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Abstract. We consider an optimal control problem which serves as a mathemati-
cal model for several problems in economics and management. The problem is the
minimization of a continuous constrained functional governed by a linear parabolic
diffusion-advection equation controlled in a coefficient in advection part. The addi-
tional constraint is non-negativity of a solution of state equation. We construct and
analyze several mesh schemes approximating the formulated problem using finite dif-
ference methods in space and in time. All these approximations keep the positivity of
the solutions to mesh state problem, either unconditionally or under some additional
constraints to mesh steps. This allows us to remove corresponding constraint from the
formulation of the discrete problem to simplify its implementation. Based on theo-
retical estimates and numerical results, we draw conclusions about the quality of the
proposed mesh schemes.
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1 Introduction

The theory of optimal control is involved in many models in economics. An actual and
common method of solving such problems is mean field game (MFG) formulation. This
approach was proposed in [1,2] and describes situations of equilibrium by considering a
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continuum of players (also called agents) through two forward/backward coupled PDE
system. In this system the first equation is a transport equation (or, Fokker-Planck equa-
tion) describing the evolution of the distribution of agents, while the second equation
corresponds to a Hamilton-Jacobi-Bellman equation derived from the optimization of a
criterion by means of a control. MFG formulation of the problems are thoroughly used
both for their theoretical study and numerical solution (see [3–8] and the bibliography
therein).

The link between MGF and optimal control takes place in the so-called potential case
(see [7] for the details). In this case equilibrium system solution of MFG is a critical point
of an optimal control problem governed by transport equation.

In this paper we consider a problem of minimization of a cost functional

J(m,α)=
∫ T

0

∫ 1

0
e−rtm

(
f (m)+

α2

2
)
dxdt, r=const≥0,

with respect to pair state-control (m,α), which satisfy a linear diffusion-advection state
equation

∂m
∂t
− σ2

2
∂2m
∂x2 −

∂

∂x
(αm)=0

controlled in a coefficient of advection term. Some ”economical meanings” of the prob-
lem and concrete examples of the functions in this formulation can be found in [8, 9].

In the case of differentiable function f (m) we can use Lagrange function to write first
order optimality conditions for the considered minimization problem. It is just MFG
formulation of the problem, which resulting system consists of two coupled forward-
backward parabolic equations and a term that represents the derivative J′α. In [8] this sys-
tem was approximated by using finite elements in space and implicit scheme in time, and
solved by an iterative solution method. In [9] the initial minimization problem was ap-
proximated and solved by a new monotone iterative algorithm. State equation–transport
equation–was approximated by a finite difference scheme in space and by explicit ap-
proximation in time.

One of the most important property of the solutions m of any mesh approximation of
state equation is its positivity. This corresponds to its meaning as the density of agents
and, moreover, it is necessary from mathematical point of view, because the cost func-
tional is not bounded from below for functions m which can have the negative values.
In [9] this property is saved for the constructed approximation by introducing an addi-
tional constraint which connects mesh parameters and sought solution. In the article [8]
there were no theoretical studies of the constructed approximations.

The aim of this article is construction and investigation theoretically and numerically
several finite difference approximations of the mentioned above optimal control problem.
To approximate state equation we use so-called summation equality in space variable
and one of the following approximations in time: fully implicit (backward Euler), semi-
implicit or fully explicit (forward Euler). The solutions of all constructed approximations
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of state equation have positive solutions and keep an analogue of the mass balance con-
dition. We prove the positivity of a solution m of the implicit scheme for any control
α. On the other hand, the solutions of semi-implicit and explicit schemes are positive if
some additional constraints connecting max-norm of control α and mesh steps are satis-
fied. Since control function is one of the unknowns in the problem, we cannot satisfy the
positivity condition a priori. Despite that it is only sufficient condition, violating it can
lead to a wrong solution. An example of such situation is given in the article.

We prove the existence of a solution of mesh optimal control problem for all consid-
ered approximations of the state equation. The solution is not generally unique, non-
uniqueness is demonstrated by a calculation example.

The theoretical results are complemented by numerical tests. To find the extremal
points of the mesh cost functions quasi-Newton method with line search procedure for
finding an optimal iterative parameter is used.

In this paper we use, for simplicity, uniform meshes, however all the results are also
valid for irregular meshes or different (staggered) grids for the approximation of the state
and control functions.

