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Abstract. A shifted-inverse iteration is proposed for the finite element discretization
of the elastic eigenvalue problem. The method integrates the multigrid scheme and
adaptive algorithm to achieve high efficiency and accuracy. Error estimates and opti-
mal convergence for the proposed method are proved. Numerical examples show that
the proposed method inherits the advantages of both ingredients and can compute low
regularity eigenfunctions effectively.
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1 Introduction

Numerical computation of eigenvalue problems is of fundamental importance in many
scientific and engineering applications. Due to the flexibility in treating complex struc-
tures and rigorous theoretical justification, finite element methods, including conforming
finite elements, mixed finite elements, and discontinuous Galerkin methods, have been
popular for eigenvalue problems of partial differential equations [1, 2, 20]. In this paper,
we focus on the development of an efficient finite element discretization for the elas-
tic eigenvalue problem on polygonal domains, in particular, when the regularity of the
eigenfunctions might be low due to the non-convex domains or discontinuous material
properties.

While extensive results have been obtained for the Dirichlet eigenvalue problem, the
Maxwell’s eigenvalue problem, and the biharmonic eigenvalue problem, much fewer
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works exist in the literature on the elastic eigenvalue problem [9, 10, 13, 16, 18, 19, 22].
In [19], Ovtchinnikov and Xanthis employed a special preconditioning technique asso-
ciated with the effective dimensional reduction algorithm for the thin elastic structures
such as shells, plates and rods of arbitrary geometry. Walsh et al. developed an a pos-
teriori error estimator for heterogeneous elastic structures, which are independent of
the variations in material properties and the polynomial degree of finite elements [22].
In [13], Erwin analyzed the finite element approximation of the spectral problem for the
linear elasticity equation with mixed boundary conditions on a curved non-convex do-
main. Using a mixed variational formulation, Meddahi et al. showed that the lowest
order Arnold-Falk-Winther element provides a correct approximation of the spectrum
with quasi-optimal error estimates [18]. In [9], Russo presented a theory for the approxi-
mation of eigenvalue problems in mixed form by non-conforming methods and applied
it to the classical Hellinger-Reissner mixed formulation for a linear elastic structure. Re-
cently, Lee et al. used the immersed finite element method based on Crouzeix-Raviart
P1-nonconforming element to approximate eigenvalue problems for elasticity equations
with interfaces [16]. Domı́nguez et al. [10] analyzed the Jone’s eigenvalue problem, an
elastic eigenvalue problem with a special boundary condition, and approximated the
eigenvalues using the linear Lagrange element.

The multigrid or multilevel discretization is an efficient tool for eigenvalue prob-
lems [11,14,17,23,24]. Recently, it was used with the shifted-inverse iteration and proved
to be effective for the Dirichlet eigenvalue problem [25,26], the Maxwell eigenvalue prob-
lem, and the integral operator eigenvalue problem [26]. In this paper, we extend the
shifted-inverse iteration multigrid method for the elastic eigenvalue problem. To further
improve the accuracy and efficiency for lower regularity problems, the adaptive scheme
is integrated into the multigrid method. Numerical examples show that the proposed
method is highly effective and efficient. For adaptive finite element approximation of
eigenvalue problems, we refer the readers to Chp. 8 of [20], [7,8,12,15] and the references
therein.

The rest of the paper is organized as follows. In Section 2, we present the elastic eigen-
value problem and finite element convergence results. Section 3 is devoted to the multi-
grid scheme based on Rayleigh quotient iteration. The convergence results are proved. In
Section 4, we present an a posterior error estimate and propose an adaptive method. The
algorithm combining the multigrid scheme and the adaptive method is given. Finally, in
Section 5, we present several numerical examples on a non-convex domain and of dis-
continuous material properties, validating the efficiency and accuracy of the proposed
method.

