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USING p-REFINEMENT TO INCREASE BOUNDARY
DERIVATIVE CONVERGENCE RATES

DAVID WELLS AND JEFFREY BANKS

Abstract. Many important physical problems, such as fluid structure interaction or conjugate
heat transfer, require numerical methods that compute boundary derivatives or fluxes to high ac-
curacy. This paper proposes a novel approach to calculating accurate approximations of boundary
derivatives of elliptic problems. We describe a new continuous finite element method based on
p-refinement of cells adjacent to the boundary that increases the local degree of the approxima-
tion. We prove that the order of the approximation on the p-refined cells is, in 1D, determined
by the rate of convergence at the mesh vertex connecting the higher and lower degree cells and
that this approach can be extended, in a restricted setting, to 2D problems. The proven conver-
gence rates are numerically verified by a series of experiments in both 1D and 2D. Finally, we
demonstrate, with additional numerical experiments, that the p-refinement method works in more
general geometries.

Key words. Finite elements, superconvergence, elliptic equations, numerical analysis, scientific
computing.

1. Introduction

Simulation of many important physical problems, such as fluid structure interac-
tion and conjugate heat transfer, requires numerical methods that compute bound-
ary derivatives or fluxes to high accuracy. In some circumstances the only desired
result of a calculation is a quantity derived from the boundary derivatives, such as
a flux or stress: this problem has long been recognized as one of importance, and
a variety of methods (see, e.g., [12] (16, 28]) have been proposed that allow recon-
struction of an accurate boundary flux from less accurate interior data. Accurate
boundary derivatives are also required for some numerical boundary conditions.
For example, in [23] the authors presented a new discrete boundary condition for
a fluid-structure interaction problem based on matching accelerations, instead of
velocities, and obtained a traction boundary condition involving second derivatives
of the fluid velocity. This boundary condition was the key ingredient in a new
partitioned algorithm that was high-order, partitioned, and stable without subiter-
ations. While standard in the finite difference community (see, e.g., [9] 23]) these
equations, usually called compatibility boundary conditions, are not commonly used
in finite element methods, though they have appeared in some recent work [g].

A variety of algorithms have been proposed for calculating higher order derivative
values from lower order data calculated by a finite element method (see, e.g., [11, 17
28, 29, [30]): most of these algorithms rely on data post-processing, where one uses
least squares or other fitting procedure to fit a higher-degree polynomial through
known superconvergence points, as discussed in [3]. Another class of methods relies
on the application of high-order finite difference stencils to data derived on either
a uniform or quasi-uniform grid [I9]. A common feature of several postprocessing
techniques is that they require a grid satisfying some smoothness condition: without
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FIGURE 1. Two different implementations of p-refinement for
boundary cells adjacent to interior bilinear cells, where the finite
element spaces are chosen as nodal interpolants. The diagram on
the left is of @' elements adjacent to @* elements: the degrees of
freedom with support points along the two common faces would
ordinarily be constrained in a way that makes the solution continu-
ous. The scheme proposed in Section [3| uses a similar procedure to
constrain all such nonnormal degrees of freedom on each boundary
cell, effectively reducing the local approximation space to tensor
products of P!(x) and P*(y). Since the degree of the approxima-
tion in the normal direction determines the derivative convergence
rates, one could obtain the same effect by adding degrees of free-
dom corresponding to normal derivatives on the boundary instead
of doing Lagrange p-refinement.

such a condition, the error in the solution may be dominated by pollution error from
grid irregularities; see Chapter 4 of [3] for additional information on the impact
of grid regularity. In particular, of the three most common versions of the finite
element method (h-refinement based, p-refinement based, and hp-refinement based)
these postprocessing methods are almost always based on estimates from the h-
refinement version.

This paper proposes a novel alternative to current techniques. We present a
boundary cell p-refinement (i.e., locally increasing the degree of the approximation
space) strategy to improve the accuracy of boundary derivatives instead of post-
processing the solution. The numerical experiments in Section [4] use Lagrange p-
refinement to increase the local approximation degree: a possible alternative to this
is to add degrees of freedom corresponding to normal derivatives on the boundary.
This p-refinement results in higher rates of convergence in the normal derivatives
along the boundary. The theoretical results are based on the two-dimensional linear
convection-diffusion-reaction problem

(1) —Au+b-Vutcu=Ff

with homogeneous Dirichlet boundary conditions in y, periodic boundary conditions
in x, normalized viscosity, constant advection velocity l;, constant reaction rate
¢ > 0 (which is the standard well-posedness assumption; see Lemma 5.1 in [26] or
Chapters 3 and 4 of [24] for further discussion and justification), and forcing f.
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FI1GURE 2. Convergence rates for a numerical approximation of
on a domain with periodic boundary conditions in the x direction
and Dirichlet boundary conditions in the y direction. The grid on
the left depicts which cells have been p-refined; the plot on the right
shows convergence rates in the seminorms defined by Equations
—. The cyan cells have Q' (bilinear) shape functions; the
yellow cells have been p-refined in the normal direction (i.e., they
are P™ @ PP elements, notated as Q("™*P)),

Our main goal is to improve the accuracy of the finite element approximation
to Equation ’s normal derivatives along the Dirichlet boundary, notated as 9.
We will improve the accuracy by performing p-refinement in the direction normal
to 0Q. p-refinement in the normal direction means that, rather than standard
Q™ elements, the polynomial space on each boundary cell is P™ @ P™TP; i.e., a
tensor product between degree m polynomials in the tangential direction and degree
m+p polynomials in the normal direction. Notate these spaces by Q™™ +P) where
p > 0. An example implementation of this type of p-refinement is shown on the
right in Figure [I] with numerical results shown in Figure [2] The error estimates
proven in this paper rely on the tensor product discretization and, as a result,
provide convergence rates at mesh vertices. Hence, the numerical experiments in
Section [4| show convergence rates computed in the H'-B and H?-B seminorms,
which are defined in terms of the gradient, Hessian, and normal derivatives along
the non-periodic boundary:

lu—u"|m1p
(2) =max|(V(u— u) - 1) (8;,85) : (8;,6;) are cell vertices on the boundary|
i\

|U — 'LLh|H2_B

(3) =max }(ﬁTvz(u — uM)i?)(8;,8;) : (8;,6;) are cell vertices on the boundary{ .
l7J
The proposed p-refinement method does not neatly fit into the usual taxonomy
of the three common versions of the finite element method. The proven convergence
rates depend on the cell diameters but use multiple (fixed) polynomial orders in the
domain, which resembles p-refinement: however, this is not a p-refinement method



894 D. WELLS AND J. BANKS

since the refinement in p is static (i.e., only cells adjacent to the nonperiodic bound-
ary are p-refined, and the degrees m and m + p are fixed during grid refinement)
and not dependent on any a-posteriori error or regularity estimator. As such, this
method is not well described by the standard hp-finite element error estimate [I]

(4) lu = u"|| 110y < CR*p™ "V lul| gm o)

for elliptic problems in an energy norm, where p = min(p, m—1), p is the polynomial
order, and the grid is quasiuniform with cell diameter h. Additionally, this method
is not well-described by the classic p-refinement estimate

() lu—u" (g < Cp~ "V |l g

given in [4] since the degree p is fixed during the refinement process.

The rest of this paper is organized as follows: Section [2| presents the essen-
tial theory for a one-dimensional version of the proposed scheme, including proofs
showing that performing p-refinement on boundary cells improves the boundary de-
rivative convergence rates. Section [3|extends these results to higher dimensions: for
structured grids and suitable finite elements, one can recover essentially the same
convergence results from the 1D case at mesh vertices along the boundary of the
domain. Finally, Section [f] summarizes some numerical experiments that demon-
strate the proven asymptotic convergence rates and show that the results are still
valid in a simple but non-Cartesian geometry. Section [5] concludes with a summary
of the presented results and some conjectures regarding possible extensions of this
work.

