Davis-Gundy inequality (BDG)]
Let M be a martingale with càdlàg paths and let p ≥ 1 be fixed. Let M∗t =

sup
s≤t
‖Ms‖. Then there exist constants cp and Cp such that

cp

[
E ([M,M ]t)

p/2
]1/p

≤ [E(M∗t )p]
1/p ≤ Cp

[
E ([M,M ]t)

p/2
]1/p

,

for all 0 ≤ t ≤ ∞, where [M,M ]t stand for the quadratic variation of the process
M .
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The proof of the following lemma can be found in [12, Lemma 3.7] or [17].

Lemma 3.12. Let k ∈ N and let Z : [0, T ]×Ω −→ Rk×m be a predictable stochastic

process satisfying P
[∫ T

0
‖Zs‖2ds < +∞

]
= 1. Then we have the following inequality∥∥∥∥∥ sup

s∈[0,t]

∥∥∥∥∫ s

0

ZudWu

∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp

(∫ t

0

m∑
i=1

‖Zs~ei‖2Lp(Ω,Rk)ds

)1/2

for all t ∈ [0, T ] and all p ∈ [1,∞), where (~e1, · · · , ~em) is the canonical basis of Rm.

The following lemma can be found in [12, Lemma 3.8, pp 16] or [17].

Lemma 3.13. Let k ∈ N and let ZMl : Ω −→ Rk×m, l ∈ {0, 1, · · · ,M − 1},
M ∈ N be a familly of mappings such that ZMl is FlT/M/B(Rk×m)-measurable for
all l ∈ {0, 1, · · · ,M − 1} and M ∈ N. Then the following inequality holds:∥∥∥∥∥ sup
j∈{0,1,··· ,n}

∥∥∥∥∥
j−1∑
l=0

ZMl ∆WM
l

∥∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp

(
n−1∑
l=0

m∑
i=1

||ZMl .~ei||2Lp(Ω,Rk)

T

M

)1/2

, p ≥ 1.

Lemma 3.14. Let k ∈ N and Z : [0, T ] × Ω −→ Rk be a predictable stochastic

process satisfying P
[∫ T

0
‖Zs‖2ds < +∞

]
= 1. Then the following inequality holds:∥∥∥∥∥ sup

s∈[0,T ]

∥∥∥∥∫ s

0

ZudNu

∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp
(∫ T

0

‖Zs‖2Lp(Ω,Rk)ds

)1/2

, t ∈ [0, T ], p ∈ [1,+∞).

Proof. Since N is a martingale with càdlàg paths satisfying d[N,N ]s = dNs, it
follows from the property of the quadratic variation (see [14, (8.21), pp 219]) that

E
[∫ t

0

ZsdNs,

∫ t

0

ZsdNs

]
= E

[∫ t

0

‖Zs‖2dNs
]

= E
[∫ t

0

‖Zs‖2dNs

]
+ λE

[∫ t

0

‖Zs‖2ds
]
.(13)

The first term of (13) vanishes as the compensated Poisson process is a martin-
gale. Therefore, we have

E
[∫ t

0

ZsdNs,

∫ t

0

ZsdNs

]
= λE

[∫ t

0

‖Zs‖2ds
]
.(14)

The proof follows from BDG inequality and Minkowski’s inequality. In fact Apply-

ing Lemma 3.11 with Mt = sup
0≤t≤T

∫ t
0
ZsdNs and using (14) leads to

[
E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

ZudNu

∥∥∥∥p]]1/p

≤ Cp

[
E
(∫ T

0

‖Zs‖2ds
)p/2]1/p

,(15)

where Cp is a positive constant depending on p and λ.
Using the definition of ‖X‖Lp(Ω,Rd) for any random variable X, it follows from

(15) that∥∥∥∥∥ sup
s∈[0,T ]

∥∥∥∥∫ s

0

ZudNu

∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp

∥∥∥∥∥
∫ T

0

‖Zs‖2ds

∥∥∥∥∥
1/2

Lp/2(Ω,R)

.(16)
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Using Minkowski’s inequality in its integral form yields∥∥∥∥∥ sup
s∈[0,T ]

∥∥∥∥∫ s

0

ZudNu

∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp

(∫ T

0

∥∥‖Zs‖2∥∥Lp/2(Ω,R)
ds

)1/2

= Cp

(∫ T

0

‖Zs‖2Lp(Ω,Rk)ds

)1/2

.

�

Lemma 3.15. Let k ∈ N, M ∈ N and ZMl : Ω −→ Rk, l ∈ {0, 1, · · · ,M − 1}
be a family of mappings such that ZMl is FlT/M/B(Rk)-measurable for all l ∈
{0, 1, · · · ,M − 1}, then ∀ n ∈ {0, 1 · · · ,M} the following inequality holds∥∥∥∥∥ sup
j∈{0,1,··· ,n}

∥∥∥∥∥
j−1∑
l=0

ZMl ∆N
M

l

∥∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤ Cp

n−1∑
j=0

||ZMj ||2Lp(Ω,Rk)

T

M

1/2

, p ≥ 1.

Proof. Let us define Z
M

: [0, T ] × Ω −→ Rk such that Z
M

s := ZMl for all s ∈[
lT

M
,

(l + 1)T

M

)
, l ∈ {0, 1, · · · ,M − 1}.

Using the definition of stochastic integral and Lemma 3.14, it follows that∥∥∥∥∥ sup
j∈{0,1,··· ,n}

∥∥∥∥∥
j−1∑
l=0

ZMl ∆N
M

l

∥∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

=

∥∥∥∥∥ sup
j∈{0,1,··· ,n}

∥∥∥∥∥
∫ jT/M

0

Z
M

u dN
M

u

∥∥∥∥∥
∥∥∥∥∥
Lp(Ω,R)

≤

∥∥∥∥∥ sup
s∈[0,nT/M ]

∥∥∥∥∫ s

0

Z
M

u dNu

∥∥∥∥
∥∥∥∥∥
Lp(Ω,Rk)

≤ Cp

(∫ nT/M

0

‖ZMu ‖2Lp(Ω,Rk)ds

)1/2

= Cp

n−1∑
j=0

||ZMj ‖2Lp(Ω,Rk)

T

M

1/2

.

This completes the proof of the lemma. �

Lemma 3.16. Let YMn : Ω −→ Rd be defined by (7) for n ∈ {0, · · · ,M} and all
M ∈ N. The following inequality holds

sup
M∈N

sup
n∈{0,··· ,M}

E
[
‖YMn ‖p

]
< +∞, p ∈ [1,∞).

Proof. The proof follows the same lines as [12, Lemma 3.10]. See [22, 17] for
details. �

Lemma 3.17. Let YMn be defined by (7) for all M ∈ N and all n ∈ {0, 1, · · · ,M},
then we have

sup
M∈N

sup
n∈{0,1,··· ,M}

(
E
[
‖fλ(YMn )‖p

]
∨ E

[∥∥∥g(YMn )
∥∥∥p] ∨ E

[∥∥∥h(YMn )
∥∥∥p]) < +∞, p ∈ [1,∞).