2 FEM for the elastic eigenvalue problem

Let x=(x,y)⊤∈R
2, Ω⊂R

2 be a bounded Lipschitz polygon, and H1
0(Ω):=H1

0(Ω)×H1
0(Ω),

L2(Ω) :=L2(Ω)×L2(Ω). The elastic eigenvalue problem is to find (λ,u)∈R×H1
0(Ω) such
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that

−∇·σ(u)=λρu, in Ω,

u=0, on ∂Ω.
(2.1)

Here u(x)=(u1(x),u2(x))⊤ is the displacement vector, ρ(x) is the mass density, and σ(u)
is the stress tensor given by the generalized Hooke law

σ(u)=2µε(u)+λtr(ε(u))I,

where I∈R
2×2 is the identity matrix and µ,λ are the Lamé parameters satisfying µ> 0,

λ+µ>0. The strain tensor ε(u) is defined as

ε(u)=
1

2
(∇u+(∇u)⊤),

where∇u is the displacement gradient tensor

∇u=

[
∂xu1 ∂yu1

∂xu2 ∂yu2

]
.

The weak formulation for (2.1) can be written as to find (λ,u)∈R×H1
0(Ω) with ‖u‖a=

1 such that

a(u,v)=λb(u,v), ∀v∈H1
0(Ω), (2.2)

where

a(u,v)=
∫

Ω
σ(u) :∇vdx, b(u,v)=

∫

Ω
ρuvdx,

‖u‖a=
√

a(u,u) and ‖u‖b=
√

b(u,u). Here A :B=tr(AB⊤) is the Frobenius inner product
of matrices A and B. Without loss of generality, we assume that ρ≡ 1 in the rest of the
paper. The results in this paper hold for ρ(x)≥β>0.

Consider the finite element approximation for the elastic eigenvalue problem. Let
πh be a regular triangular mesh on Ω under the meaning of [5] and Uh be the linear
Lagrange finite element space Uh={uh∈H1

0(Ω);uh|κ∈P1(κ), κ∈πh}. The finite element
discretization of (2.2) is as follows. Find (λh,uh)∈R×Uh with ‖uh‖a =1 such that

a(uh,vh)=λh(uh,vh), ∀vh∈Uh. (2.3)

The well-posedness of (2.2) and (2.3) has been discussed in [1, 3]. Consequently, there
exist two linear bounded operators T : L2(Ω)→H1

0(Ω)⊂L2(Ω) such that

a(Tf,v)=b(f,v), ∀v∈H1
0(Ω),
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and Th : L2(Ω)→Uh⊂H1
0(Ω) such that

a(Thf,v)=b(f,v), ∀v∈Uh.

Suppose that λ and λh are the kth eigenvalue of (2.2) and (2.3), respectively. The
algebraic multiplicity of λ is equal to q, i.e., λ = λk = λk+1 = ···= λk+q−1. Let M(λ) be
the space spanned by all the eigenfunctions corresponding to λ and Mh(λ) be the direct
sum of eigenfunctions corresponding to the q eigenvalues of (2.3) that converge to λ.
Let M̂(λ)={v : v∈M(λ),‖v‖a=1} and M̂h(λ)={v : v∈Mh(λ),‖v‖a =1}. The following
quantity characterizes the approximation of the finite element space Uh for the eigenspace
M̂(λ):

δh=δh(λ)= sup
u∈M̂(λ)

inf
v∈Uh

‖u−v‖a. (2.4)

Then an a priori error estimate for (2.3) follows the classical finite element spectral
approximation theory [1, 2, 4, 20].

Lemma 2.1. Let (λh,uh) be the kth eigenpair of (2.3) with ‖uh‖a=1. Let λ be the kth eigenvalue
of (2.2). Then λh→λ as h→0 and there exists an eigenfunction u corresponding to λ such that

|λh−λ|≤Cδh(λ)
2, (2.5)

‖uh−u‖b≤Chrδh(λ), (2.6)

‖uh−u‖a≤Cδh(λ), (2.7)

where r≤ 1 is positive depending on the regularity of the source problem associated to (2.1), C
denotes a positive constant that is independent of the mesh size.