2 Differential problem

Let QT = (0,1)×(0,T], σ = const 6= 0, and the functions m(x,t) and α(x,t) be defined in
closed domain Q̄T=[0,1]×[0,T] and satisfy the following initial-boundary value problem:

∂m
∂t
− σ2

2
∂2m
∂x2 −

∂

∂x
(αm)=0 for (x,t)∈QT, (2.1a)

∂m
∂x

=0 for x=0, x=1 and t∈ (0,T], (2.1b)

m(x,0)=m0(x)≥0. (2.1c)

The functions α(x,t) and m(x,t) are control and state functions, respectively. We impose
additional state constraint:

m(x,t)≥0, ∀(x,t)∈QT. (2.2)

Control function α(x,t) satisfies the boundary condition

α(0,t)=α(1,t)=0 for all t∈ (0,T]. (2.3)

Due to (2.3) any solution m of problem (2.1) satisfies the following mass balance property:∫ 1

0
m(x,t)dx=

∫ 1

0
m0(x)dx=const, ∀t∈ [0,T]. (2.4)

To define a weak solution of the initial-boundary value problem (2.1) we introduce sev-
eral functional spaces (see [10,11]): Lebesgue space L2(0,1), Sobolev space H1(0,1) and its
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conjugate (H1(0,1))∗, subspace H1
0(0,1)⊂H1(0,1) of functions vanishing on the bound-

ary. Below the brackets 〈·,·〉mean the dual pairing between (H1(0,1))∗ and H1(0,1). For
the functions u(t) : [0,T]→V which are measurable on the segment [0,T] with the values
in a Banach space V we use the spaces L2(0,T;V), L∞(QT) and

W(0,T)=
{

u∈L2(0,T;H1(0,1)) :
∂u
∂t
∈L2(0,T;(H1(0,1))∗)

}
with the norm

‖u‖W(0,T)=‖u‖L2(0,T;H1(0,1))+
∥∥∥∂u

∂t

∥∥∥
L2(0,T;(H1(0,1))∗)

.

For given functions α∈L∞(QT) and m0∈L2(0,1) we define as a weak solution of (2.1)
a function m∈W(0,T), which satisfies the following variational equality:∫ T

0
〈∂m

∂t
,v〉dt+

∫
QT

(σ2

2
∂m
∂x

∂v
∂x

+αm
∂v
∂x

)
dxdt=0, ∀v∈H1(0,1), (2.5a)

m(x,0)=m0(x). (2.5b)

Remark 2.1. Obviously, for α∈ L∞(QT) we loose the connection of problem (2.5) with
initial-boundary value problem (2.1) because the boundary conditions (2.3) cannot be
defined for such functions α. Let α belongs to the space Vα = L∞(QT)∩L2(0,T;H1

0(0,1))
with the norm ‖α‖Vα =‖α‖L∞(QT)+‖α‖L2(0,T;H1

0 (0,1)). Then it satisfies (2.3) in a weak sense
and (2.5) is just a weak formulation of (2.1).

Problem (2.5) has a unique solution which satisfies the following stability estimate
(cf., e.g., [12, 13]):

‖m‖W(0,T)≤M‖m0‖L2(0,1) (2.6)

with constant M depending on ‖α‖L∞(QT) and T.

We define the cost functional

J(m,α)=
∫ T

0

∫ 1

0
e−rtm

(
f (m)+

α2

2

)
dxdt, r=const≥0, (2.7)

where the function f (m)= f (x,t,m) satisfies the following assumptions:

f (m)= f (x,t,m) is continuous, | f (m)|≤d1+d2m, (d1,d2≥0),
for all (x,t)∈ Q̄T and m≥0. (2.8)

Under assumptions (2.8) the functional J(m,α) is well-defined for functions α∈ L∞(QT)
and m∈L2(QT) such that m(x,t)≥0 a.e. in QT.