Proof. The proof follows the same lines as that of [12, Lemma 3.10]. See [22, 17]
for details. �

In the sequel, for all s ∈ [0, T ] we denote by bsc the greatest grid point less than
s.
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Lemma 3.18. Let Y
M

t be the time continuous approximation given by (10), there
exists a constant Cp such that the following inequalities hold

sup
t∈[0,T ]

∥∥∥YMt − YMbtc∥∥∥
Lp(Ω,Rd)

≤ Cp∆t1/2,(17)

sup
M∈N

sup
t∈[0,T ]

∥∥∥YMt ∥∥∥
Lp(Ω,Rd)

<∞,(18)

sup
t∈[0,T ]

∥∥∥fλ(Y
M

t )− fλ(Y
M

btc)
∥∥∥
Lp(Ω,Rd)

≤ Cp∆t1/2.(19)

for all p ∈ [1,∞).

Proof. The proof follows the same lines as that of [12, (67), (68), (70)]. Details can
be found in [22, 17]. �

Now we are ready to give the proof of Theorem 3.1.

3.1.2. Main part of the proof of Theorem 3.1 for χMt = Y
M

t . Recall that
for s ∈ [0, T ], bsc denote the greatest grid point less than s. The time continuous
solution (10) can be written in its integral form as bellow

Y
M
s = X0 +

∫ s

0

fλ(Y
M
buc)

1 + ∆tα‖fλ(Y
M
buc)‖

du+

∫ s

0

g(Y
M
buc)dWu

+

∫ s

0

h(Y
M
buc)dNu,(20)

for all s ∈ [0, T ] almost surely and all M ∈ N.

Let us estimate first the quantity ‖Xs − Y
M

s ‖2, where Xs is the exact solution
of (1).

Xs − Y s =

∫ s

0

(
fλ(Xu)−

fλ(Y
M
buc)

1 + ∆tα‖fλ(Y
M
buc)‖

)
du

+

∫ s

0

(
g(Xu)− g(Y

M
buc)

)
dWu +

∫ s

0

(
h(Xu)− h(Y

M
buc)

)
dNu.

Using the relation dNu = dNu − λdu, it follows that

Xs − Y s =

∫ s

0

[(
fλ(Xu)−

fλ(Y
M
buc)

1 + ∆tα‖fλ(Y
M
buc)‖

)
− λ

(
h(Xu)− h(Y

M
buc)

)]
du

+

∫ s

0

(
g(Xu)− g(Y

M
buc)

)
dWu +

∫ s

0

(
h(Xu)− h(Y

M
buc)

)
dNu.

The function k : Rd −→ R, x 7−→ ‖x‖2 is twice differentiable. Applying Itô’s

formula for jumps process ([18, pp. 6-9]) to the process Xs − Y
M

s leads to∥∥∥Xs − YMs ∥∥∥2

= 2

∫ s

0

〈
Xu − Y

M
u , fλ(Xu)−

fλ(Y
M
buc)

1 + ∆tα‖fλ(Y
M
buc)‖

〉
du

−2λ

∫ s

0

〈
Xu − Y

M
u , h(Xu)− h(Y

M
buc)

〉
du+

m∑
i=1

∫ s

0

‖gi(Xu)− gi(Y
M
buc)‖2du

+2

m∑
i=1

∫ s

0

〈
Xu − Y

M
u , gi(Xu)− gi(Y

M
buc)

〉
dW i

u

+

∫ s

0

[
‖Xu − Y

M
u + h(Xu)− h(Y

M
buc)‖2 − ‖Xu − Y

M
u ‖2

]
dNu.



856 A. TAMBUE AND J. D. MUKAM

Using again the relation dNu = dNu + λdu leads to∥∥∥Xs − YMs ∥∥∥2

= 2

∫ s

0

〈
Xu − Y

M
u , fλ(Xu)−

fλ(Y
M
buc)

1 + ∆tα‖fλ(Y
M
buc)‖

〉
du

−2λ

∫ s

0

〈
Xu − Y

M
u , h(Xu)− h(Y

M
buc)

〉
du+

m∑
i=1

∫ s

0

‖gi(Xu)− gi(Y
M
buc)‖2du

+2

m∑
i=1

∫ s

0

〈
Xu − Y

M
u , gi(Xu)− gi(Y

M
buc)

〉
dW i

u

+

∫ s

0

[
‖Xu − Y

M
u + h(Xu)− h(Y

M
buc)‖2 − ‖Xu − Y

M
u ‖2

]
dNu

+λ

∫ s

0

[
‖Xu − Y

M
u + h(Xu)− h(Y

M
buc)‖2 − ‖Xu − Y

M
u ‖2

]
du

= A1 +A2 +A3 +A4 +A5 +A6.(21)

In the next step, we give some useful estimations of A1, A2, A3 and A6.

A1 := 2

∫ s

0

〈
Xu − Y

M

u , fλ(Xu)−
fλ(Y buc)

1 + ∆tα‖fλ(Y
M

buc)‖

〉
du

= 2

∫ s

0

〈
Xu − Y

M

u , fλ(Xu)− fλ(Y
M

u )
〉
du

+2

∫ s

0

〈
Xu − Y

M

u , fλ(Y
M

u )−
fλ(Y

M

buc)

1 + ∆tα‖fλ(Y
M

buc)‖

〉
du,

= A11 +A12.

Using the one-sided Lipschitz condition satisfied by fλ leads to

A11 := 2

∫ s

0

〈
Xu − Y

M
u , fλ(Xu)− fλ(Y

M
u )
〉
du ≤ 2C

∫ s

0

‖Xu − Y
M
u ‖2du.(22)

Moreover, using the inequality 2〈a, b〉 ≤ 2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2 for all a, b ∈ Rd
leads to

A12 = 2

∫ s

0

〈
Xu − Y

M

u , fλ(Y
M

u )−
fλ(Y

M

buc)

1 + ∆tα‖fλ(Y
M

buc)‖

〉
du

= 2

∫ s

0

〈
Xu − Y

M

u , fλ(Y
M

u )− fλ(Y
M

buc)
〉
ds

+2∆tα
∫ s

0

〈
Xu − Y

M

u ,
fλ(Y

M

buc)‖fλ(Y
M

buc)‖

1 + ∆tα‖fλ(Y
M

buc)‖

〉
du

≤
∫ s

0

‖Xu − Y
M

u ‖2du+

∫ s

0

‖fλ(Y
M

u )− fλ(Y
M

buc)‖2du

+

∫ s

0

‖Xu − Y
M

u ‖2du+
T 2α

M2α

∫ s

0

‖fλ(Y
M

buc)‖4du

≤ 2

∫ s

0

‖Xu − Y
M

u ‖2du+

∫ s

0

‖fλ(Y
M

u )− fλ(Y buc)‖2du

+
T 2α

M2α

∫ s

0

‖fλ(Y
M

buc)‖4du.(23)
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Combining (22) and (23) give the following estimation of A1