3 Multigrid scheme based on Rayleigh quotient iteration

In this section, we present a multigrid scheme based on Rayleigh quotient iteration. Let
{Uhi

, i=0,1,2,···} be a family of finite-dimensional spaces such that UH :=Uh0
, Uhi
⊂Uhi+1

.
The following condition is needed for the subsequent analysis.

Condition 3.1. Let I be a positive integer. There exists two small positive numbers ε1, ε2

and ti∈ [1+ε1,3−ε2], i=1,2,··· , I such that δhi
=O(δti

hi−1
).

Condition 3.1 is easy to satisfy. For example, for smooth solutions, using the uniform
mesh, let h0 =

√
2/8, h1 =

√
2/32 and h3 =

√
2/128. We have hi = hti

i−1, i.e., δhi
=O(δti

hi−1
),

where t1≈1.80, t2≈1.22, t3≈1.18. For non-smooth solutions, the condition is met on the
local refined meshes generated by the standard adaptive procedure.

In this section, we extend the multigrid scheme in [25, 26] to the elastic eigenvalue
problem and prove the error estimates.

Algorithm 3.1. Multigrid Scheme.
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1. Solve the eigenvalue problem (2.3) on UH: find (λH,uH)∈R×UH, ‖uH‖a =1 such
that

a(uH ,v)=λHb(uH,v), ∀v∈UH.

2. uh0⇐uH, λh0⇐λH, i⇐1.

3. Solve a source problem on Uhi
: find u′∈Uhi

such that

a(u′,v)−λhi−1b(u′,v)=b(uhi−1 ,v), ∀v∈Uhi
.

Set uhi =u′/‖u′‖a.

4. Compute the Rayleigh quotient

λhi =
a(uhi ,uhi)

b(uhi ,uhi)
.

5. If i = l where l is the maximum iterative times, then output (λhi ,uhi), stop; else,
i⇐ i+1, and go to 3.

Define

dist(w,W)= inf
v∈W
‖w−v‖a.

Let the finite element approximation for λk−1,··· ,λk+q be λk−1,h,··· ,λk+q,h respectively
and write

ν :=1/λ, νj :=λ−1
j , νj,h :=λ−1

j,h , j= k−1,k··· ,k+q.

Denote Mh(ν) := Mh(λ). The following lemmas are useful in the error analysis for the
multigrid scheme.

Lemma 3.1 (Lemma 3.1 of [25]). For any nonzero u,v∈Uh,

∥∥∥∥
u

‖u‖a
− v

‖v‖a

∥∥∥∥
a

≤2
‖u−v‖a

‖u‖a
,

∥∥∥∥
u

‖u‖a
− v

‖v‖a

∥∥∥∥
a

≤2
‖u−v‖a

‖v‖a
. (3.1)

The next lemma is an analog to Lemma 4.1 of [26] and can be proved similarly.

Lemma 3.2. Let (ν0,u0) be an approximate eigenpair of (ν,u), where ν0 is not an eigenvalue of
Th and u0∈Uh with ‖u0‖a =1. Suppose that

dist(u0,Mh(ν))≤1/2,

|ν0−ν|≤d/4,

|νj,h−νj|≤d/4, j= k−1,k,k+q, j 6=0,
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where d=minνj 6=ν |νj−ν|. Let us∈Uh and uh∈Uh satisfy

(ν0−Th)u
s=u0, uh=us/‖us‖a.

Then

dist(uh,Mh(ν))≤
4

d
max

k≤j≤k+q−1
|ν0−νj,h|dist(u0 ,Mh(ν)).

Let λj,hl
, j= k,k+1,··· ,k+q−1, be q eigenvalues of Thl

converge to λ and uj,hl
’s be the

associated eigenfunctions such that {uj,hl
}k+q−1

j=k is an orthonormal system of Mhl
(λ) with

respect to ‖·‖a.