Theorem 2.1. Let Cα be a positive constant and

K={(m,α)∈W(0,T)×L∞(QT) : (m,α) satisfies (2.5);
m(x,t)≥0 a.e. in QT; |α(x,t)|≤Cα a.e. in QT}.
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For any m0∈L2(Ω),m0≥0, there exists a solution to the minimization problem

min
(m,α)∈K

J(m,α). (2.9)

Proof. For α≡ 0 and m0≥ 0 state equation (2.5) becomes heat equation for which the so-
lution m(0) is known to be non-negative. It means that (m(0),0)∈K, i.e., K 6=∅. Due to
estimate (2.6) the set K is bounded in W(0,T)×L∞(QT). Assumptions (2.8) ensure bound-
edness of functional J(m,α) on K.

Let {(mn,αn)} ∈ K be a minimizing sequence. Let us denote by Bα = {α∈ L∞(QT) :
‖α‖L∞(QT) ≤ Cα} the closed ball. Since αn ∈ Bα, estimate (2.6) guarantees that the se-
quence {mn} is bounded in W(0,T). The space W(0,T) is compactly embedded in L2(QT)
(see [14]). Thus, we can extract a subsequence (we keep for it the previous notation
{(mn,αn)}), such that

αn→α∗∈L∞(QT) weakly in L2(QT) and a.e. in QT;

mn→m∗∈W(0,T) weakly in W(0,T), strongly in L2(QT)

and a.e. in QT. (2.10)

The limit functions satisfy the inequalities |α∗(x,t)| ≤Cα a.e. in QT and m∗(x,t)≥ 0 a.e.
in QT. Moreover, the pair (m∗,α∗) satisfies the state equation (2.5). These results yield
(m∗,α∗)∈K.

Due to (2.8) the function m f (m) defines a continuous Nemytskii operator from L2(QT)
to L1(QT) (cf., e.g. [15, 16]), so,∫ T

0

∫ 1

0
e−rtmn f (mn)dxdt→

∫ T

0

∫ 1

0
e−rtm∗ f (m∗)dxdt. (2.11)

Further, the sequence of non-negative functions e−rtmn
α2

n
2 ∈ L1(QT) is bounded and con-

verges a.e. to e−rtm∗ (α
∗)2

2 ∈L1(QT). By Fatou’s lemma (cf., e.g., [17])

lim inf
n→∞

∫
QT

e−rtmn
α2

n
2

dxdt≥
∫

QT

e−rtm∗
(α∗)2

2
dxdt. (2.12)

Due to (2.11) and (2.12), the inequality

lim inf
n→∞

J(mn,αn)≥ J(m∗,α∗)

holds, that is (m∗,α∗) is a minimal point of the cost functional.

Remark 2.2. As mentioned in Remark 2.1, it is reasonable to take α∈Vα. The existence
result of Theorem 2.1 remains valid in the case of the set

K={(m,α)∈W(0,T)×Vα : (m,α) satisfies (2.5);
m(x,t)≥0 a.e. in QT; ‖α‖Vα≤Cα}.
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3 Approximation

Let ωx={xi= ih, i=0,··· ,N, Nh=1} and ωt={tj= j∆t, j=0,··· ,M, M∆t=T} be uniform
meshes in space and in time, ω0

t =ωt\{t=0}. By Vx we denote the space of mesh functions
(vectors) defined on ωx, and by ui the value of a mesh function u∈Vx at the point xi∈ωx.
Let V0

x be the subspace of Vx of functions that satisfy the homogeneous Dirichlet condition

α∈V0
x⇔α∈Vx and α0=αN =0. (3.1)

If u(t) : ωt→Vx, then uj = u(tj)∈Vx and uj
i is the value of mesh function u(x,t) at the

point (xi,tj)∈ωx×ωt. For the mesh functions u,v∈Vx we use the following notations for
combined quadrature formulas approximating integral over [0,1]:

(u,v]=
N

∑
i=1

huivi, [u,v)=
N−1

∑
i=0

huivi, (u,v)=
N−1

∑
i=1

huivi,

[u,v]=
1
2
(u,v]+

1
2
[u,v).

The difference quotients are denoted by ∂vi = h−1(vi+1−vi) and ∂̄vi = h−1(vi−vi−1). The
notations α+= 0.5(|α|+α) and α−= 0.5(|α|−α) are used for positive and negative parts
of α, and m�0 means that all components of a vector m are non-negative.