2. One-dimensional analysis of the model problem

2.1. Introduction. The numerical scheme for the model problem described in
Section [I| may be analyzed, in part, by applying an analog of the discrete Fouri-
er transform in the periodic direction to reduce it to a one-dimensional problem.
Therefore, we begin our analysis of the discretization of Equation by analyzing
the simpler model

(6) — Uyy + buy + cu = f(y)

with homogeneous Dirichlet boundary conditions and, having applied a discrete
Fourier transform, Re (¢) > 0 and ¢ and f(y) may be complex. The primary result
of this section is an analysis of the p-refinement scheme in a single space dimension
for Equation @

It is well known (a full proof is given in [14]) that, for Equation (6], the rate of
convergence of a finite element approximation u” to the weak form o consisting
of continuous piecewise polynomials of order m at a mesh vertex (a point connecting
two cells) y; is

(7) " (y;) — uly;)| = O(Ay*™),

where m is the degree of the polynomial space used in the two adjacent cells and
all cells have diameter Ay. Subsection [2.3| presents a special case of this theorem
for the last interior vertices (i.e., the interior vertices of the two boundary cells),
showing that the approximation gains one additional order of accuracy at these
two points. This is significantly better than the standard superconvergence result

at the Gauss-Lobatto points of the function value of (see, e.g., the table in Section
1.10 of [25])

(8) | (yg) — ulyg)| = O(Ay™?).
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The authors of [I4] note that one could perform local p-refinement and achieve high-
er order accuracy on a specific cell due to the higher convergence order at the mesh
vertices. This is the primary idea used to achieve higher order derivative bound-
ary convergence. The proofs of these results rely on computations with Greens’
functions and, as such, do not have immediate extensions to higher dimensions due
to the nonintegrability of higher-dimension Greens’ functions (see the discussion
regarding Greens’ functions in [3] for additional information on the limitations of
this approach).

2.2. Well-posedness of the system. This subsection presents some basic anal-
ysis of Equation @ Assuming that the solution is complex-valued since the
forcing and low-order coefficient may be complex, let HE([0,L]) be the Hilbert
space of complex-valued functions whose derivatives and function values are square-
integrable on [0, L] and have a value of zero at 0 and L. Consider the sesquilinear
and skew-linear forms associated with Equation @:

L L L
(9) a( ) = /0 by Bydy + b /0 by By + & /0 bidy

L
(10) )= [ fudy
0
The weak problem is, for a Hilbert space X C HE([0, L]), finding z € X such that,
forall v € X
(11) a(z,¥) = 1(1).

Theorem 1. The weak problem given by Equation and a Hilbert space X C
H} ([0, L]) is well-posed when Re (¢) > 0.

Proof. This theorem immediately follows from the complex-valued version of the
Lax-Milgram Theorem; see Chapter 6, Theorem 6 of [22]. Since

L L L

(120) o) =| [ obudy+v [ oyidy+e [ oty
0 0 0

(12b) <ol 9|, V8,9 € Hy ([0, L)),
the sesquilinear form is bounded with boundedness constant
(13) v = (L+1[b] + [e]).
To show coercivity, decompose ¢(y) and ¢ into real and imaginary components
(14) ¢=0¢r+ ¢l and ¢=Re(¢) +Im(¢) ]

where, to avoid confusion with the mesh vertex index i, notate /—1 = I and obtain,
again Vo € H} ([0, L)),

(15a) |a(¢, #)| = [Re(a(e, ¢))|

L
(15b) {1y ]2 +b / (bromy + d161y) dy + Re (@) [4]2

(15¢) > allg|lFn

due to the assumption of homogeneous boundary conditions with coercivity con-
stant

(16) a = min(1,Re (¢)).
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Applying the Lax-Milgram Theorem yields the stated result. O

2.3. Superconvergence at vertices near the boundary. The primary result
of this section, Theorem [2| depends on the rate of convergence of the interpolation
of a smooth function on a single cell in a finite element discretization: in particular,
the scaling of the derivatives of the interpolated function and the diameter of the
cell play a key role in Theorem [2] Hence, this subsection begins with a special case
of the Bramble-Hilbert lemma (see, e.g., [I3] for a proof of the general case):

Lemma 1. Let K = [a,a+ Ay be an interval with diameter Ay. Let v € V where
V = WmHthee(K). Consider a finite element space V' ¢ HY(K),Vh = P™(K),
where P™(K) is the space of degree m polynomials on the interval K. Define the
interpolation operator IL: V — V" such that

(17) (M) (&) = uw(&;), Hu € V* where & =a+ %Ay,j =0,1,---,m.
Then v" = Tlv satisfies the error estimate

(18) lo = 0" |13 () < CA'All2m+1||v(m+l)||ioo(K)

where C' is independent of Ay and v.

Proof. This lemma follows immediately from applying Theorem 3.1.5 of [I3] with
parameters m = 0, ¢ = 2, and p = co and m = 1, ¢ = 2, and p = oo and then
summing the squares of the results. [

Remark 1. The same result holds for more general interpolation operators that also
interpolate derivative values of the function (i.e., for Hermite-type elements), or for
nonuniform point distributions (e.g., using the Gauss-Lobatto points as nodes).

Theorem [2|is a special case for the mesh vertex located at L — Ay (i.e., the last
interior vertex) of the more general vertex convergence rate proven in [I4].

Theorem 2. Consider a partition of [0, L] into N cells of equal diameter Ay. Let
VP c HE([0, L)) be the finite element space of piecewise continuous polynomials of
degree m on interior cells and degree m + p on boundary cells, where p > 1. Define
the interpolation operator 11 : H}([0, L]) — V" on each cell in the same way as
FEquation , where interior cells have m + 1 interpolation points and boundary
cells have m+p—+1 interpolation points (including, in both cases, cell vertices). Let
ul(y) € V" be the solution to with X = VR, Let u(y) € WmHL>([0, L]) be
the solution of Equation with X = Wm+Loo([0, L]). Assume that

Vb2 + 4¢
(19) D= %,Re (D) > 1, and Re (D) > |Im (D).
To simplify some inequalities, assume that
(20a) b>0
(20b) L>1.

Then there exists a constant Cy(m,p,n,b, L) = Cy dependent only on m, p, n, b,
and L such that

2
,-Y m m m
(1) [u(L — Ay) — u(L — Ay)| < DO a1 AP

where v and « are the boundedness and coercivity constants defined in Equations

and ().
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Proof. This proof relies on some elementary inequalities that are true due to the
bounds on |D| and L (for proofs, see Appendix [A)):

exp(—2DAy) — 1
<
(22a) 2D =8
exp(2DL) + exp(2DAy)
<
(22b) exp(2DL) — 1 =4
(220 emmJXL+Ay—yg;@mUXL—Ay—yD Sf%'

This proof follows the outline of the classic superconvergence result in [14]. Con-
sider the Greens’ function G(y) associated with the operator implied by (6)) and the
point force ¢ centered at L — Ay. This Greens’ function is defined by the following
equations:

(23) —Gyy(y) +0Gy(y) + ¢G(y) = 6(y — (L — Ay))
(24) G(0)=0
(25) [G(L-Ay)]=0
(26) [Gy(L —Ay)] =1
(27) G(L)=0

i.e., G(y) has homogeneous boundary conditions, is continuous at L — Ay, and has
a jump in its derivative at L — Ay. This implies, by standard Greens’ function
calculations (see, e.g., [20]) that
(28)
Gly) = G (y) = (c1 cosh (Dy) + ¢ sinh (Dy)) exp (
V= G"(y) = (c3 cosh (Dy) + ¢4 sinh (Dy)) exp (

by) 0<y<L-Ay
by) L—Ay<y<L.

N|= N[

Enforcing the four conditions listed above yields

(29a) c1=0
(29D) __ cosh (As)sinh (DL) — cosh (DL)sinh (Ay)
“ A, Dsinh (DL)

~ sinh (Ay)
(29C) C3 = 71417D

_cosh (DL)sinh (Ay)
(294) “ = T A Dsnh (DL)
where

1

(30a) Ay = exp <2b(L - Ay))

(30b) Ay = (L — Ay)D.
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Define product decompositions G*(y) = G¥(y)GE(y) and G (y) = GE(y)GE(y),
where

(31a) GE(y) = casinh(Dy)

(31b) G(y) = exp (;by)

(31c) G (y) = c3 cosh(Dy) + ¢4 sinh(Dy)
(31) 65 =eww (500).