From Lemma 2.1, there exists {u0
j }

k+q−1
j=k ⊂M(λ) such that uj,hl

−u0
j satisfies (2.6) and

(2.7). Let

u=
k+q−1

∑
j=k

a(uhl ,uj,hl
)u0

j . (3.2)

The following lemma holds (see Theorem 4.2 in [26]).

Lemma 3.3. Assume that Condition 3.1 holds, uhl−1 approximates some u ∈ M̂(λ) and λhl−1

approximates λ. If (λhl ,uhl) is the kth eigenpair approximation of (2.2) obtained by Algorithm
3.1, then there hold

‖uhl−u‖a≤C(|λhl−1−λ|2+|λhl−1−λ|‖uhl−1−u‖a+δhl
), (3.3)

|λhl−λ|≤C‖uhl−u‖2
a, (3.4)

where l≥1 and u is defined as in (3.2), and C is independent of the mesh size and l.

Now we are ready to carry out the error analysis for Algorithm 3.1.

Theorem 3.1. Suppose that H is small enough and Condition 3.1 holds. Let (λhl ,uhl ) be the kth
eigenpair approximation of (2.2) obtained by Algorithm 3.1. Then there hold

‖uhl−u‖a≤Cδhl
, (3.5)

|λhl−λ|≤Cδ2
hl

, (3.6)

where l≥1 and u is defined by (3.2).

Proof. The proof uses mathematical induction. When l = 1, noting that uh0 = uH and
λh0 =λH, by (2.5), (2.7) and (3.1), there exists u∈ M̂(λ) such that

‖uh0−u‖a≤Cδh0
,

|λh0−λ|≤Cδ2
h0

.
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Plugging the above two formulae into (3.3) and Condition 3.1 we obtain

‖uh1−u‖a≤C(δ4
h0
+δ3

h0
+δh1

)≤Cδh1
, (3.7)

where u is given by (3.2) with uj,h1
−u0

j satisfying (2.6)-(2.7). Substitution of (3.7) into (3.4)

yields

|λh1−λ|≤Cδ2
h1

. (3.8)

Thus (3.5)-(3.6) hold for l=1.
Suppose (3.5)-(3.6) hold for l−1, i.e., there hold

‖uhl−1−u‖a≤Cδhl−1
, (3.9)

|λhl−1−λ|≤Cδ2
hl−1

, (3.10)

where u is given by (3.2) with uj,hl−1
−u0

j satisfying (2.6)-(2.7). Define

u=u/‖u‖a∈ M̂(λ). (3.11)

Using (3.1) and (3.9), we deduce that uhl−1 approximates u and there holds

‖uhl−1−u‖a≤Cδhl−1
. (3.12)

Substituting (3.10)-(3.12) into (3.3)-(3.4), from Condition 3.1, we get

‖uhl−u‖a≤C(δ3
hl−1

+δhl
)≤Cδhl

,

and

|λhl−λ|≤Cδ2
hl

.

The proof is complete.

4 Adaptive finite element method

To efficiently compute low regularity eigenpairs, we resort to the adaptive scheme [7, 8,
12, 15, 20]. The standard procedure of adaptive finite element method is to iteratively
implement the following steps (see, e.g. [21])

Solve −→ Estimate −→ Mark −→ Refine,

i.e., 1) given a mesh πhl
, solve the problem on πhl

; 2) estimate the error of the solution
by some a posteriori error estimator; 3) mark the subset π̂hl

of πhl
on which the error is

the most needed to control using some marking strategy; and 4) refine π̂hl
to get the new

mesh πhl+1
.
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We derive an a posteriori error estimate following the line of [22] and then propose an
a posteriori error indicator of the residual. To this end, we first prove a superconvergence
result which will be used later. Define

u∗=
k+q−1

∑
j=k

a(uhl ,uj,hl
)uj,hl

. (4.1)