A1 ≤ (2C + 2)

∫ s

0

‖Xu − Y
M

u ‖2du+

∫ s

0

‖fλ(Y
M

u )− fλ(Y buc)‖2du

+
T 2α

M2α

∫ s

0

‖fλ(Y
M

buc)‖4du.(24)

Using again the inequality 2〈a, b〉 ≤ 2‖a‖‖b‖ ≤ ‖a‖2 + ‖b‖2 for all a, b ∈ Rd and the
global Lipschitz condition satisfied by h leads to

A2 := −2λ

∫ s

0

〈
Xu − Y

M

u , h(Xu)− h(Y
M

buc)
〉
du

= −2λ

∫ s

0

〈
Xu − Y

M

u , h(Xu)− h(Y
M

u )
〉
du

−2λ

∫ s

0

〈
Xu − Y

M

u , h(Y
M

u )− h(Y
M

buc)
〉
du

≤ (2λ+ λC2)

∫ s

0

‖Xu − Y
M

u ‖2du+ λC2

∫ s

0

‖YMu − Y
M

buc‖2du.(25)

Using the inequalities ‖gi(x)−gi(y)‖ ≤ ‖g(x)−g(y)‖ and ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2
for all a, b ∈ Rd and the global Lipschitz condition we have

A3 :=

m∑
i=1

∫ s

0

‖gi(Xu)− gi(Y
M

buc)‖2du

≤ m

∫ s

0

‖g(Xu)− g(Y
M

buc)‖2du

≤ m

∫ s

0

‖g(Xu)− g(Y
M

u ) + g(Y
M

u )− g(Y
M

buc)‖2du

≤ 2m

∫ s

0

‖g(Xu)− g(Y
M

u )‖2du+ 2m

∫ s

0

‖g(Y
M

u )− g(Y
M

buc)‖2du

≤ 2mC2

∫ s

0

‖Xu − Y
M

u ‖2du+ 2mC2

∫ s

0

‖YMu − Y
M

buc‖2du.(26)

Using once again inequality ‖a+ b‖2 ≤ 2‖a‖2 + ‖b‖2 for all a, b ∈ Rd we obtain the
following estimation of A6

A6 := λ

∫ s

0

[
‖Xu − Y

M

u + h(Y
M

u )− h(Y
M

buc)‖2 − ‖Xu − Y
M

u ‖2
]
du

≤ λ

∫ s

0

‖Xu − Y
M

u ‖2du+ 2λ

∫ s

0

‖h(Xu)− h(Y
M

buc)‖2du

≤ λ

∫ s

0

‖Xu − Y
M

u ‖2du+ 4λ

∫ s

0

‖h(Xu)− h(Y
M

u )‖2du

+4λ

∫ s

0

‖h(Y
M

u )− h(Y
M

buc)‖2du

≤ (λ+ 4λC2)

∫ s

0

‖Xu − Y
M

u ‖2du+ 4λC2

∫ s

0

‖YMu − Y
M

buc‖2du.(27)
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Inserting (24), (25), (26) and (27) in (21) we obtain∥∥∥Xs − Y
M

s

∥∥∥2

≤ (2C + 2 + 2mC2 + 3λ+ 5λC2)

∫ s

0

‖Xu − Y
M

u ‖2du

+(2mC2 + 5λC2)

∫ s

0

‖YMu − Y
M

buc‖2du+

∫ s

0

‖fλ(Y
M

u )− fλ(Y
M

buc)‖2du

+
T 2α

M2α

∫ s

0

‖fλ(Y
M

buc)‖4du+ 2

m∑
i=1

∫ s

0

〈
Xu − Y

M

u , gi(Xu)− gi(Y
M

buc)
〉
dW i

u

+

∫ s

0

[
‖Xu − Y

M

u + h(Xu)− h(Y
M

buc)‖2 − ‖Xu − Y
M

u ||2
]
dNu.

Taking the supremum in both sides of the previous inequality leads to

sup
s∈[0,t]

∥∥∥Xs − Y
M

s

∥∥∥2

≤ (2C + 2 + 2mC2 + 3λ+ 5λC2)

∫ t

0

‖Xu − Y
M

u ‖2du

+(2mC2 + 5λC2)

∫ t

0

‖YMu − Y
M

buc‖2du

+

∫ t

0

‖fλ(Y
M

u )− fλ(Y
M

buc)‖2du+
T 2α

M2α

∫ t

0

‖fλ(Y
M

buc)‖4du

+2 sup
s∈[0,t]

∣∣∣∣∣
m∑
i=1

∫ s

0

〈
Xu − Y

M

u , gi(Xu)− gi(Y
M

buc)
〉
dW i

u

∣∣∣∣∣
+ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
‖Xu − Y

M

u + h(Xu)− h(Y
M

buc)‖2
]
dNu

∣∣∣∣
+ sup
s∈[0,t]

∣∣∣∣∫ s

0

‖Xu − Y
M

u ‖2dNu

∣∣∣∣ .(28)

Using Lemma 3.12 we have the following estimation for all p ≥ 2

B1 :=

∥∥∥∥∥2 sup
s∈[0,t]

∣∣∣∣∣
m∑
i=1

∫ s

0

〈
Xu − Y

M

u , gi(Xu)− gi(Y
M

buc)
〉
dW i

u

∣∣∣∣∣
∥∥∥∥∥
Lp/2(Ω,R)

≤ Cp

(∫ t

0

m∑
i=1

∥∥∥〈Xu − Y
M

u , gi(Xu)− gi(Y
M

buc)
〉∥∥∥2

Lp/2(Ω,R)
ds

)1/2

.

Moreover, using the inequalities ab ≤ a2

2
+
b2

2
and (a + b)2 ≤ 2a2 + 2b2 for all

a, b ∈ R, we have the following estimations for all p ≥ 2

B1 ≤ Cp

(∫ t

0

m∑
i=1

∥∥∥〈Xu − Y
M

u , gi(Xu)− gi(Y
M

buc)
〉∥∥∥2

Lp/2(Ω,R)
du

)1/2

≤ Cp

(∫ t

0

m∑
i=1

‖Xu − Y
M

u ‖2Lp(Ω,R)‖gi(Xu)− gi(Y
M

buc)‖2Lp(Ω,Rd)du

)1/2



SEMI-TAMED AND TAMED EULER SCHEMES FOR SDE WITH JUMPS 859

≤ Cp√
2

(
sup
s∈[0,t]

‖Xs − Y
M

s ‖Lp(Ω,Rd)

)(
2C2m

∫ t

0

‖Xs − Y
M

bsc‖2Lp(Ω,Rd)ds

)1/2

≤ 1

4
sup
s∈[0,t]