3.1 Mesh optimal control problem with implicit approximation of state
equation

For a given function α(t) : ω0
t →V0

x we find function m(t) : ωt→Vx, which satisfies the
following summation equality approximating state equation (2.5):

[mj−mj−1

∆t
,v
]
+

σ2

2
[∂mj,∂v)+((αj)+mj,∂̄v)

−((αj)−mj,∂v)=0, ∀v∈Vx, ∀j=1,··· ,M,

m0=m0.

(3.2)

Summation equality (3.2) is an implicit form of the following system of linear algebraic
equations (the backward Euler finite difference scheme): ρ

mj−mj−1

∆t
+A0mj+A1(α

j)mj =0, j=1,··· ,M,

m0=m0.
(3.3)

Above ρ ∈Vx has components ρi = {1 for 1≤ i≤ N−1;1/2 for i = 0 and i = N} and the
matrices A0, A1(α) are defined by the following equalities for the mesh functions m∈Vx,
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α∈V0
x :

(A0m)i =
σ2

2h2


−mi+1+2mi−mi−1, 1≤ i≤N−1,
m0−m1, i=0,
mN−mN−1, i=N,

(3.4a)

(A1(α)m)i =
1
h


−α+

i+1mi+1+|αi|mi−α−i−1mi−1, 1≤ i≤N−1,
−α+

1 m1, i=0,
−α−N−1mN−1, i=N.

(3.4b)

Note that A0m approximates the diffusive part − σ2

2
∂2m
∂x2 of the elliptic operator in state

equation while A1(α)m approximates the advective part presented in the form − ∂(αm)
∂x =

− ∂(α+m)
∂x + ∂(α−m)

∂x .

Lemma 3.1. Problem (3.2) has a unique solution m = m(α,t) : ωt→Vx for any m0 and any
α(t) : ω0

t →V0
x . This solution has the following properties:

1. Mass balance property:
[mj,1]= [m0,1], ∀j=1,··· ,M. (3.5)

2. Strict positivity of a solution:

if m0�0 and [m0,1]>0, then mj
i >0, ∀i, ∀j≥1. (3.6)

3. Stability: If m0�0 then mesh scheme (3.2) is stable uniformly with respect to α(t) in the
mesh C([0,T];L1)-norm:

max
j

[|mj|,1](=max
j

[mj,1])= [m0,1]. (3.7)

Proof. Unknown vector mj is a solution of the system of linear equations

Amj =
ρ

∆t
mj−1 with matrix A=

ρ

∆t
I+A0+A1(α

j), and identity matrix I.

We investigate the properties of the transpose matrix

AT =
ρ

∆t
I+A0+AT

1 (α)

for any vector α. Since

(AT
1 (α)v)i =

1
h

{
−α+

i (vi+1−vi)+α−i (vi−vi−1), 1≤ i≤N−1,
0, i=0, i=N,

it is easy to verify that the transpose matrix AT is strictly diagonally dominant, has pos-
itive diagonal and non-positive off-diagonal entries. Because of this, the matrix AT is
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regular M-matrix, and hence the matrix A is also M-matrix. So, there exists a unique
solution mj.

Choosing v≡1 in (3.2), we get the equality (3.5):

[mj,1]= [mj−1,1], ∀j⇒ [mj,1]= [m0,1], ∀j.

Since A is a M-matrix, then nonnegativity of mj−1 guarantees nonnegativity of mj.
Let us prove property (3.6), i.e., strict positivity of a solution in the case of m0� 0 and
[m0,1]> 0. By definition matrix AT is tridiagonal, has strictly positive main diagonal,
strictly negative over-diagonal and under-diagonal elements. Due to these properties AT

is irreducible M-matrix and all entries of A−T are strictly positive (cf., e.g., [18, 19]). As a
consequence, all entries of A−1 are also strictly positive. If vector m0� 0 and [m0,1]> 0
then there exists at least one positive component of m0, whence all components of m1 =
A−1m0 are positive. By recurrence, mj has positive components for other time levels
j=2,··· ,M.

Finally, stability property (3.7) is a simple consequence of (3.5) and (3.6).

Now we define mesh cost function approximating (2.7):

Jh(m,α)=
M

∑
j=1

∆te−rtj
[
mj, f j(mj)+

(αj)2

2

]
and a set of admissible pairs (m,α):

Kimpl ={(m,α) : m(t) : ωt→Vx, α(t) : ω0
t →V0

x , (m,α) satisfy (3.2)}.