Theorem 4.1. Under the conditions of Theorem 3.4, there holds

‖uhl−u∗‖a≤Cδ
3/tl

hl
. (4.2)

Proof. Step 3 of Algorithm 3.1 with i= l is equivalent to: Find u′∈Uhl
such that

u′=Thl
(λhl−1u′+uhl−1), (4.3)

and uhl =u′/‖u′‖a. That is

((λhl−1)−1−Thl
)u′=(λhl−1)−1Thl

uhl−1, uhl =u′/‖u′‖a. (4.4)

Denote

ν0 =(λhl−1)−1, u0=λhl−1 Thl
uhl−1/‖λhl−1 Thl

uhl−1‖a,

us=λhl−1u′/‖λhl−1 Thl
uhl−1‖a.

Then Step 3 of Algorithm 3.1 is equivalent to the following:

(ν0−Thl
)us=u0, uhl =us/‖us‖a.

Let u be the same as in (3.11). We have that

‖λhl−1 Thl
u−u‖a =‖λhl−1 Thl

u−λTu‖a

.λ‖(T−Thl
)u‖a+‖(λ−λhl−1)Thl

u‖a

.δhl
(λ)‖u‖a+|λhl−1−λ|‖u‖b

.δhl
(λ)+|λhl−1−λ|. (4.5)

Here a. b denotes a≤Cb for some constant C. By the boundedness of the operator Thl
,

we have

‖u0−u‖a≤2‖λhl−1 Thl
uhl−1−u‖a

≤2(‖λhl−1 Thl
u−u‖a+‖λhl−1 Thl

(u−uhl−1)‖a)

.‖λhl−1 Thl
u−u‖a+‖u−uhl−1‖b. (4.6)
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Next we shall verify the conditions of Lemma 3.2. The estimates (4.5), (4.6) and (2.6)
lead to

dist(u0,Mhl
(λ))≤‖u0−u‖a+dist

(
u,Mhl

(λ)
)

.δhl
(λ)+|λhl−1−λ|+‖u−uhl−1‖b

≤1/2 (4.7)

for H small enough. Noting that λ0 and λj,hl
are approximations of λ, it is easy to verify

that, when H is small enough,

|νk−ν0|=
|λhl−1−λ|
|λhl−1λ| ≤

d

4

and, for j= k−1,k,k+q, j 6=0,

|νj−νj,hl
|= |λj−λj,hl

|
|λjλj,hl

| ≤
d

4
.

Therefore the conditions of Lemma 3.2 hold and we have that

dist(uhl ,Mhl
(λ))≤ 4

d
max

k≤j≤k+q−1
|νj,hl
−ν0|dist(u0 ,Mhl

(λ)). (4.8)

Applying (2.5), we have for j= k,k+1,··· ,k+q−1

|νj,hl
−ν0|=

|λhl−1−λj,hl
|

|λhl−1 λj,hl
|

. |λhl−1−λ|+|λ−λj,hl
|

. |λhl−1−λ|+δ2
hl
(λ). (4.9)

Substituting (4.7) and (4.9) into (4.8), we have

dist(uhl ,Mhl
(λ)).

(
|λhl−1−λ|+δ2

hl
(λ)
)(

δhl
(λ)+|λhl−1−λ|+‖u−uhl−1‖

)
.

By the definition of u∗ in (4.1), we have ‖uhl−u∗‖a = dist(uhl ,Mhl
(λ)) and the assertion

can be derived using Theorem 3.4 and Condition 3.1.