‖Xs − Y
M

s ‖2Lp(Ω,Rd) + C2
pm

∫ t

0

‖Xs − Y
M

bsc‖2Lp(Ω,Rd)ds

≤ 1

4
sup
s∈[0,t]

‖Xs − Y
M

s ‖2Lp(Ω,Rd) + 2C2
pm

∫ t

0

‖Xs − Y
M

s ‖2Lp(Ω,Rd)ds

+2C2
pm

∫ t

0

‖YMs − Y
M

bsc‖2Lp(Ω,Rd)ds.(29)

Using Lemma 3.14 and the inequality (a+ b)4 ≤ 16a4 + 16b4, it follows that

B2 :=

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

‖Xu − Y
M

u + h(Xu)− h(Y
M

buc)‖2dNu

∣∣∣∣
∥∥∥∥∥
Lp/2(Ω,Rd)

≤ Cp

(∫ t

0

‖Xu − Y
M

u + h(Xu)− h(Y
M

buc)‖4Lp/2(Ω,Rd)du

)1/2

≤ Cp

(∫ t

0

16‖Xu − Y
M

u ||4Lp/2(Ω,Rd) + 16‖h(Xu)− h(Y
M

buc)||4Lp/2(Ω,Rd)du

)1/2

,

for all p ≥ 2.
Using the inequality

√
a+ b ≤

√
a+
√
b for a, b ∈ R+, it follows that

B2 ≤ 2Cp

(∫ t

0

‖Xu − Y
M

u ‖4Lp/2(Ω,Rd)du

)1/2

+2Cp

(∫ t

0

‖h(Xu)− h(Y
M

buc)‖4Lp/2(Ω,Rd)du

)1/2

= B21 +B22.(30)

Using Holder’s inequality, it follows that

B21 := 2Cp

(∫ t

0

‖Xu − Y
M

u ‖4Lp/2(Ω,Rd)du

)1/2

≤ 2Cp

(∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)‖Xu − Y
M

u ‖2Lp(Ω,Rd)du

)1/2

≤ 1

4
sup
u∈[0,t]

‖Xu − Y
M

u ‖Lp(Ω,Rd) 8Cp

(∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du

)1/2

.

Using the inequality 2ab ≤ a2 + b2 for a, b ∈ R leads to

B21 ≤ 1

16
sup
u∈[0,t]

‖Xu − Y
M

u ‖2Lp(Ω,Rd) + 16C2
p

∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du.(31)
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Using the inequalities (a + b)4 ≤ 4a4 + 4b4 and
√
a+ b ≤

√
a +
√
b for a, b ∈ R+,

we obtain

B22 := 2Cp

(∫ t

0

‖h(Xu)− h(Y
M
buc)‖4Lp/2(Ω,Rd)du

)1/2

≤ 2Cp

(∫ t

0

[
4‖h(Xu)− h(Y

M
u )‖4Lp/2(Ω,Rd) + 4‖h(Y

M
u )− h(Y

M
buc)‖4Lp/2(Ω,Rd)

]
du

)1/2

≤ 4Cp

(∫ t

0

‖h(Xu)− h(Y
M
u )‖4Lp/2(Ω,Rd)du

)1/2

+4Cp

(∫ t

0

‖h(Y
M
u )− h(Y

M
buc)‖4Lp/2(Ω,Rd)du

)1/2

.

Using the global Lipschitz condition, leads to

B22 ≤ 4Cp

(∫ t

0

C‖Xu − Y
M

u ‖4Lp/2(Ω,Rd)du

)1/2

+4Cp

(∫ t

0

C‖YMu − Y
M

buc‖4Lp/2(Ω,Rd)du

)1/2

.

Using the same estimations as for B21, it follows that :

B22 ≤ 1

16
sup
s∈[0,t]

‖Xs − Y
M

s ‖2Lp(Ω,Rd) + 64Cp

∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du

+
1

4
sup
s∈[0,t]

‖YMs − Y
M

bsc‖2Lp(Ω,Rd) + 64Cp

∫ t

0

‖YMu − Y
M

buc‖2Lp(Ω,Rd)du.

Taking the supremum under the integrand in the last term of the above inequality
and using the fact that Cp is an arbitrary constant leads to

B22 ≤ 1

16
sup
s∈[0,t]

‖Xs − Y
M

s ‖2Lp(Ω,Rd) + 64Cp

∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du

+Cp sup
s∈[0,t]

‖YMs − Y
M

bsc‖2Lp(Ω,Rd).(32)

Inserting (31) and (32) into (30) gives

B2 ≤ 1

8
sup
s∈[0,t]

‖Xs − Y
M

s ‖2Lp(Ω,Rd) + Cp

∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du

+Cp sup
s∈[0,t]

‖YMs − Y
M

bsc‖2Lp(Ω,Rd).(33)

Using again Lemma 3.14 leads to

B3 :=

∥∥∥∥∥ sup
u∈[0,t]

(∫ s

0

‖Xu − Y
M

u ‖2dNu

)1/2
∥∥∥∥∥
Lp/2(Ω,Rd)

≤ Cp

(∫ t

0

‖Xu − Y
M

u ‖4Lp/2(Ω,Rd)du

)1/2

.

Using the same argument as for B21, we obtain

B3 ≤ 1

8
sup
u∈[0,t]

‖Xu − Y
M

u ‖2Lp(Ω,Rd) + Cp

∫ t

0

‖Xu − Y
M

u ‖2Lp(Ω,Rd)du.(34)
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Taking the Lp norm in both side of (28), inserting inequalities (29), (33), (34) and
using Minkowski’s inequality in its integral form leads to

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M

s ‖

∥∥∥∥∥
2

Lp(Ω,R)

=

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M

s ‖2
∥∥∥∥∥
Lp/2(Ω,R)

,

so

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M

s ‖

∥∥∥∥∥
2

Lp(Ω,R)

≤ Cp

∫ t

0

‖Xs − Y
M

s ‖2Lp(Ω,Rd)ds+ Cp

∫ t

0

‖YMs − Y
M

bsc‖2Lp(Ω,Rd)ds

+

∫ t

0

‖fλ(Xs)− fλ(Y
M

bsc)‖2Lp(Ω,Rd)ds+ Cp sup
u∈[0,t]

‖YMu − Y
M

buc‖2Lp(Ω,Rd)

+
T 2α

M2α

∫ t

0

‖fλ(Y
M

bsc)‖4L2p(Ω,Rd)ds+ 2Cp

∫ t

0

‖YMs − Y
M

bsc‖2Lp(Ω,Rd)ds

+
1

2

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M

s ‖

∥∥∥∥∥
2

Lp(Ω,R)

,(35)

for all t ∈ [0, T ] and all p ∈ [2,+∞).
Inequality (35) can be rewritten in the following appropriate form

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M

s ‖

∥∥∥∥∥
2

Lp(Ω,R)