As

(32)

ar Liy) = co D" sinh(Dy) n is even
dy™ "~ | 2D cosh(Dy) n is odd

the moduli of derivatives of G¥(y) are maximized at y = L — Ay by the maximum
modulus principle and the bound on the imaginary part given by the assumption
in Equation . Similarly, by Assumption , GE(y) and all of its derivatives
are maximized at the same point. Putting these together, derivatives of G¥(y) are
bounded by

(33a)
an L(y) pn ,€xp(2DL) — (—1)" exp(2DAy) exp(—2DAy) — 1
dy VN exp(2DL) — 1 2D
X exp< b(Ay — L))‘
(33b) <4|D|”Ayexp< b(Ay — L))
(33¢) <4|D|"Ay

by Equation (22a]) and Equation (22b]). Notate the bound on derivatives of G (y)
and G (y) as

(34) (b, L,n) = T = max (1, (;b> ) exp <;bL) .

Since 1 < |D|, the Leibniz rule provides a max norm estimate for derivatives of

GE(y):
g@ (=t ) (650)

<4(n+ 1) D|"TAy.
Similarly, for GI*(y) and L — Ay <y < L
exp(=(L+ Ay —y)D) = (=1)" exp((L — Ay — y)D)
2D

exp(2DL) — exp(2DAy) 1
exp(2DL) — 1 P <2b(Ay a L)> ‘
(36b) < 4|D|" 1.

Le=([0,L—Ay])

Le=([0,L—-Ay])

(36a) ‘GR( )‘ ‘D”
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Hence, application of the Leibniz rule provides

d “ (n\ [ AT d’

— e -GE
de ; (Z) (dy’” ' (y)> (dy’ ? @))

< 4(n+ 1) D"'T.
Since G is the Greens’ function

<

Le=([L-Ay,L])

L= ([L—-Ay,L])

(38a) [u"(L — Ay) —u(L — Ay)|* = |(6(y — (L — Ay)), v — u)[?
(38b) = |a(G, u" — u)|?
(38¢) = |a(G — ", u" — u)|?

for any v € V" by Galerkin orthogonality. Let v" = IIG be the finite element
interpolation of G. By continuity of the sesquilinear form, application of Lemma
(1) to every cell and summing the result, the scalings in Equation and Equation
(37), and Céa’s lemma (see, e.g., Theorem 2.4.1 in [13])

(39a)

la(G(y) — ", u" — u)|* <[l — ul3nlIG(y) — "7

N—-2
A L,(m+1)2 2m+1
(39b) > Gl GE VN (g, a1y an) AV
§=0
+Crp1 | GHTD) |%“([L—Ay,L])Ay2(m+1)+1] Vlut = ull3
(39¢) < [maX(C'm, Cons1) (A(m + 3)| D™ +'T)?
N-—-2
% (AyQ Z Ay2m+1 + AyQ(m+1)+1):|,yQ”uh o UH%Il
j=0
(39d) <Ay*™ {max(é’m, Comsr) (4(m + 3)!|D[™*'T)?
4 m—+1 2
2m-+2 2(m+1)+1) | VA d
(Ay +Ay( ) )]agc deerlu
Le=([0,L])
4 2m—+2
(39%) = T””( N 0,2y Ay
where

Cl = 16F2C§m max(C'm, ém+1)((m + 3)')2

(40) =16 <max (1, (;b> m+2> Con exp (;bL)>2max(C’m7C’m+1)((m +3)1)?

is a constant depending on only on m, p, n, b, and L. Taking a square root yields
the final result

2
’Y m m m
(1) (L= Ay) = u(L = Ag)| < LD/l e o, AT
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Remark 2. An equivalent result also holds for the mesh vertex located at y = Ay.

Remark 3. Since Theorem[d depends on global error estimates as well as estimates
on the boundary cells, performing additional p-refinement on the boundary cells
(i.e., p > 1) does not change the convergence rate. Put another way, p = 1 is
sufficient to obtain the improved convergence rate.

Remark 4. This result holds for any mesh vertex that is a fized number of cells
away from a boundary, e.g., for any integer j, the verter at L — jAy is a factor of
Ay more accurate than a vertex in the middle of the domain as long as the cells
between L — jAy and L are p-refined.

2.4. Rates of convergence for boundary derivatives. This subsection presents
derivations of boundary derivative convergence rates for continuous finite element
approximations of the one-dimensional model problem. We begin with a brief lem-
ma showing that optimality of function values in an L* norm implies optimality
(i.e., losing one power of Ay for derivative taken) in the L norm:

Lemma 2. Let I; = [0, Ay]. Suppose that p(y) is a degree m polynomial approzi-
mation to u(y) on I satisfying the max norm estimate

(42) llu(y) — P(y)HLoo(Il) < C*||U(y)||Wm+1,oo(,1)Aym+1.

Then

|0 (o) = )

Lo (1Iy)

@) = |Clmn (74 o) s s A7

where C’(m,n) 15 a constant dependent only on m and n.

Proof. To simplify notation, abbreviate L (I;) and W™+1:°°([;) as L> and
WmtLoo gince Iy is the only relevant interval. Let T'(y) be the Taylor series approx-
imation of degree m to u(y) centered at 0. Note that the derivative of the Taylor
series is equal to the Taylor series of the derivative. Application of the standard
Taylor series remainder formula on the derivative of u(y) — T'(y) yields

i) | w10 = |t [ o]
(44) < G |, 2]
(440) < s Il A
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As T'(y) is a degree m polynomial, applying an inverse estimate yields

Leo
(452) <C(m,n)Ay™ " IT(y) = p(y)|l 1

(45b) zé(m, n)Ay~"

(150) <Clmm () - sl + | 1y [ = im0

)

A —n * m m 1 m m
(150) <Clommay™ (0[], areta L[|, agme)
A 1
(156) <Clmm) (€ + ) Bl men = A0

where C(m, n) comes from an inverse estimate (see Section 4.5 of [10]) that depends
on norm equivalency in finite dimensional spaces and does not depend on u(y) or
Ay. Applying the triangle inequality yields the stated result. (I

Theorem 3. Let V* C H}([0, L)) be the space of continuous piecewise polynomials
defined over N cells of uniform width Ay that partition [0, L] of degree m on all
interior cells and degree m + p on all boundary cells. Let u® € V* be the solution
to Equation where X = V" and let u be the solution to Equation with
X = wmtptheo((0, L]). Define D by Equation (19). Assume that n < m + p.
Then there exists a constant Cs dependent on m, n, p, b, and L (but independent
of u, D, v, a, and Ay) such that

dr h

Lee(In)

=G [|D|2 " max (2’ IDIAy> Sl o,y Ay
2
"Y m —MN
(46) +\D\ZgHu(y)HmeHyoo(IN)Ay tponl

Proof. Notate the error at the last interior mesh vertex as
(47) e1 = u"(L — Ay) —u(L — Ay).

Consider an auxiliary equation (still of the form of Equation @) defined on the
interval [L — Ay, L]:

—wyy + bw, +éw = f
(48) w(L — Ay) = u"(L — Ay)
w(L) = u(L).

Consider the difference

(49) e(y) = w(y) — u(y)
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between the solution of Equation and the solution of the original BVP restrict-
ed to [L — Ay, L]. By definition, e(y) satisfies the homogeneous BVP

—eyy +bey +ce =0
(50) e(L—Ay)=¢
e(L)=0.

Since e(y) solves a homogeneous second-order constant-coefficient boundary value
problem it has a simple closed-form solution:

(51a)

(v) = erexp (2b(Ay — L)) |exp (D(L —y) + 3by) _exp (D(y — L) + 3by)

= 2 sinh(DAy) sinh(DAy)
i) = AR GHAY D) ) gy,
Hence

n e1exp (Lb(Ay — " "
) ety = 2P M=) (30-2) a0 - (3+0) 50)
As (see Appendix
= R <
setting z = DAy yields
exp(D(y — L)) | _ | exp(DAY) 2

(54) siuh(DAy) ‘ = |Sinh(DAy) ’ =21 DAy
Since e(y) is only defined for L — Ay < y < L, |A(y)| is bounded by
(55) |A(y)| < <2 + |D|2Ay> exp (;bL) .
Similarly, as |exp(D(y — L))| < |exp(D(L —y))|, |B(y)| < |A(y)|. Hence
(56a)

e (SR

(56b) < |e1|exp

1 1 " 1
—b(Ay—-L)|2|( = D 2 —bL
=) 2 (g +101) (25 o, e (502
1 " 2
5! ) ('b'”') (“wm)
(56d) <leile 1|b| 2"*t2 ma QL |D|"

1| €xXp 2 X 7|D|Ay

since |D| > 1b).