Theorem 4.1 indicates that u∗ approximates uhl . Therefore the a posteriori estimate
for ‖uhl−u‖a can be derived using that of ‖u∗−u‖a. Define the residuals:

R̂κ(u
∗)=∇·σ(u∗)+

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

ρuj,hl
, (4.10)

R̂∂κ(u
∗)=

{
JF(nF ·σ(u∗)), F⊂∂κ∩EΩ,

0, F⊂∂κ∩ED ,
(4.11)



260 B. Gong et al. / Commun. Comput. Phys., 27 (2020), pp. 251-273

where, for an edge F of the element κ, nF denotes the unit outward normal of F, JF(φ)
denotes the jump of a given function φ across F along nF, EΩ and ED are the sets of
interior edges of Ω and boundary edges on ∂Ω, respectively. For κ∈πhl

, define the local
error indicator

η̂hl
(u∗,κ)=

{
d−1

κ,minh2
κ‖R̂κ(u

∗)‖2
0,κ+d−1

κ,minhκ‖R̂∂κ(u
∗)‖2

0,∂κ

}1/2
,

where dκ,min is the minimum eigenvalue of the matrix

D :=




λ+2µ λ 0

λ λ+2µ 0
0 0 µ




on the element κ.

The global error indicator is then given by

η̂hl
(u∗,Ω)=



 ∑

κ∈πhl

η̂2
hl
(u∗,κ)





1/2

. (4.12)

Denote

e(u)=u−u∗, e(u0
j )=u0

j −uj,hl
, (4.13)

where u0
j is defined as in (3.2).

Lemma 4.1. Let u and e(u) be defined as in (3.2) and (4.13), respectively. Then there hold

‖e(u)‖a≤C

(
η̂hl

(u∗,Ω)+
k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b

)
, (4.14)

η̂hl
(u∗,Ω)≤C

(
‖e(u)‖a+hl

k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b

)
. (4.15)

Proof. Choose v∈Uhl
as a test function. Subtraction of (2.3) from (2.2) gives

a(e(u0
j ),v)=b(λu0

j−λj,hl
uj,hl

,v), ∀v∈Uhl
,

from which and (3.2) it follows

a(e(u),v)=b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,v

)
, ∀v∈Uhl

.
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Let w=e(u)/‖e(u)‖a, then ‖e(u)‖a=a(e(u),w). Let wI∈Uhl
be the Clément interpolation

of w (see, e.g. [3, 6]). We deduce from the above equality that

‖e(u)‖a =a(e(u),w−wI)+b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,wI

)

=a(e(u),w−wI)−b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,w−wI−w

)
. (4.16)

Define the auxiliary residuals associated with the element κ:

R̂κ(uj,hl
)=∇·σ(uj,hl

)+λj,hl
ρuj,hl

,

R̂∂κ(uj,hl
)=

{
JF(nF ·σ(uj,hl

)), F⊂∂κ∩EΩ,

0, F⊂∂κ∩ED .

Integrating by parts (see Lemma 4 in [22]), we get

a(e(u0
j ),w−wI)−b(λu0

j−λj,hl
uj,hl

,w−wI)

= ∑
κ∈πhl

{
(R̂κ(uj,hl

),w−wI)κ−
1

2
〈R̂∂κ(uj,hl

),w−wI〉∂κ

}

for j= k,k+1,··· ,k+q−1, where 〈·,·〉∂κ denotes the L2 inner product on ∂κ. Hence

a(e(u),w−wI)−b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,w−wI

)

= ∑
κ∈πhl

{
(R̂κ(u

∗),w−wI)κ−
1

2
〈R̂∂κ(u

∗),w−wI〉∂κ

}
.

From Cauchy-Schwarz inequality, we obtain

a(e(u),w−wI)−b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,w−wI

)

≤C



 ∑

κ∈πhl

(
dκ,minh−2

κ ‖w−wI‖2
0,κ+dκ,minh−1

κ ‖w−wI‖2
0,∂κ

)




1/2

·



 ∑

κ∈πhl

(
d−1

κ,minh2
κ‖R̂κ(u

∗)‖2
0,κ+d−1

κ,minhκ‖R̂∂κ(u
∗)‖2

∂κ

)




1/2

. (4.17)

Using the Clément interpolation estimate we have

dκ,minh−2
κ ‖w−wI‖2

0,κ+dκ,minh−1
κ ‖w−wI‖2

0,∂κ≤C
(
dκ,min‖w‖2

0,κ+dκ,min|w|21,κ

)
.
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For ε̃(w)=(∂xw1,∂yw2,∂xw2+∂yw1)
⊤, note that there hold

dmin‖ε̃(w)‖2
0≤

∫

Ω
Dε̃(w)· ε̃(w)

and (see for example [3])

‖w‖2
1≤C‖ε̃(w)‖2

0.