≤ Cp

∫ t

0

‖Xs − Y
M

s ‖2Lp(Ω,Rd)ds+ Cp

∫ t

0

‖YMs − Y
M

bsc‖2Lp(Ω,Rd)ds

+

∫ t

0

‖fλ(Xs)− fλ(Y
M

bsc)‖2Lp(Ω,Rd)ds+ Cp sup
u∈[0,t]

‖YMu − Y
M

buc‖2Lp(Ω,Rd)

+
T 2α

M2α

∫ t

0

‖fλ(Y
M

bsc)‖4L2p(Ω,Rd)ds+ 2C2m

∫ t

0

‖YMs − Y
M

bsc‖2Lp(Ω,Rd)ds.(36)

Applying Gronwall’s lemma to (36) leads to

1

2

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M
s ‖

∥∥∥∥∥
2

Lp(Ω,R)

≤ Cpe
Cp

(∫ T

0

‖fλ(Y
M
s )− fλ(Y

M
bsc)‖2Lp(Ω,Rd)ds+ Cp sup

u∈[0,t]

‖YMu − Y
M
buc‖2Lp(Ω,Rd)

+
T 2α

M2α

∫ T

0

‖fλ(Y
M
bsc)‖4L2p(Ω,Rd)ds+ Cp

∫ T

0

‖YMs − Y
M
bsc‖2Lp(Ω,Rd)ds

)
.(37)
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From (37) and the inequality
√
a+ b+ c ≤

√
a +
√
b +
√
c for all a, b, c ∈ R+, it

follows that

1

2

∥∥∥∥∥ sup
s∈[0,t]

‖Xs − Y
M
s ‖

∥∥∥∥∥
Lp(Ω,R)

≤ Cpe
Cp

(
sup
t∈[0,T ]

‖fλ(Y
M
t )− fλ(Y

M
btc)‖Lp(Ω,Rd) + Cp sup

t∈[0,T ]

‖YMt − Y
M
btc‖Lp(Ω,Rd)

+
Tα

Mα

[
sup

n∈{0,··· ,M}
‖fλ(YMn )‖2Lp(Ω,Rd)

]
+ Cp sup

t∈[0,T ]

‖YMt − Y
M
btc‖Lp(Ω,Rd)

)
,(38)

for all p ∈ [2,∞).

Using Lemma 3.17, Lemma 3.18 and the inequality
Tα

Mα
≤ Cα ∆t1/2, it follows

from (38) that∥∥∥∥∥ sup
t∈[0,T ]

‖Xt − Y
M
t ‖

∥∥∥∥∥
Lp(Ω,R)

=

(
E

[
sup
t∈[0,T ]

∥∥∥Xt − YMt ∥∥∥p
])1/p

≤ Cp∆t1/2,(39)

for all p ∈ [2,∞) and all M ∈ N. Using Holder’s inequality, one can prove that
(39) holds for p ∈ [1, 2]. The proof of the theorem is complete.

3.2. Proof of Theorem 3.1 for STS scheme (χMt = Z
M

t ). After replacing the

increment of the poisson process ∆NM
n by its compensated form ∆N

M

n in STS (4),
we obtain an equivalent scheme similar to the compensated tamed scheme (CTS).
Therefore, the proof of the strong convergence of the STS follows exactly the one
of compensated tamed scheme (CTS) (7) in Section 3.1. Here we should make the
following changes for our semi-tamed scheme

αMk := 1{‖ZM
k ‖≥1}

〈
ZMk + uλ(ZMn )∆t

‖ZMk ‖
,
g(ZMk )

‖ZMk ‖
∆WM

k

〉
,

βMk := 1{‖ZM
k ‖≥1}

〈
ZMk + uλ(ZMn )∆t

‖ZMk ‖
,
h(ZMk )

‖ZMk ‖
∆N

M

k

〉
,

where uλ = u + λh. The function v which is one-side Lipschitz (see Remark 2.1)
should replace the function fλ in the proof of the compensated tamed scheme
(CTS). It follows from the proof in Section 3.1 that there exists a constant Cp > 0
such that (

E

[
sup
t∈[0,T ]

∥∥∥Xt − Z
M

t

∥∥∥p])1/p

≤ Cp∆t1/2,(40)

for all p ∈ [1,∞). Details can also be found in [17].

3.3. Proof of Theorem 3.1 for NCTS scheme (χMt = X
M

t ). Using the relation

∆N
M

n = ∆NM
n − λ∆t, the continuous interpolation of (8) can be expressed in the

following form

X
M

t = XM
n + λ(t− n∆t)h(XM

n ) +
(t− n∆t)f(XM

n )

1 + ∆tα‖f(XM
n )‖

+ g(XM
n )(Wt −Wn∆t)

+h(XM
n )(N t −Nn∆t),

for all t ∈ [n∆t, (n+ 1)∆t).
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The numerical solution of non compensated tamed scheme (NCTS) (3) is also
equivalent to

XM
n+1 = XM

n +
∆tf(XM

n )

1 + ∆tα‖f(XM
n )‖

+ g(XM
n )∆WM

n + h(XM
n )∆NM

n

= XM
n + λh(XM

n )∆t+
∆tf(XM

n )

1 + ∆tα‖f(XM
n )‖

+ g(XM
n )∆WM

n

+h(XM
n )∆N

M

n .(41)

The functions λh and f in the numerical solution of the scheme NCTS given by (3)
(or (41)) satisfy respectively the same conditions as the uλ and v in the numerical
solution of the STS given by (4). Hence, it follows from the proof in Section 3.2
that there exists a constant Cp > 0 such that(

E

[
sup
t∈[0,T ]

∥∥∥Xt −X
M

t

∥∥∥p])1/p

≤ Cp∆t1/2,(42)

for all p ∈ [1,∞).

4. Linear mean-square stability

The goal of this section is to find the time step-size limit for which the tamed
Euler scheme and the semi-tamed Euler scheme are stable in the linear mean-square
sense. For the scalar linear test problem, the concept of A-stability of a numerical
method may be interpreted as “problem stable ⇒ method stable for all ∆t”. We
consider the following linear test equation with real and scalar coefficients

dX(t) = aX(t−)dt+ bX(t−)dW (t) + cX(t−)dN(t), X(0) = X0,(43)

where X0 satisfied E‖X0‖2 < ∞. In the sequel of this paper we take α ∈ [0, 1]. It
has been proved in [6] that the exact solution of (43) is mean-square stable if and
only if

lim
t→∞

E(X(t)2) = 0⇔ l := 2a+ b2 + λc(2 + c) < 0.(44)

Using the discrete form of (43), the numerical schemes (4) and (3) will be mean-
square stable if l < 0 and

lim
n→∞

E(Y 2
n ) = lim

n→∞
E(X2

n) = 0.(45)

The following result provides the time step-size limit for which the semi-tamed
scheme (STS) (4) is mean-square stable.

Theorem 4.1. Assume that l < 0, then the semi-tamed scheme (4) is mean-square
stable if and only if

∆t <
−l

(a+ λc)2
.