Let V{* C V" be the space of degree m + p polynomials with support restricted
to the rightmost cell (that is, the cell with extent [L — Ay, L]). Notate this cell
as Iy. Let w" € V}* be the finite element solution to the associated weak form of
. Since w" is a finite element discretization whose boundary conditions match

vertex (and boundary) values of u", w" = u" on the rightmost cell. Consider the

(
(56¢) = le| exp (
(
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L norm of the error restricted to the rightmost cell: application of Equation (56d))
and Lemma yields

(57a)

el ”

——(u—u") =5 (u—w+w—u")

dy™ L=(In) Y Lo (In)

d'n
(57b) < He ) + Hn(w
dy Le(ry) Y Lo (In)
1 2

(57¢) < |e1|exp <2|b> on+2 oy <2, M) |D|"

+ {C(erp,n) (C* + (m—::—p)!) * (m+11?—”)!]

X ||w(y)HW’”+P+l,oc(1N) Aym-‘rp—n-i-l.
The norm of w(y) may be bounded by using the definition of e(y):

(58)

||w(y)||wm+p+1,oo(1N) < Hu(y)||wm+p+1,oo(1N) + ||e(y)HWm+p+1,oo(1N)

< Hu(y)||wm+p+1,oo(1N)

(59) +(m+p+1)|er]exp <;|b|> 2m P2 max (2, miy) |D|™ P,
Let
(60)

Cy = max <1, (m+p+1) [C‘(m +p,n) (C* + (mip)!> + (mﬂl)i n)!D .

Combining terms yields

1
<([ripp + cameripmr sy ey (5 )
LOC(IN)

2
1 2, ——
(61a) X max( ) |D|Ay> |el|)

+ Collu()llwms e (1) Ay

1 2
<(1+ C)2™ P2 D™ P exp <2b|) max <27 |DMy> le1]

(61b) + Collu(y)|[wmrpt1.00 (1) Ay™ P~ H

1 2
§202 |:2m+p+2|D|m+p exp <2|b|> max (27 Mg) |€1‘

(610) " u<y>||Wm+p+maN>Aym+p”“] |

m-+p—n+1
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Since n < m + p. Substituting in the bound for |e;| from Theorem [2] into (61b)
yields

dn h
den(“‘“)

Le°(In)
1 2
(623) §2CQ |:2m+p+2|D|m+p exp (2|b|> max (2, my)
2
x (7Dchlnu(’"*”||LooAy2’”+l>
@]
(62b) +||u<y>||Wm+p+1,w,v)Aym+P“ﬂ

1 2
=20, |2mTPF2,/C —|b| ) |D|?mtPtL 2, ——
.| vesp (5101 ) 1D e (2, 2

2
’Y m m m —MNn
(62c) X EHU( TN e (10,0 AYP™ T A+ [u(®) [ wmns 1,00 (1) Ay™ P H]-

[27] provides the bound

(63) C* < Cs(m, [O,L])Dﬂg

where Cj3 is dependent only on the polynomial degree m and the domain. Hence

(64a)
02:max(1,<m+p+1>[(3‘(m+p’”>(C*+ : >+( ; D

(m+p)! m+p—n)

(64b) < (1+m +p)(1+C(m+p,n)) (1+C*)

(64c) < (1+m+p)(1+C(m+p,n)) (1 +Cs(m, [O’L])D2f> '

Let

C4(map7 n, b)

65)  =2((14+m+p)(1+ C(m+p,n)))2" P+ max (1, \/cT) exp (;|b|> .
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Combining Equation (62c]), the definition of Cy, and the lower bound of 1 on 1/«, 7,
and D yields

H (u—u"
Le=(In)
(66a)

2
<C4 { <1 + C3(m, [0, L])Dzl) | D[2mrptl

2 2 (m+1) 2m+1
X max (2, o Il e o,y Ay
(66b)

2
i (1 T Cy(m, o, L])D”) ||u<y>||Wm+p+1,oouN>Aym+Pnﬂ

2m 3’7 2m+1
<Ca(1-+ Calm, [0.21) 1D 2 ma (2 57 ) ™ . AP
(66¢)
-2
DR u)llsrssoe 1) 8™
Let
(67) 05 = 05(bam7p7naL) = 04(1+C3(ma [O7L]))
so Cjs is dependent on b, L, m, p, and n but independent of v and D. Hence

|

Le=(In)
<Ca 17 e (2 2 ) Ll 47
a "|D|Ay ) o2 ,
(68) + |D‘2’y [u(y )”Wererl,oo(IN)Amerpn+1]
which is the stated result. .

Remark 5. An equivalent result also holds for the leftmost cell, i.e., the cell with
extent [0, Ay].

Remark 6. If the constants b,¢, D are all O(1) then the derivative error bound
may be conveniently written in terms of a single scaling constant C that varies
continuously with b and é (and depends on m, p, and n) as

|t

Le>=(IN)

(69) <C (||u<m“ ()l 10.p AY*™ + ()l et (1) Ay ™71

Remark 7. e(y) represents the contribution to the error in the last cell due to
coupling the finite element approximation defined on the last cell to the rest of the
computational domain. Therefore there are really two convergence regimes for this
problem: one regime where the coupling error dominates and another where the
local error dominates.
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3. Extensions to higher dimensions

3.1. Overview. Theorem |3| can be generalized to higher dimensions when both
the finite element space and mesh have a tensor product structure. Theorem [6]does
this by assuming periodic boundary conditions in x to decouple the discretization
into a sum of one-dimensional problems (in y) with Dirichlet boundary conditions.
We assume periodicity in this analysis, since Theorem [4| requires that the one-
dimensional (in the z direction) mass and stiffness matrices have identical sets of
complete and orthogonal eigenvectors. The choice of periodic boundary conditions
ensures that this will be true since both matrices will be circulant. For other
boundary conditions this may not be true and the consequences in [4] would need
to be investigated. Unlike the one-dimensional analysis performed in Section ,
we only consider the case where ¢ € R and ¢ > 0. Since part of our analysis
involves complex-valued test and trial functions we consider the complex weak
problem. Note that, since the discrete test functions are real-valued, we still use
the standard real-valued mass and stiffness matrices in the analysis below. The 2D
model problem is as follows: Let VV* be the subspace of H!([0,1]) of complex-valued
functions periodic over [0,1]. Let V¥ = H}([0, L]). Consider the sesquilinear form

L 1 B . B B
(70) az(é, ) = /0 /O V6.V +5- Vi + copibdudy

and skew linear form

(71) L) = /0 ’ /0 ' fidrdy.

The weak problem is, for a Hilbert space X C V* ® V¥, finding z € X such that,
for all ¥ € X

(72) az(z,¢) = la(4).

The decomposition used below (i.e., decomposition by using the tensor product
structure) is similar to the approach used in [I5]. Consider the tensor product finite
element space

(73) Wh = Var g yay

where VA% C V?® is the space of periodic, piecewise linear functions defined on
a uniform partition of [0,1] with cell width Az and VAY C V¥ is the space of
piecewise polynomials defined on a uniform partition of [0, L] with cell width Ay,
where all boundary cells (i.e., cells adjacent to the y = 0 or y = L boundaries) have
degree 1 4 p polynomials and all other cells have degree 1 polynomials. Note that
WhcVvee VY. Asin [I5], let

be the coordinates of cell corners (i.e., the mesh vertices in 2D).