Summing over all elements we get

∑
κ∈πhl

dκ,minh−2
κ ‖w−wI‖2

0,κ+dκ,minh−1
κ ‖w−wI‖2

0,∂κ

≤Cdmax‖w‖2
1≤Cdmax/dmin, (4.18)

where dmax = maxκ dκ,max and dmin =minκ dκ,min with dκ,max being the maximum eigen-
value of D on the element κ. Using this inequality and (4.17)-(4.18), we have

a(e(u),w−wI)−b

(
λu−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl
,w−wI

)
≤Cη̂hl

(u∗,Ω). (4.19)

Using (4.16) and (4.19), we have

‖e(u)‖a≤C


η̂hl

(u∗,Ω)+

∥∥∥∥∥
k+q−1

∑
j=k

a(uhl ,uj,hl
)(λu0

j −λj,hl
uj,hl

)

∥∥∥∥∥
b


.

This yields (4.14). As for the reliability of η̂hl
(u∗,Ω), referring (20) in [22], we can obtain

that

√
d−1

κ,minhκ‖R̂κ(u
∗)‖0,κ+

√
d−1

κ,min

√
hκ‖R̂∂κ(u

∗)‖0,∂κ

≤C



√

dκ,max

dκ,min
‖e(u)‖a,ωκ +

hωκ√
dκ,min

∥∥∥∥∥
k+q−1

∑
j=k

a(uhl ,uj,hl
)(λu0

j −λj,hl
uj,hl

)

∥∥∥∥∥
b,ωκ


,

where ωκ is the union of the elements sharing at least one face with κ. Summing over all
elements, we get

η̂hl
(u∗,Ω)≤C

√
dmax

dmin
‖e(u)‖a+hl

√
d−1

min

k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b.

The proof is complete.
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Now we are in a position to discuss the a posteriori estimate of ‖uhl−u‖a. We define
the local error indicator for uhl as follows: For κ∈πhl

,

Rκ(u
hl )=∇·σ(uhl )+λhl ρuhl ,

R∂κ(u
hl )=

{
JF(nF ·σ(uhl )), F⊂∂κ∩EΩ,

0, F⊂∂κ∩ED ,

ηhl
(uhl ,κ)=

{
d−1

κ,minh2
κ‖Rκ(u

hl )‖2
0,κ+d−1

κ,minhκ‖R∂κ(u
hl )‖2

0,∂κ

}1/2
.

Then the global error indicator is given by

ηhl
(uhl ,Ω)=



 ∑

κ∈πhl

η2
hl
(uhl ,κ)





1/2

. (4.20)

Theorem 4.2. Let u be defined by (3.2). Under the conditions of Theorem 3.4, there hold

‖u−uhl‖a≤C(ηhl
(uhl ,Ω)+δ3/tl

hl
+hr

l δhl
), (4.21)

Cηhl
(uhl ,Ω)≤‖u−uhl‖a+δ3/tl

hl
+hr+1

l δhl
, (4.22)

|λhl−λ|≤C(η2
hl
(uhl ,Ω)+δ6/tl

hl
+h2r

l δ2
hl
). (4.23)

Proof. By the triangle inequality,

‖u−uhl‖a≤‖u−u∗‖a+‖u∗−uhl‖a. (4.24)