Proof. The proof is straightforward. Details can be found in [22, 17]. �

The following result provides the time step-size limit for which the non compen-
sated tamed scheme (NCTS) (3) is stable.

Theorem 4.2. Assume that l < 0, then the tamed Euler scheme (3) is mean-square
stable if one of the following conditions is satisfied

(i) a(1 + λc∆t) ≤ 0, 2a− l > 0 and ∆t <
2a− l

a2 + λ2c2
.
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(ii) a(1 + λc∆t) > 0 and ∆t <
−l

(a+ λc)2
.

Proof. The proof is straightforward. See [22, 17] for details. �

Remark 4.1. In Theorem 4.2, we can easily check that if l < 0, we have
a(1 + λc∆t) ≤ 0,
2a− l > 0

∆t <
2a− l

a2 + λ2c2

⇔

 a ∈ (l/2, 0], c ≥ 0,

∆t <
2a− l

a2 + λ2c2

⋃


a ∈ (l/2, 0), c < 0,

∆t <
2a− l

a2 + λ2c2

∆t ≤ −1

λc

⋃


a > 0, c < 0

∆t <
2a− l

a2 + λ2c2

∆t ≥ −1

λc a(1 + λc∆t) > 0,

∆t <
−l

(a+ λc)2

⇔

 a > 0, c > 0,

∆t <
−l

(a+ λc)2

⋃ a > 0, c < 0,

∆t <
−l

(a+ λc)2
∧ −1

λc

⋃


a < 0, c < 0

∆t <
−l

(a+ λc)2

∆t >
−1

λc
.

Remark 4.2. Note that from the above studies, we can deduce the linear stabil-
ities of schemes (3) and (4) for SDEs without jump by just take c = 0 in (43),
Theorem 4.1 and Theorem 4.2.

5. Nonlinear mean-square stability

In this section, we focus on the exponential mean-square stability of the approx-
imation (4). We follow closely [25, 6] and assume that f(0) = u(0) = v(0) = g(0) =
h(0) = 0 and E‖X0‖2 < ∞. It has been proved in [6] that under the following
conditions

〈x− y, f(x)− f(y)〉 ≤ µ‖x− y‖2,(46)

‖g(x)− g(y)‖2 ≤ σ‖x− y‖2,(47)

‖h(x)− h(y)‖2 ≤ γ‖x− y‖2,(48)

for all x, y ∈ Rd, where µ, σ and γ are constants, the exact solution of SDE (1) is
nonlinear mean-square stable if α := 2µ+ σ+ λ

√
γ(
√
γ + 2) < 0. Indeed under the

above assumptions, we have [6, Theorem 4]

E‖X(t)‖2 ≤ E‖X0‖2eαt.

So, if α < 0 we have lim
t→∞

E‖X(t)‖2 = 0 and the exact solution X is exponentially

mean-square stable.
In the sequel of this section, we will use some weaker assumptions, which of course

imply that the conditions (46)-(48) hold. More precisely, for nonlinear stability of
the semi-tamed scheme (STS), we also make the following assumptions.
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Assumption 5.1. There exist some positive constants ρ, β,β, K, C, θ and a > 1
such that

〈x− y, u(x)− u(y)〉 ≤ −ρ‖x− y‖2, ‖u(x)− u(y)‖ ≤ K‖x− y‖,
〈x− y, v(x)− v(y)〉 ≤ −β‖x− y‖a+1, ‖v(x)‖ ≤ β‖x‖a,
‖g(x)− g(y)‖ ≤ θ‖x− y‖, ‖h(x)− h(y)‖ ≤ C‖x− y‖.

We denote by α1 := −2ρ+θ2 +λC(C+2) and we will always assume that α1 < 0
to ensure the stability of the exact solution. The nonlinear stability result for the
scheme (STS) is given in the following theorem.

Theorem 5.1. Under Assumptions 5.1 and the further hypothesis 2β − β > 0,

for any stepsize ∆t such that ∆t <
−α1

(K + λC)2
∧ 2β

[2(K + λC) + β]β
∧ 2β − β

2(K + λc)β
,

there exists a constant γ = γ(∆t) > 0 such that

E‖Yn‖2 ≤ E‖X0‖2e−γ tn , tn = n∆t, lim
∆t→0

γ(∆t) = −α1,

and the numerical solution (4) is exponentiallly mean-square stable.

Proof. The proof follows the same lines as [25, Theorem 4.2] by using additional
techniques related to the compensated Poisson process. Details can be found in
[22, 17]. �

To analyse the nonlinear mean-square stability of the tamed Euler scheme (NCTS),
we make the following assumption.

Assumption 5.2. There positive constants β, β, θ, µ, K, ρ, C and a > 1 such
that :

〈x− y, f(x)− f(y)〉 ≤ −ρ‖x− y‖2 − β‖x− y‖a+1,

‖f(x)‖ ≤ β‖x‖a +K‖x‖,
‖g(x)− g(y)‖ ≤ θ‖x− y‖, ‖h(x)− h(y)‖ ≤ C‖x− y‖,
〈x− y, h(x)− h(y)〉 ≤ −µ‖x− y‖2.(49)

Remark 5.1. Assumption 5.2 is a consequence of Assumption 5.1, except (49).

Using Assumption 5.2, we can easily check that the exact solution of (1) is
exponentiallly mean-square stable if α2 := −2ρ+ θ2 + λC(2 + C) < 0.

Theorem 5.2. Under Assumption 5.2, if α3 := K + θ2 + λC2 − 2λµC < 0 and
β(1 + 2C)− 2β < 0 for any stepsize

∆t <
−α3

2K2 + λ2C2 + 2λCK
∧ β − Cβ

β
2 ,

there exists a constant γ = γ(∆t) > 0 such that

E‖Xn‖2 ≤ E‖X0‖2e−γtn , tn = n∆t, lim
∆t→0

γ(∆t) = −α3.

and the numerical solution (3) is exponentiallly mean-square stable.
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Proof. From equation (3), we have

‖Xn+1‖2

= ‖Xn‖2 +
∆t2‖f(Xn)‖2

(1 + ∆tα‖f(Xn)‖)2 + ‖g(Xn)∆Wn‖2 + ‖h(Xn)∆Nn‖2

+2

〈
Xn,

∆tf(Xn)

1 + ∆tα‖f(Xn)‖

〉
+ 2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
+2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, h(Xn)∆Nn

〉
+ 2〈g(Xn)∆Wn, h(Xn)∆Nn〉.(50)

Using Assumption 5.2, it follows that

2

〈
Xn,

∆tf(Xn)

1 + ∆tα‖f(Xn)‖

〉
≤ −2∆tρ‖Xn‖2

1 + ∆tα‖f(Xn)‖ −
2β∆t‖Xn‖a+1

1 + ∆tα‖f(Xn)‖

≤ − 2β∆t‖Xn‖a+1

1 + ∆tα‖f(Xn)‖ .