Theorem 3.1. Let m0�0. Then mesh optimal control problem

find min
(m,α)∈Kimpl

Jh(m,α) (3.8)

has at least one solution (m,α).

Proof. Obviously, m0≡ 0 implies m≡ 0 for any α and problem (3.8) becomes empty. Be-
cause of this we assume that [m0,1]>0.

Let us decompose the cost function into the sum Jh(m,α)= J1h(m)+ J2h(m,α), where

J1h(m)=
M

∑
j=1

∆t e−rtj
[mj, f j(mj)], J2h(m,α)=

1
2

M

∑
j=1

∆t e−rtj
[mj,(αj)2].

Let a pair (m,α) satisfy (3.2), then due to (3.6) and (3.7) vector m belongs to the bounded
set K0={0≤mj

i≤mmax}, where mmax=h−1[m0,1] does not depend on α. Since the function
f (m) is continuous then there exists a constant C0 such that

|J1h(m)|≤C0 for all m∈K0.
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Together with the inequality J2h(m,α)≥ 0 this ensures that function Jh(m,α) is bounded
below. Let m(0) be the solution of (3.2) with α=0, then Jh(m(0),0)≤C0. Thus, function Jh
has a finite infimum.

Define vector qj with coordinates qj
i =α

j
im

j
i . Due to (3.6) mj

i >0 for all i and all j≥1, so,
we can write

J2h(m,α)= J2h(m,q)=
1
2

M

∑
j=1

∆te−rtj
[(mj)−1,(qj)2].

Let {(m(k),α(k))} be a minimizing sequence and q(k)= α(k)m(k). Since {m(k)} is bounded
and 0≤ J2h(m(k),α(k))≤ 2C0, then the sequence {q(k)} is also bounded, and there exists
a subsequence of {(m(k),q(k)} (we keep the same notation for it), which converges to
(m,q). The set K0 is closed, so, m∈K0. Passing to the limit in equation (3.2) written for
{(m(k),q(k)} we prove that (m,q) satisfies the equation

ρ
mj−mj−1

∆t
+A0mj+Bqj =0, j=1,···M,

where

(Bq)i =
1
h


−q+i+1+|qi|−q−i−1, 1≤ i≤N−1,
−q+1 , i=0,
−q−N−1, i=N.

Now we define α
j
i =

qj
i

mj
i

if mj
i >0 and α

j
i is arbitrary if mj

i =0. Then the pair (m,α) satisfies

the equation

ρ
mj−mj−1

∆t
+A0mj+A1(α

j)mj =0, j≥1.

However, due to Lemma 3.1 the unique solution m of this equation has strictly positive

coordinates for any α. It means that vector α is uniquely defined by the equalities α
j
i =

qj
i

mj
i

for all i and j, and the pair (m,α) is a minimizer of the function Jh.

Remark 3.1. It is worth to note that the result of Theorem 3.1 is valid without any ad-
ditional constraint for the mesh functions m and α although the function Jh(m,α) is not
coercive and the set Kimpl is not bounded. The properties (3.5) and (3.6) of the state func-
tion m play the crucial role in proving the existence result.

3.2 Mesh optimal control problem with semi-implicit and explicit
approximations of state equation

Let the matrices A0, A1 be defined by (3.4a) and (3.4b). The semi-implicit and explicit
(forward Euler) finite difference schemes are defined by the following systems of the
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equations:  ρ
mj−mj−1

∆t
+A0mj+A1(α

j−1)mj−1=0, j=1,···M,

m0=m0,
(3.9a)

 ρ
mj−mj−1

∆t
+A0mj−1+A1(α

j−1)mj−1=0, j=1,··· ,M,

m0=m0.
(3.9b)

Remark 3.2. We use αj−1 in the equation on the j-th time level only to emphasize that in
approximation we take α(x,t) on the (j−1)-th time level.

Lemma 3.2. Finite difference schemes (3.9a) and (3.9b) have unique solutions m=m(α) which
satisfy the properties (3.5)-(3.7). under the following additional constraints:

max
i,j
|αj

i |<
h

2∆t
for problem (3.9a), (3.10a)

max
i,j
|αj

i |<
h

2∆t
− σ2

2h
for problem (3.9b). (3.10b)

Proof. First, we consider semi-implicit finite difference scheme (3.9a). For j≥1 vector mj

is a solution of the system of linear algebraic equations( ρ

∆t
I+A0

)
mj =

( ρ

∆t
I−A1(α

j−1)
)

mj−1.