3.2. Decoupling of the 2D Problem. This subsection presents results showing
that, with periodic boundary conditions and a tensor product discretization, the
discrete 2D problem is equal to a sum of uncoupled 1D problems. Part of this
analysis involves using test functions that are piecewise linear interpolants of Fourier
modes. For the Hilbert space VA7 defined in Equation , define the kth Fourier
mode interpolant Fy(z) € VA as

(75) Fi(x) = Mexp(2nTkx)
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where IT is the nodal piecewise linear interpolation operator onto VA7 (i.e., Fj(z;) =
exp(2mIkx;) when z; is a mesh vertex). Note that (Fy, Fy/)rz = 0 when k # £/. In
addition, F}, satisfies an orthogonality property with exp(2nIk’z):

Lemma 3. Let V2% be the Hilbert space defined by Equation and Fy(x) be
the interpolant of exp(2nlkz) defined by Equation . Then Fy(z) is orthogonal
to the Fourier mode exp(2nIk'z) except when k — k' is a nonzero multiple of N.
Furthermore, if k = k' + jN (i.e., k — k' is a nonzero multiple of N ) then
sin?(7k/ Ax)

w2k?Ax2

(76) /0 Fi(z) exp(—2n Ik z)dx =

Proof. Integration by parts yields

1
/ Fi(z) exp(—2nIk z)dx

(i+1)Ax
(77a) F] —2rlk' z)d
a) Z T /mx () exp(—27 Tk x)dx

(77b)
N-1 ,(i+1)Az
1 ) exp(2rTkAx) — 1 ,
=5 2 /mx (exp(ZwIszw) Az exp(—2nlk'z)dx
(77¢) eXp(z”IkM)_lN_l/(iH)M (exp(2rTkiAz)) exp(—2m Ik z)d
= X xp(—
5 Th A N p(2nlkiAx)) exp(—2nIk'x)dx
(77d)
—1
exp(2nlkAx) — 1 [ I(exp(—2nIk'Ax) — 1) ,
= (2rI( k" iA
27Tk A 2k Z exp(2ml(k = F)ihe)
_ (exp(2nTkAx) — 1) (exp(—27Tk'Az) — 1)
(77e) = AL Z exp(2nl(k — K )iAz)

=0

The summation is nonzero only if k — k' = jN # 0 for some integer j. Hence Fj(x)
and exp(2rIk’x) are orthogonal except when k — k' is a nonzero multiple of N.
Finally, suppose that k = &’ + jN. Then

(exp(2rI(K' + jN)Az) — 1) (exp(—2rIk'Az) — 1)

Z exp(2rI(jN)iAx)

Ar2k? A —
4 sin®(7k! Ax)
78a) =——— (N
(78a) 42k Az ()
sin?(7k/ Ax)
(78b) = m2k'? Ax?

O
We now present the primary result of this section.

Theorem 4. Let Wh = VA% @ VAY be the tensor product finite element space
defined by , Suppose that u" € W is a solution to with X = W". Then
N/2

(79) uP(y) = Y Fe(a)ig(y)

k=—N/2—1
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where the Fy(x) trial functions are mutually orthogonal under both the standard
one-dimensional L? inner product for complex functions as well as the sesquilinear
form given by Equation @D, where

1
_ A
(80) (Fj, Fi.) 2 :/ FjFpdz = 6, 2Lk
0 A.T
(81) b = (bo, b1)
1
_ _ _ A
(82) a(Fy, Fy) = / Fj 2Fi 2+ boF; o F, + cF; Fpde = 0, X:’:
0

where §;1, is the Kronecker delta, a(-,-) is the sesquilinear form defined by Equation
@, Ar and A4 are scalars, and each 11},3 (y) satisfies the one-dimensional boundary

value problem
(83)

k “h 7 b7, Ak T bt A 7 Ay
0 M,k o Jo AM,k

Proof. Let A and M be the stiffness and mass matrices, respectively, coming from
discretizations of a(-,-) and (-,-)r2 with standard piecewise linear hat functions.
Since VA% consists of piecewise linear functions and the boundary conditions in
the z direction are periodic, both A and M are circulant matrices and therefore
share the same set of mutually orthogonal eigenvectors, which are the mesh vertex
values of the Fourier interpolants Fj(x) defined by Equation . Since the ith
row of A is

-1 by cAx 2 4deAr —1 by cAx )
84) A; = L. 2% ar 2 AT m1 % car
(84) (0’0’ " Ax 2+ 6 ’Aac+ 6 ’Ax+2+ 6 0,0
and, similarly, the ith row of M is
Ax  4Ax Az
85 MZ: Oa 07 Ty Ta sy T Ay T Ty Oa 0
(85) ( 6 6 6 )

The classic formula for the eigenvalues of a circulant matrices provides the kth
eigenvalues of M

Az(2cos(2nAzxk) + 4)

(86) AME = 5

and A

2cAz? + 3Ibg Az sin (2r Azk) + (cAm2 —6) cos (2rAzk) + 6
3Ax '
Note that Ay > 0. Since A and M have complete sets of eigenvectors, the set

{Fy(z)} is a basis for VA7, Therefore, expressing u” in this new basis (instead of
the usual hat functions) yields

(87) Aag =

(88) uh =N i Fon ()Y (y), P () € VA", Y (y) € VAY,

By the same argument, consider a test function ¢ = Fi(2)Y;(y) € W". Plugging
u" and ¢ into the finite element problem given by Equation with X = Wh
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yields

L 1 L 1
/ / '@, + boul @ + cul@drdy + / / ul)(@y + b1p)dzdy
0 0 0 0

(892) — / ! / ' fodudy

Zcm / (Fons FOY; (0)Yi(y) + (Foy F) 125 (9) (Yo () + b1 Vi (9)) dy

L 1
= / / fodxdy
o Jo

Zc]k/ P ()T (0) + RV, () (T (0) + B Ti(0))dy

(89¢) = /0 /O Fdudy

multiplying both sides by Az /Ay yields

(89b)

(90) Z/ ) (Vi )+ BTi(0) + 2, () )y

Mk
//AMk Yily)dady.

Hence, defining

(91) ap(y) = Z cirY;(y)

yields the one-dimensional convection-diffusion-reaction problem

L
(92) / Al ()i (9) + byl () Vi(y) + 22K () Vi) dy = / ) Yily)dy

AM k
for all Y;(y) € VAY, where

o L Ag _
(98) o= [ 25 sy Felayda
0 AM.k
is the L? projection of the z-component of f onto Fj(x). Therefore, by construction
(94) uP(w,y) =Y Fr(x)ag(y)
i
where each /! (y) satisfies Equation ([92). O

Theorem 5. The resulting one-dimensional finite element problem implied by E-

quation s well-posed.

Proof. The eigenvalue ratio is

(95) A = Mg 2cAz? + 3Ibg Az sin (2r Azk) + (ch2 — 6) cos (2rAzk) + 6
kT Ak Az?(cos (2nAzk) + 2)
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Notate the real part of the eigenvalue ratio as

 2¢Az? + (cAx? — 6) cos(2rAzxk) + 6

96 Re (M) =
(96) e (M) Az2(cos(2mAzk) + 2)
Note that
2cAz? + (cAx? — 6) cos(2rAzk) + 6
(97a) Re (Ag) > A2
(97b) (24 cos(2rAzk))cAx? + 6(1 — cos(2mAxk))
B 3Ax?
(97¢) >c
and
2cAx? 4 (cAx? — 6) cos(2rAzk) + 6
(98a) Re (M) < A2
+ cos(2mAxkK))cAx” + — cos(2mAzx
(98b) (2 2rAxk))cAa? + 6(1 27 Awk
N Ax?
6 + 3cAx?
(98C) S TxQ
Hence, for any Az > 0 ¢ < Re (M) < 00, so by Theorem [l| the resulting one-
dimensional problem is well-posed. (Il

Remark 8. An unusual feature of this well-posedness argument is the presence of
the continuity constant that scales like O(1/Ax?): this is due to the presence of two
x-derivatives in the low order term of the y discretization.

3.3. Boundary derivative convergence of the 2D problem.

Theorem 6. Consider the discretization of Equation described in Equation-
s -. Let Cg and Cg be constants dependent on the coefficients of ,
the domain, the forcing function (in particular, its reqularity), and the number of
derivatives n. Assume that f is at least 18 +p times differentiable in the y direc-
tion. This discretization recovers the 1D estimate given by Theorem[3 at isolated
points along the nonperiodic boundary with an additional error term coming from
the z-discretization:

n

(99) g

(U(il?7 y) - uh(gjv y)) < CGsz + C8(Ay2 + Ay2+p7n)

(6i,0Nn+)
where N* =0 or N* = N.