‖g(Xn)∆Wn‖2 ≤ θ2‖Xn‖2‖∆Wn‖2

‖h(Xn)∆Nn‖2 ≤ C2‖Xn‖2|∆Nn|2.
2〈Xn, h(Xn)∆Nn〉 = 2〈Xn, h(Xn)〉∆Nn ≤ −2µ‖Xn‖2|∆Nn|,

2

〈
∆tf(Xn)

1 + ∆tα‖f(Xn)‖ , h(Xn)∆Nn

〉
≤ 2∆t‖f(Xn)‖‖h(Xn)‖|∆Nn|

1 + ∆tα‖f(Xn)‖

≤ 2∆tCβ‖Xn‖a+1

1 + ∆tα‖f(Xn)‖ |∆Nn|+ 2CK∆t‖Xn‖2|∆Nn|

So from Assumption 5.2, we have

2

〈
Xn,

∆tf(Xn)

1 + ∆tα‖f(Xn)‖

〉
≤ − 2β∆t‖Xn‖a+1

1 + ∆tα‖f(Xn)‖
‖g(Xn)∆Wn‖2 ≤ θ2‖Xn‖2‖∆Wn‖2

‖h(Xn)∆Nn‖2 ≤ C2‖Xn‖2|∆Nn|2(51)

2〈Xn, h(Xn)∆Nn〉 ≤ −2µ‖Xn‖2|∆Nn|

2

〈
∆tf(Xn)

1 + ∆tα‖f(Xn)‖ , h(Xn)∆Nn

〉
≤ 2∆tCβ‖Xn‖a+1

1 + ∆tα‖f(Xn)‖ |∆Nn|+ 2CK‖Xn‖2|∆Nn|

Let Ωn := {w ∈ Ω : ‖Xn(ω)‖ > 1}, on Ωn, using Assumption 5.2, we have

∆t2‖f(Xn)‖2

(1 + ∆tα‖f(Xn)‖)2 ≤ ∆t‖f(Xn)‖
1 + ∆tα‖f(Xn)‖

≤ ∆tβ‖Xn‖a

1 + ∆tα‖f(Xn)‖
+K∆t‖Xn‖

≤ ∆tβ‖Xn‖a+1

1 + ∆tα‖f(Xn)‖
+K∆t‖Xn‖2.(52)

Therefore substituting (51) and (52) in (50) yields

‖Xn+1‖2 ≤ ‖Xn‖2 +K∆t‖Xn‖2 + θ2‖Xn‖2‖∆Wn‖2 + C2‖Xn‖2|∆Nn|2

+2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
−2µ‖Xn‖2|∆Nn|+ 2CK∆t|∆Nn|

+2〈g(Xn)∆Wn, h(Xn)∆Nn〉+

[
−2β∆t+ β∆t+ 2βC∆t

]
‖Xn‖a+1

1 + ∆tα‖f(Xn)‖
.(53)
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Since β(1 + 2C)− 2β < 0, (53) becomes

‖Xn+1‖2 ≤ ‖Xn‖2 +K∆t‖Xn‖2 + θ2‖Xn‖2‖∆Wn‖2 + C2‖Xn‖2|∆Nn|2

+2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
− 2µ‖Xn‖2|∆Nn|

+2CK∆t|∆Nn|+ 2〈g(Xn)∆Wn, h(Xn)∆Nn〉.(54)

On Ωcn, using Assumption 5.2 and the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

∆t2‖f(Xn)‖2

(1 + ∆tα‖f(Xn)‖)2 ≤ ∆t2‖f(Xn)‖2

1 + ∆tα‖f(Xn)‖

≤ 2∆t2β
2‖Xn‖2a

1 + ∆tα‖f(Xn)‖
+ 2K2∆t2‖Xn‖2

≤ 2∆t2β
2‖Xn‖a+1

1 + ∆tα‖f(Xn)‖
+ 2K2∆t2‖Xn‖2.(55)

Therefore, using (51) and (55), (50) becomes

‖Xn+1‖2 ≤ ‖Xn‖2 + 2K2∆t2‖Xn‖2 + θ2‖Xn‖2‖∆Wn‖2 + C2‖Xn‖2|∆Nn|2

+2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
− 2µ‖Xn‖2|∆Nn|

+2CK∆t|∆Nn|+ 2〈g(Xn)∆Wn, h(Xn)∆Nn〉

+

[
2Cβ∆t− 2β∆t+ 2β

2
∆t2

]
‖Xn‖a+1

1 + ∆tα‖f(Xn)‖
.

Note that

∆t <
β − Cβ
β

2 ⇔ 2Cβ∆t− 2β∆t+ 2β
2
∆t2 < 0.

Therefore (56) becomes

‖Xn+1‖2 ≤ ‖Xn‖2 + 2K2∆t2‖Xn‖2 + θ2‖Xn‖2‖∆Wn‖2 + C2‖Xn‖2|∆Nn|2

+2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
−2µ‖Yn‖2|∆Nn|+ 2CK∆t|∆Nn|+ 2〈g(Xn)∆Wn, h(Xn)∆Nn〉(56)

From the above discussion on Ωn and Ωcn, using the fact that β(1 + 2C)− 2β < 0

and ∆t <
β − Cβ
β

2 that on Ω, we have

‖Xn+1‖2 ≤ ‖Xn‖2 +K∆t‖Xn‖2 + 2K2∆t2‖Xn‖2 + θ2‖Xn‖2‖∆Wn‖2

+C2‖Xn‖2|∆Nn|2 + 2

〈
Xn +

∆tf(Xn)

1 + ∆tα‖f(Xn)‖
, g(Xn)∆Wn

〉
−2µ‖Xn‖2|∆Nn|+ 2CK∆t|∆Nn|+ 2〈g(Xn)∆Wn, h(Xn)∆Nn〉.(57)

Taking the expectation in both sides of (57), using independence of ∆Wn and
∆Nn together with the relation E∆Wn = 0, E‖∆Wn‖2 = ∆t, E|∆Nn| = λ∆t and
E|∆Nn|2 = λ2∆t2 + λ∆t leads to

E‖Xn+1‖2 ≤ E‖Xn‖2 +K∆tE‖Xn‖2 + 2K2∆t2E‖Xn‖2 + θ2∆tE‖Xn‖2

+λ2C2∆t2E‖Xn‖2 + λC2∆tE‖Xn‖2

−2µλ∆tE‖Xn‖2 + 2λCK∆t2E‖Xn‖2

=
[
1 + (2K2 + λ2C2 + 2λCK)∆t2 + (K + θ2 + λC2 − 2µλ)∆t

]
E‖Xn‖2.
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Iterating the last inequality leads to

E‖Xn‖2 ≤
[
1 + (2K2 + λ2C2 + 2λCK)∆t2 + (K + θ2 + λC2 − 2µλ)∆t

]n E‖X0‖2.