Matrix ρ
∆t I+A0 is irreducible, strictly diagonally dominant M-matrix, because of this

there exists inverse matrix ( ρ
∆t I+A0)−1 with strictly positive entries. In turn, matrix

B=
ρ

∆t
I−A1(α

j−1)

in the right-hand side of the system has non-negative off-diagonal entries and its diagonal

entries ρi
∆t−

|αj−1
i |
h are strictly positive if condition (3.10a) is satisfied. Let mj−1 ≥ 0 and

[mj−1,1]> 0, then vector Bmj−1 has non-negative coordinates and at least one positive
component. Thus,

mj =
( ρ

∆t
I+A0

)−1
Bmj−1

has strictly positive coordinates and property (3.6) is proved.
Choosing v≡1 in the summation equality, we get the equality [mj,1]=[mj−1,1] for all j.

Stability property (3.7) is simple consequence of (3.5) and (3.6).
Let now m is a solution of explicit finite difference scheme (3.9b). For j≥1 vector mj

satisfies the equation
ρ

∆t
mj =

( ρ

∆t
I−A0−A1(α

j−1)
)

mj−1.
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Matrix ρ
∆t I−A0−A1(α

j−1) has non-negative off-diagonal entries. Its diagonal entries ρi
∆t−

|αj−1
i |
h −ρi

σ2

h2 are strictly positive if (3.10b) holds. Using these properties, we continue, as
described above.

In the case of semi-implicit and explicit approximations of the state equation the cost
function is defined by the equality:

J̃h(m,α)=
M

∑
j=1

∆te−rtj
[
mj, f j(mj)+

(αj−1)2

2

]
.

The corresponding mesh optimal control problems are: find min
(m,α)∈Ksemi

J̃h(m,α),

Ksemi ={(m,α) satisfy state equation (3.9a) and αsatisfies (3.10a)},
(3.11a)

 find min
(m,α)∈Kexpl

J̃h(m,α),

Kexpl ={(m,α)satisfy state equation(3.9b)andαsatisfies (3.10b)}.
(3.11b)

Theorem 3.2. There exist solutions to problems (3.11a) and (3.11b).

Proof. Due to the properties (3.5) and (3.6) of the solutions of state problems (3.9a) and
(3.9b), we can proceed as in the proof of Theorem 3.1.

Remark 3.3. The existence of solutions of minimization problems governed by semi-
implicit and explicit schemes can be proved by using Weierstrass theorem on the mini-
mization of continuous functions on compact sets. In fact, due to constraints (3.10a) and
(3.10b) we can consider α from a compact set

A=
{

α : max
i,j
|αj

i |≤C=C(h,∆t)
}

.

The solutions m(α) of (3.9a) and (3.9b) depend continuously on α and the function J̃h(m,α)
is continuous with respect to m and α. As a consequence, function I(α)≡ J̃h(m(α),α) is
continuous on A, whence the result.

4 Numerical results

We have carried out numerical experiments for the state equation (2.1) with σ2/2=0.07,
T=1 and the cost function (2.7) with f (x,t,m)= x

0.1+m +S(t)(1−0.8x), a continuous func-
tion S(t) defined below and r=0. It is easy to see that f (x,t,m) satisfies assumptions (2.8)
with d2=0. Note that f is correctly defined for negative m>−0.1.
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4.1 Problems with unique solutions

Calculations were performed with function S(t)≡10 and different initial values m0. We
present the calculated results for m0 which corresponds to Gaussian distribution centered
in x=0.5, ”triangle” function and Dirac-type mesh function m0 (Fig. 1).

For our calculation, finite difference schemes were used on the series of meshes us-
ing implicit, semi-implicit and explicit approximations of the state equation. The imple-
mentation of the constructed non-linear optimization problems was executed by quasi-
Newton method with line search procedure for finding an optimal iterative parameter.
We used different initial guesses α0. The stopping criteria was a small value of max-norm
of the gradient of the cost function. We also controlled the speed of the cost function
decay and number of iterations.