Proof. Since u(z,y) and f(x,y) are periodic in the z direction and smooth they are
equal to their Fourier series:

(100) u(z,y) = Z exp(2m [k )i (y)
k=—oc0

(101) fla,y) = > exp(2nlkz)fi(y).
k=—o00

Hence each 4y, solves the BVP

(102) — gy + b1y + (47%K% + 27 Ibok + c) iy = fi.
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corresponding to the weak problem
L ~ ~ ~ L
(103) / Uy Gy + b1l @ + (47%k% + 21 Ibok + c)iddy = / frody.
0 0

By Equation 7 u" may be written as

o

(104) uMa,y) = Y Ful@)ig(y)

k=—oc0

where, for |k| > 1/(2Ax), Fy(z) = 4} (y) = 0. Hence, assume that |k| < 1/(2Az).
The difference between the eigenvalue ratio and the low order coefficient in Equation
(103)) is equal to, by a Taylor series expansion in Ax,

(105a)
)‘A,k_ 21.2 4 4ian 2 1 61.6 5 5 4
o =47k +2I7rb0k'+c—|—§7r k*Ax +£(87T k® — 8Im°bok )A;U + -
M,k
(105b) = 4n2k? + 2Iwbok + ¢ + R.

Since |k| < 1/(2Az), converting all terms in the Taylor series of R to constant
multiples of k*Az? or k*Ax? yields

(106) |R| < CRr(bo)k*Ax?

where Cr(bp) is a constant dependent on by. Let 0x(y) € V¥ be the solution to the
semidiscretization in z of Equation , i.e., the solution to the weak problem
(107)

L L
/ O,y @y + b10r,y @ + (4n°k* + 21 Ibok + ¢ + R)opddy = / ) ddy, Vo € V¥
0 0

where 0y (y) = 0 for |k| > 1/(2Az). The rest of the proof follows from a triangle
inequality argument involving iy, 9, and ﬁZ . Consider the decomposition

u(8i,y) — u (65, y)

(108a) = ki (exp(27Ikd; )ik (y) — Fi(6:)ap (y))

(080) = 37 (esplortka)in) ~ FLAI) + FuB)ik) ~ PB4
_ i ((expl2ntits) (an(s) = ) + (exp(2aThs) ~ Fu(60)o()

(108¢) + Fi(8;) (n(y) — @ (y)) )

(108d) = ki exp(2mIk; ) (@k (y) — 0k (y)) + Fi(6:) (0n(y) — @i (y))

=(1) =(2)
since exp(2wIkd;) = Fj(6;) by the definition of Fj(x) in Equation .



912 D. WELLS AND J. BANKS

Bounding (1). Let éx = ¥ —@g. Then é;, satisfies the weak boundary value problem
(109)

L L
/ ey By + biéryd + (4m°K + 2nIbok + )érdy = / ((F2 = ) - Rox) day.
0 0

ér can be bounded by standard Sobolev estimates since the right-hand side (a
combination of the error in the approximate Fourier mode and error in the low
order term) is relatively small (O(Az?) for small k). Since é; solves an elliptic
problem with smooth data, a regularity estimate yields (see [18], section 6.3.2)
(110)

ekl mee < C([0, L], 7) (14 [by| + [472K + 27 Tbok + c|) H ((f,? - fk) - R@k) HH .
Due to the homogeneous boundary conditions, the fundamental theorem of calculus
implies that

dn

111 —é

(1) P

d’n
<L||-—eé
<tz

< Llégl o -
L H!

Combining Equations (110))-(111) yields, for 1 < n,

n
Hdnék <C([0,L],n— 1) (1 + |by| + [47°k* + 27 Ibok + ¢|)
dy Los
(112a) x H(f,? - fk) - RﬁkHHn_l
<C([0,L],n— 1) (1 + |by| + [47°k* + 27 Ibok + ¢|)
(112D) x (Hf;? - kaanl +R||ﬁkllHn—1) :

Lemma [3{ bounds the error in approximating fj:

(113a)
1 Ag - .
o =5 = [ @) P = fulo)
1 oo
is) = [ S fusn)es(arl(h+ iN)a) | Fula)ds — fuly)

= </01 )\izoexp(QwIkx)Fk(m) - 1d£E> Fey)

A . 1 _ _
o Y Feaan() [ exp(enl(h + N)a)Fi(o)ds
Mk T 0
J#0

sin?(rAzk) Ax .
o ( T2 AZ2k? Ak B 1> 1)
Ar N 4N?sin®(n(k + jN)/N)
Y Z frrin(y) T P .

(113c) +

(113d) +

N oi=— 0

J7#0
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Due to the regularity assumption on f, there exists a constant C'(f) independent
of z, y, and k such that

(114) |fk )| < et
(115) ‘ ‘ < C(f)k1tm,
Note that
Az 6 Az
11 = .
( 6) >\M,k 2608(27T/€A(E) +4 ‘)\M,k =3

Substituting Equations (114]) and (116)) into the nth derivative of Equation (113d)
yields

dy"
(117a)
sin?(rAzk) Ax —gin , 12N? S !
(117b) SC(f) A2 /\MJC — 1|k~ + 2 _z: (N] + k)2+q—n
70
sin?(rAzk) Ax —qtn , 12N? N 1
(1170) Sc(f) T2 Ax2k2 /\ka — 1k + 2 _z: (Nj + ki)2+q_n
770
.2 2
B sin®(rAzxk) Az —gtn , 12N —2—q+n
_(xf)< AR s T (Y )

(117d) KH@+q—nJ+kN”)+Qﬂ2+q—m1—kN”ﬂ)

where (g is the Hurwitz zeta function. Rearranging the first term in Equation
(117d]) and performing a Taylor series expansion of the first term around kAzxz = 0



914 D. WELLS AND J. BANKS

provides the bound

sin?(rAxk) 6
m2k2Az? 2cos(2rkAzx) 4+ 4

_1’

(118a) B 6 sin?(rAxk) _ 2cos(2nkAz) +4
| 2cos(2mkAT) + 4| | T2k2Ax? 6
.
sin®(mAxk)  2cos(2rkAx) +4
11 < -
(118b) =3 m2k2Ax? 6
. 2cos(2nkAz) + 4 1
2 2,2 0,2
(118c) =3 |sin“(rAzk) — : 'k Az AL
1 928 1
<ol 4 8 6 6
(118d) <3 3(k7rAx) + ( 3 (kAz)* 4 1927 > (kAzx) —SIIAL
(118e) =3 é(kﬁAI)er <9§8 8(kAx)? +1927r6> (kAz)*
(118f) <Crk*Az?

since |k| < 1/(2Ax), where Cr is a constant dependent on the coefficients of the
Taylor series expansion. Since

1

(119) 3 S1- ENT!
The (g terms are bounded by
(120a) CH (2+q—n ) Z (L j)prra—n

i=0 2 + .]

i=

n 1

(120b) <oren 4 Z =
(120c) =22ta 4]

due to the assumption on the regularity of f. Hence
(121)  Cu2+q—n1+kN")+Cu2+g—n1—kN ") <27 42

Hence, substituting N = 1/Az, Equation (118f)), and Equation (121)) into Equation

yields
;;in (fl]:(y) - fk(y))‘ < C(f) [(CT]CQAZ‘Z) atn 4 (23+q—n + 2)qu_n]
(122) < C(f) [C’Tk*qunJrQAxZ + (23+q7n + Q)qufn} )

Since 7, is a weak solution to Equation (107)), it satisfies the derivative estimate

(20)  folles < O0.L) (14l |25 ) 172
(123b) < (0. (14 Il + |25 |) e
AM,k
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Hence, substituting Equation (106, Equation (122, and Equation (123b)) into E-
quation (112b)) yields

Hek <C([0,L),n—1)C(f) (1 + |by| + |47k + 2w Tkbo + c|)
X (CTkQ_q"’"AxQ + (28T £ 2) A" + CRr(by)C([0, L], n)k* Ax?
(124a) (1 + [ba| + ‘ A ) k—q+ma’<<n—370>>
AM k
(124b) < Cs (k4q+”Am2 4+ (23 L )2 ARt 4 k8q+maX<”3’0>Ax2>
where
(125) Cs = Cs([0, L], b, ¢,n, C(f), Cr(bo), Cr)

is a constant independent of k¥ and Ax. Due to the regularity assumption on f the
exponent is bounded by 10 4+ max(n — 3,0) < ¢: hence this sum converges and

oo n

> exp(2rlks;) ddy ()

k=—o00

(126) < Cﬁ([O L] b c,n, C(f),CR(bo),CT)ALL'Q

since, for |k| > 1/(2Ax), due to the regularity assumption on f

dr dr
’dynék(y) ——(y )‘ < CE™18TP < CE~15FP A2

(127) i

for some constant C' dependent on C(f), so the contribution from the unresolved
modes is also bounded by a constant multiple of Az?.