To have the stability of the NCTS scheme, we should also have

1 + (2K2 + λ2C2 + 2λCK)∆t2 + (K + θ2 + λC2 − 2µλ)∆t < 1.

That is

∆t <
−[K + θ2 + λC2 − 2µλ]

2K2 + λ2C2 + 2λCK
,

and there exists a constant γ = γ(∆t) > 0 such that

E‖Xn‖2 ≤ E‖X0‖2e−γ tn , tn = n∆t.

As in the proof of Theorem 5.1, we obviously have lim
∆t→0

γ(∆t) = −(K+ θ2 +λC2−
2µλ) = −α3. �

6. Numerical simulations

6.1. Convergence. In this section, we present some numerical experiments to
illustrate our theoretical strong convergence result. We consider the following sto-
chastic differential equations

dX(t) = (−4X(t)−X3(t))dt+X(t)dW (t) +X(t)dNt,(58)

dX(t) = (−4X(t)−X3(t))dt+X(t)dW1(t) + 2X(t)dW2(t),

+X(t)dN1(t)− 2X(t)dN2(t).(59)

Note that W , W1 and W2 are independent Brownian motions and N , N1 and N2

are independent Poisson processes. Here u(x) = −4x. It is obvious to check that
u, v, g and h satisfy Assumption 2.1. Indeed 〈x− y, f(x)− f(x)〉 ≤ c(x− y)2 for all
c > 0.

Figure 1 shows the strong errors for equation (58) with different values of α. As
you can observe in Figure 1, all schemes have strong convergence order 0.5, which
confirm the theoretical result in Theorem 3.1.

Remember that we have assumed scalar Poisson jump just for simplicity. In
Figure 2, the convergence of our schemes with vector-valued jumps and vector-
valued Brownian motions is investigated. The errors graph corresponding to the
equation (59) are given at Figure 2(a) and Figure 2(b). All schemes have strong
convergence order 0.5, which also confirm the theoretical result in Theorem 3.1.

6.2. Linear stability. The goal of this section is to provide some practical ex-
amples to sustain our theoretical results in the previous section. We compare the
stability behaviors of the tamed Euler and the compensated tamed Euler schemes
with the one of semi-tamed Euler scheme. We denote by Yn all the approximated
solutions from those schemes. Here we consider the following linear stochastic dif-
ferential equation{

dX(t) = aX(t)dt+ bX(t)dW (t) + cX(t)dN(t),
X(0) = 1,

(60)

with the following two parameters

• Case I. a = −1, b = 2, c = −0.9 and λ = 9.
• Case II. a = 2, b = 2, c = −0.9 and λ = 9.
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(a) (b)

Figure 1. Strong convergence of the compensated tamed scheme
(CTS), the non compensated tamed scheme (NCTS) and the semi-
tamed scheme (STS) for different values of α for SDEs (58). For
each value of α we use 5000 sample paths and the reference solu-
tions are the numerical solutions with step size ∆t = 2−16. The
initial solution is X0 = 1 and the parameter of the scalar Poisson
λ = 1 and T = 1. Graph (a) corresponds to α = 0.8 and graph (b)
corresponds to α = 0.6.

(a) (b)

Figure 2. Strong convergence of the compensated tamed scheme
(CTS), the non compensated tamed scheme (NCTS) and the semi-
tamed scheme (STS) for multiple noise terms and jumps terms.
The initial solution is X0 = 1, T = 1. We use 5000 sample paths
and the reference solutions are the numerical solutions with step
size ∆t = 2−16. Figures 2(a) and 2(b) are for SDEs (59). Graphs
(a) corresponds to α = 1, λ1 = 1 and λ2 = 2.

We can easily check that in both cases l < 0, which ensure the linear mean-square
stable of the exact solution in the two situations. We can also easily check from the
theoretical result that the semi-tamed and the tamed Euler scheme reproduce the
linear mean-square property of the exact solution in the first case for all ∆t < 0.048



870 A. TAMBUE AND J. D. MUKAM

and in the second case for all ∆t < 0.0245. In Figure 3, we illustrate the mean-
square stability of the tamed Euler, the compensated tamed Euler and the semi-
tamed Euler schemes for different stepsizes. We observe from Figure 3 that the
semi-tamed scheme works better than the tamed and compensated tamed schemes.

6.3. Nonlinear stability. For nonlinear stability, we consider the following non-
linear stochastic differential equation{

dX(t) =
(
−2X(t)−X(t)3

)
dt+

√
2X(t)dW (t)− 1

4
X(t)dN(t),

X(0) = 1.
(61)

The Poisson process intensity is λ = 1, f(x) = −2x−x3, g(x) =
√

2x, h(x) = −1

4
x

and T = 2. We take u(x) = −2x and v(x) = −x3. Indeed, we obviously have

〈x− y, f(x)− f(y)〉 ≤ −2(x− y)2

|g(x)− g(y)|2 ≤ 2(x− y)2, |h(x)− h(y)|2 ≤ 1

16
(x− y)2.

Then µ = −2, σ = 2, γ =
1

16
and α = 2µ + σ + λ

√
γ(
√
γ + 2) = −23

16
< 0. It

follows that the exact solution is exponentially mean-square stable. One can easily
check from theoretical results that for ∆t < 0.22, the semi-tamed Euler schemes
reproduces the exponential mean-square stability property of the exact solution.
Figure 5 illustrates the stability of the tamed scheme, compensated tamed scheme
and the semi-tamed scheme for different step-sizes. We take ∆t = 1/6, ∆t = 1/12
and ∆t = 1/24 and generate 7×103 samples for each numerical method. We observe
that the semi-tamed scheme works better than the tamed and the compensated
tamed Euler schemes. We observe also that when α approaches 1 the tamed and
compensated tamed Euler scheme are more stable.

(a) (b) (c)

Figure 3. Linear stability of with α = 1 with different stepsizes
for SDE (61) with Case II (a) Tamed Euler scheme, (b) Com-
pensated tamed Euler scheme (c) Semi-tamed Euler scheme. This
reveals that the semi-tamed Euler scheme works better than the
tamed Euler and the compensated tamed Euler schemes.
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(a) (b) (c)

Figure 4. Nonlinear stability with α = 0.5 with different step-
sizes, (a) Tamed Euler scheme, (b) Semi-tamed Euler scheme, (c)
Compensated tamed Euler scheme (d) for 7× 103 samples of each
numerical scheme. This illustrate that semi-taned Euler scheme
works better than the tamed and the compensated tamed Euler
schemes.

(a) (b) (c)

Figure 5. Nonlinear stability with different values of α for with
∆t = 1/6 with 7×103 samples paths. (a) Tamed Euler scheme, (b)
Compensated tamed Euler scheme, (c) Semi-tamed Euler scheme
(d). This reveals that when α approaches 1 the tamed Euler and
the compensated tamed Euler schemes are more stable and behave
like the semi-tamed Euler scheme.
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