Below we present the results of calculations on the mesh with ∆x=1/128, ∆t=1/128
when using the implicit scheme for the state equation. We observed the same optimal so-
lutions (α,m) when using semi-implicit or explicit approximations for the state equation
with corresponding constraints (3.10a) or (3.10b), respectively, which ensure the positiv-
ity of m. The iterative process for implicit scheme converges monotonically and by the
ninth iteration we obtain reasonable accuracy (Table 1).

The conclusions of the calculations:
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Figure 1: Gaussian and ”triangle” initial value m0.

Table 1: Behavior of the iterative method for implicit scheme with (∆x=1/128, ∆t=1/128).

Iteration number Value of cost function Max-norm of gradient
0 6.42581 0.00215
1 5.2663 0.0012
2 4.15197 0.00058
··· ··· ···
8 3.92331 0.000109
9 3.92076 8.41×10−5
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Figure 2: ”Dirac” initial value m0 (left) and the shape of final value m(x,T) for Gaussian initial value m0.
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Figure 3: Behavior of m and α for Gaussian initial value m0.

1. The number of iterations to achieve the required accuracy does not significantly
depend on the initial guess α0, and the choice α0≡0 was very reasonable.

2. For all fixed m0, h and ∆t, the calculated optimal solutions (m,α) were unique for
the input data considered: the difference between solutions calculated from differ-
ent initial guesses in the iteration method was negligibly small compared with the
values of these solutions.

4.2 Semi-implicit scheme with violated constraint to mesh steps

First, we use semi-implicit scheme on the mesh with (∆x=1/32, ∆t=1/64) for the same
problem as in Section 4.1. We take initial guess for the iterations to be α0=0.
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Figure 5: Behavior of m and α for ”Dirac” initial value m0.

The optimal solution is calculated above and we know that the maximal value of
optimal α is about 5. So, the sufficient condition of the non-negativity of m for semi-
implicit approximation

max
i,j
|αj

i |≤
h

2∆t
=1

is violated. Table 2 shows that the method ”falls apart” on fourth iteration. The following
result was obtained in the calculations: already at 2-nd iteration m becomes negative in
several mesh points; at the 3-rd iteration the set of the mesh points, where m<0 enlarges
and modules of their values increase; by the 4-th iteration the cost function approaches
−∞ (recall that the function f (m) is defined for negative m>−0.1 and tends to−∞ when
m↓−0.1).
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Table 2: Divergence of the iterative method for semi-implicit scheme with (∆x=1/32, ∆t=1/64).

Iteration number Value of cost function Max-norm of gradient
0 6.42318 0.0187
1 5.33449 0.0118
2 4.15197 0.0292
3 4.13176 0.371
4 −1.5017×1067 7.2×1067

4.3 Non-uniqueness of solution

For a given pair of S(t) and m0 in the Fig. 6 we found two local minima. They have been
reached by starting in the iterative method from different initial guesses α0.
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Figure 6: S(t) and m0 in the problem with non-unique solution.

5 Concluding remarks on the approximations of the problem

The fully implicit scheme (3.2) approximating state equation has the obvious advantages
in comparison with semi-implicit and explicit approximations, namely, it is uncondition-
ally stable and keep the positivity of m from the initial condition m0 without any con-
straint for mesh steps or/and control function α.

As opposed to implicit scheme, semi-implicit (3.9a) and explicit (3.9b) schemes have
to satisfy some constraints connecting control function α and mesh steps h, ∆t to be stable
and to keep the positivity of m. These constraints can be treated as limits for the mesh step
∆t: ∆t≤ h

2max
i,j
|αj

i |
for semi-implicit scheme and ∆t≤ h2

σ2+2hmax
i,j
|αj

i |
for explicit scheme. Since

we do not know a priori estimate for α, we must control the positivity of m and use adap-
tive mesh refinement. As a consequence, we may need to recalculate the problem from
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Figure 7: Behavior of m and α when initial guess in the iterative method is α=0.
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Figure 8: Behavior of m and α when initial guess in the iterative method is α=−1 in the internal points of ωx.

the very beginning after each refinement of the mesh, which leads to a time-consuming
algorithm.

To construct well-posed discrete optimal control problem we can add the state con-
straint m≥0 to its formulation. But it is well known that implementing a state constrained
optimal control problem is much more difficult task than implementing an unconstrained
problem.
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