Bounding (2). Consider the error in the full discretization relative to the semidis-
cretization (i.e., @' — 9). The finite element solution 4} satisfies the boundary
value problem

L
(128) / ﬂ’é,y&wblukyw Mk g h¢dy— / flrody, Vo € VAY([0, L)).
0

while the semidiscretization vy, satisfies Equation (1 . Hence Theorem |3 I bounds
the difference between each 112 — Uy, term, where

B2 4 D24k
1

AM.k
(129) D= 5

has a positive real part since ¢ > 0. Since the eigenvalue ratio is bounded by
Equations (97¢c|)-(98c)), there exists a constant x independent of k, but dependent
on by and ¢, such that

(130a) 1< |D| < w(1+ |k])

(130D) % < k(1+K?)

due to Equation (98c|) and the bound |k| < 1/(2Ax). Let
(131) C7 = 07(blap7na L) = 05(1)1’ 1ap7na L)
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be the constant used in Theorem [3| with m = 1. Then, applying Theorem (3| the
error in the derivative in the boundary cell Iy is

ar . R [ 2 ol ~(2) 3
— (O, — 0 <C+||DP*® max <2, ) — |07 || L Ay
=) <er|in Biay) =it
,YQ
e
I 2
<C, Iip+9(]. + |k|)p+5(1 + k2)4 max <2, A) Hvk )HLooAy
L Y
(132) LR R+ k2>2||@k|wz+mAy2+”}

By the fundamental theorem of calculus

(133) o[ < cao el

where C([0, L]) is a constant dependent on the domain. Hence, by Equation (123b))

) C(f)k7q+p+1

where C([0,L],2 + p) is a constant dependent on both the domain and the poly-
nomial degree. Combining the elliptic regularity estimate given by Equation ((133))
and the error bound given by (132)) yields

1 < C([O,L]) ||1A’kHHr+1

AAk
AM,k

)

134)  foellpernn < C(0,L],2 4 p) (1 o+

A
<orcor2+p) (14l +| 328

Jew)

H (6 — i)
Le(In)

X [Hp+9(1 + \k|)P+5(1 + k2)4 max (27 A2> k.*q+1Ay3
Y
(135) + R4 (1 + KD+ k2)2k—q+P+1Ay2“’_"]

Note that the eigenvalue ratio A4 /A scales like O(k?). Hence, by the assump-
tion that ¢ > 18 + p the summation over k converges:

o0 dn . .
> o (0k(y) — 43 (y)) exp(2mk;)
k=—oc0
(136) =Cs([0, L], f,Cr, b, ¢, p,n) (Ay? + Ay* P77,
for a constant Cg independent of Ax and Ay. Hence, by the triangle inequality
d" -
—(u—u") <Cs([0, L], b, ¢, n, C(f), Cr(bo), Cr)Az?
dy" (85,05+)
i ON
(137) +Cs([0, L], f, C7,b, ¢, p,n) (Ay® + Ay*™P")
which is the desired result. ([

4. Numerical Results

4.1. Overview. This section summarizes numerical experiments verifying the rates
of convergence proven in Theorems[3Jand [6] All experiments were performed with a
finite element discretization of in either one or two spatial dimensions, utilizing
the deal.II library’s [2] support for tensor product hp-finite elements. For further
information on algorithms and data structures for general hp codes for continuous
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—— H''B,Q.Q>—— H'-B,Q-Q* —— H''B, Q-Q" —— H'B, Q2-Q>—— H'-B, Q>-Q* —— H''B, Q>-Q"
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error

1072 107! 1072 107!
cell diameter cell diameter

FIGURE 3. Rates of convergence in the H'-B seminorm with
exact solution . The solution to the discretization using qua-
dratic elements on the interior encounters roundoff error after suf-
ficient grid refinement. These results verify the convergence rate
proven in Theorem [3] i.e., the rate of convergence in the boundary
derivatives is limited by the rate of convergence at the last interior
mesh vertex and the polynomial degree on the boundary cell.

finite elements see [7]. The resulting linear systems were solved with the standard
PETSc [0, 6] GMRES linear solver and the BoomerAMG algebraic multigrid precon-
ditioner from the HYPRE library [2I]. The preconditioner was configured to use
SOR/Jacobi relaxation and Gaussian elimination for the coarse solve. The linear
solver used a tolerance of 107'* times the Euclidean norm of the right-hand side
vector. We verify the rates of convergence with respect to the seminorms defined
by Equations - from Theorem [3| and Theorem |§| by performing uniform grid
refinement studies.

4.2. 1D Numerical Results. This subsection presents numerical verification of
the convergence rates proven in Theorem [3|for the seminorms defined by Equations
([2)-(3). We use the method of manufactured solutions to derive a forcing function
for the exact solution

(138) u(z) = sin(10x)

to Equation @ with b =1 and ¢ = 2. Figuresdepict the errors in the pointwise
boundary first and second derivative seminorms. The resulting finite element space
is notated as Q™-Q™*P, where m € {1,2} is the polynomial degree on interior cells
and m+ p (with p € {0,1,2,3}) is the polynomial degree on boundary cells. These
figures illustrate the two different rates of convergence for the boundary derivatives:
The error in the boundary derivative depends both on the local polynomial degree
(i.e., m+p) and on the approximation order at the last interior mesh vertex, which
is (by Theorem [2)) 2m + 1. Hence, by Theorem [3| the asymptotic convergence rate
for the nth derivative should be min(2m, m + p —n + 1), which is what we observe

in Figures

4.3. 2D Numerical Results. This subsection presents numerical verification of
the convergence rates proven in Theorem |§| (i.e., derivative convergence rates for
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FIGURE 4. Rates of convergence in the H2-B seminorm with ex-
act solution . The second boundary derivative error with
the Q'-Q?, Q'-Q?, and Q'-Q* discretizations is dominated by the
local error instead of the coupling error, resulting in third order
convergence for sufficient boundary p-refinement.

interior bilinear elements and a periodic boundary condition along the non-enriched
boundaries). Additional numerical experiments demonstrate that these improved
convergence rates can be obtained in other geometries, such as a square with only
Dirichlet boundary conditions and a disk. In all cases, the discretization consists
of bilinear elements on all interior cells and p-refinement limited to boundary cells.
All numerical experiments, unless otherwise noted, use anisotropic (i.e., only in the
normal direction) p-refinement on boundary cells with Dirichlet boundary condi-
tions. We use the method of manufactured solutions to derive forcing functions.
All test problems use b = (1,1) and ¢ = 2.

4.3.1. The Necessity of Normal p-Refinement. An important part of the
proof for Theorem [f] is the translation-invariant property of the discretization in
the periodic direction. Numerical experiments, summarized in Figure [5 indicate
that this is not merely a convenient assumption: in the case of interior bilinear
elements, the discretization must be equivalent to a tensor product of two one-
dimensional discretizations in order to obtain the improved convergence rates in
the seminorms defined by Equations —.

To demonstrate this, we consider discretizations with interior bilinear elements
and either normal p-refinement or isostropic p-refinement, where the second case
still uses continuity constraints to obtain a conforming solution. Notate the poly-
nomial space on each boundary cell, P™ ® P™*P by Q™™*P) where m is the
degree in the tangential direction and m + p is the degree in the normal direction.
These numerical experiments use the manufactured solution

ur(z,y) =(y* + exp(—y?) + sin(4.5y%) + sin(20y))
(139) x (20 cos(4mx) + 0.1sin(207rz) — 80 sin(67x)).
The results in Figure [5| show that the tensor-product structure of the discretiza-

tion used in Theorem [f] is necessary for achieving improved boundary derivative
convergence rates (i.e., order 2 for first derivatives and order 1 or 2 for second
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—— H.B,QU2 —— HLB QY —— HLB QY —— HLB Q®) —— HLB QBY —— [LB QU
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slope 1
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error
error
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FIGURE 5. Rates of convergence for a solution to Equation
with periodic boundary conditions in the x direction. One set of
discretizations uses p-refinement in just the normal direction (left,
with the scheme proposed by Figure(l]) and the other uses isotropic
p-refinement (right). The boundary cell polynomial spaces are no-
tated as Q™ ™*P) These results indicate that the tensor product
structure assumed in Theorem [6] is necessary.

derivatives). Performing isotropic p-refinement (which results in a larger finite ele-
ment space than p-refinement purely in the normal direction) does not improve the
rates of convergence even though the approximation space is larger.

4.3.2. Extension to a Nonperiodic Boundary. Theorem [f] only applies to
domains with periodic boundary conditions in one of the coordinate directions;
however, numerical experiments indicate that the normal p-refinement scheme im-
proves derivative convergence rates in more general geometries. To demonstrate
this, we performed numerical experiments on a rectangular domain with Dirichlet
boundary conditions, a Q(!*P:1*+P) element in each corner (which corresponds to
the tensor product of normal refinement in both directions), and Q14P) elements
in the other boundary cells. Like the other 2D numerical experiments, we only con-
sider bilinear elements (Q(1'1)) on the interior of the domain. The manufactured
solution in this test case, which is not periodic in either direction, is

(140) wa(x,y) = zysin(20y)+10 exp(—zy) cos(15z)+2 sin(10y2+cos(x))+sin(30xy).

Figure [6] summarizes the results of these experiments. These experiments show
that the results proven in Theorem [6] generalize to a domain with purely Dirichlet
boundary conditions.

4.3.3. Extension to a Disk With Radial p-Refinement. The final numerical
example shows that the convergence rate proven in Theorem [ holds in a non-
Cartesian geometry. Consider a disk whose central cells are aligned with the x,y
axes, cells near the boundary are aligned with the 7,6 axes (i.e., they are rectan-
gles in polar coordinates), and cells between these two regions are geometrically
described with a transfinite interpolation between the Cartesian and polar regimes.
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—— Q' clement —— QW) clement —— H-B,Q"? —— H.B QW) —— H.B,QWY
: —— H2B,QW) —— F2B QLY —e— H2B QLY

slopel === slope 2

error

10°° 10-2 1071 10°
cell diameter

FIGURE 6. Depiction of the nonperiodic square domain and nu-
merical convergence rates. The picture on the left shows which
cells have been p-refined in the normal direction after three global
grid refinements. The picture on the right shows the rates of con-
vergence. This experiment shows that the asymptotic rates proven
in Theorem [6] also hold when all boundaries are Dirichlet and the
discretization has a tensor-product structure. It also shows (par-
ticularly in the H2-B, Q"% case) that the higher power of Ay (in
that case 3) term in Theorem [6] dominates before the asymptotic
rate (in that case 2) is reached.

This geometry description (i.e., Cartesian coordinates in the center, polar coor-
dinates at the boundary, and a transfinite interpolation in between) results in a
well-conditioned grid with boundary cells aligned with the polar coordinate axes
after mesh refinement. A picture of the grid after one refinement is shown in Figure
7l Since the order of convergence under the seminorms defined by Equations —
(3) is second-order, we use the standard second-order bilinear mapping from the
reference cell to the physical cell to perform all cell calculations. The manufactured
solution in this test case is Equation (139).

Based on the results in Figure[7] we conjecture that the convergence rate proven
in Theorem [6] holds for sufficiently regular grids where the cells near the boundary
are aligned with the boundary itself (i.e., the cell faces are either orthogonal or
parallel to the boundary). This implies that the proposed p-refinement strategy will
improve boundary derivative convergence rates when the boundary of a domain is
sufficiently smooth.

5. Concluding Remarks

This work proposed a new method for achieving higher-order accuracy in bound-
ary derivative calculations while still using lower-order finite elements on the interior
of the domain. The method, in essence, adds new degrees of freedom that enrich
the boundary finite elements in a direction normal to the boundary itself. The nu-
merical experiments imply that isotropic p-refinement does not improve the order
of accuracy of boundary derivatives: put another way, the finite element space must
have a tensor-product structure to obtain higher-order derivative convergence on
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—— Q' clement QU1HP) element —— H'.B Q1Y —— HLB QY —— H.B QY
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error
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FIGURE 7. Depiction of the disk grid and numerical results. The
picture on the left shows which cells have radial p-refinement after
one global grid refinement and the picture on the right shows the
rates of convergence: The H'-B error plot for Q(1®) is obscured
by the plot for Q% . These results show that the convergence
rates proven in Theorem [6] apply to more general settings where
the cells are aligned with a smooth boundary.

the boundary. The proposed method resembles a finite difference discretization in
the sense that the higher rate of convergence is available at all boundary vertices
and that the rate of convergence in the first and second derivatives, after performing
at least two levels of p-refinement, is equal to the global L*° rate of convergence.

There are several possible extensions of this work: one could derive a similar
result to Theorem@ by interpreting higher-order (e.g., biquadratic) basis functions
as finite difference methods with nonuniform stencils. Another possible direction is
finding a solid theoretical backing for the numerical examples given in Subsection
(4.3.2)) and Subsection , which show results for more general geometries than
a square with periodic boundary conditions in the x direction. There are possibili-
ties for extending the implementation as well: instead of Lagrange p-refinement, one
could add degrees of freedom corresponding to normal derivatives on the boundary.
Finally, since this method does not rely on any solution postprocessing procedures,
it may be a useful technique to use in applications where one requires higher accura-
cy in the derivatives of a solution on a particular boundary and an energy estimate,
such as complex boundary conditions for multiphysics applications.
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Appendices

A. Inequalities used to bound the Greens’ function
(1)

(A1) exp(—z) —1

E
z

as, if Im(z) = 0, then the function is maximized as 2 — 0%, has negative
slope for z > 0, and is bounded below by 0. If Im(z) # 0 then by the
maximum modulus principle this function is bounded above by the value
of the analytic continuation along the boundary Re(z) = 0, which is also 1.
This implies that

exp(—2DAzx) — 1

. < .

(A.2) 5D < Az
(2)

(A.3a) exp(2DL) + exp(2DAxz) exp(2DL)

o8 exp(2DL) — 1 exp(2DL) — 1
(A.3b) <9 ¢ -

e —

(A.3¢) <4

since Re(D) and L are greater than unity.
(3) If L — Az <2 < L then

exp(—D(L + Az — x)) + exp(D(L — Az — x)) ’

2D
exp(—D(L + Az — z)) exp(D(L — Az — z))
(A.4a) < 5D ' + 5D ‘
1
(A.4b) gﬁ

since 0 < L+ Az —z and L — Az — 2 < 0, so the arguments of both
exponentials have negative real parts.

B. Bounding the ratio of exp and sinh
for z=a+ bl and a > 0:

(B.1a) |sinh(z)|? = (cos(b) cosh(a))® + (sin(b) sinh(a))?
(B.1b) > (cos(b) sinh(a))? + (sin(b) sinh(a))?
(B.1¢) = (sinh(a))?

(B.1d) > a®
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Hence, if |b] < |a|

(B.2) 2| sinh(z)] > |2.
Hence

exp(z) exp(—2)
(B.3b) ‘ o =)
(B.SC) < 2+ %

Department of Mathematics, University of North Carolina, Chapel Hill, NC USA
E-mail: drwells@email.unc.edu,daverwells@gmail.com

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY USA
E-mail: banksj30rpi.edu



	1. Introduction
	2. One-dimensional analysis of the model problem
	2.1. Introduction
	2.2. Well-posedness of the system
	2.3. Superconvergence at vertices near the boundary
	2.4. Rates of convergence for boundary derivatives

	3. Extensions to higher dimensions
	3.1. Overview
	3.2. Decoupling of the 2D Problem
	3.3. Boundary derivative convergence of the 2D problem

	4. Numerical Results
	4.1. Overview
	4.2. 1D Numerical Results
	4.3. 2D Numerical Results

	5. Concluding Remarks
	Acknowledgements
	References
	Appendices
	A. Inequalities used to bound the Greens' function
	B. Bounding the ratio of exp and sinh