Using (4.14), from (4.24), we get

‖u−uhl‖a≤C

(
η̂hl

(u∗,Ω)+
k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b

)
+‖u∗−uhl‖a

=C

(
ηhl

(uhl ,Ω)+
k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b

)
+R1+‖u∗−uhl‖a, (4.25)

where R1=C( η̂hl
(u∗,Ω)−ηhl

(uhl ,Ω)). By the triangle inequality,

|R1|≤C


 ∑

κ∈πhl

(
η̂hl

(u∗,κ)−ηhl
(uhl ,κ)

)2




1/2

. (4.26)
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Using again the triangle inequality, we obtain that

|η̂hl
(u∗,κ)−ηhl

(uhl ,κ)|

≤C
{

h2
κ‖R̂κ(u

∗)−Rκ(u
hl )‖2

0,κ+hκ‖R̂∂κ(u
∗)−R∂κ(u

hl )‖2
0,∂κ

}1/2

≤
{

h2
κ‖∇·σ(u∗−uhl )‖2

0,κ+h2
κ

∥∥∥λhl uhl−
k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl

∥∥∥
2

0,κ

+hκ ∑
F⊂∂κ

‖JF(nF ·σ(u∗−uhl ))‖2
0,∂κ

}1/2
,

which together with the inverse estimates and trace theorem yields

|η̂hl
(u∗,κ)−ηhl

(uhl ,κ)|

≤C

(
|u∗−uhl |1,κ+hκ

∥∥∥λhl uhl−
k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl

∥∥∥
0,κ

)
.

Since we have
∥∥∥∥∥λhl uhl−

k+q−1

∑
j=k

a(uhl ,uj,hl
)λj,hl

uj,hl

∥∥∥∥∥
0,κ

≤‖λhl (uhl−u∗)‖0,κ+

∥∥∥∥∥
k+q−1

∑
j=k

a(uhl ,uj,hl
)(λj,hl

−λhl )uj,hl

∥∥∥∥∥
0,κ

≤C

(
‖uhl−u∗‖0,κ+

k+q−1

∑
j=k

|λj,hl
−λhl |‖uj,hl

‖0,κ

)
,

(2.5) and (3.6) lead to

|η̂hl
(u∗,κ)−ηhl

(uhl ,κ)|≤C

(
‖u∗−uhl‖1,κ+

k+q−1

∑
j=k

hκδ2
hl
‖uj,hl

‖0,κ

)
. (4.27)

Substitution of the above formula into (4.26), from (2.5), (2.6) and (4.2) we obtain

|R1|≤C

(
‖u∗−uhl‖a+

k+q−1

∑
j=k

hlδ
2
hl
‖uj,hl

‖b

)
≤Cmax(δ3/tl

hl
,hlδ

2
hl
)

and

‖u∗−uhl‖a≤Cδ3/tl

hl
,

k+q−1

∑
j=k

‖λu0
j −λj,hl

uj,hl
‖b≤Chr

l δhl
. (4.28)
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Substituting the above two formulae into (4.25) yields (4.21). The combination of (3.4)
and (4.21) yields (4.22). From (4.15) we have

Cηhl
(uhl ,Ω)≤‖u−uhl‖a−C(η̂hl

(u∗,Ω)−ηhl
(uhl ,Ω))+‖u∗−uhl‖a

+
k+q−1

∑
j=k

hl‖λu0
j −λj,hl

uj,hl
‖b. (4.29)

The assertion (4.23) can be derived using the estimate of |R1| and (4.28).

Using the a posteriori error estimator defined above, i.e.,

ηhl
(uhl ,κ)={d−1

κ,minh2
κ‖Rκ(u

hl )‖2
0,κ+d−1

κ,minhκ‖R∂κ(u
hl )‖2

0,∂κ}1/2,

the marking strategy can be defined as

∑
κ∈π̂hl

ηhl
(uhl ,κ)>θ ∑

κ∈πhl

ηhl
(uhl ,κ), for some 0< θ<1.

The following is the adaptive algorithm.

Algorithm 4.1. Adaptive Algorithm.

1. Choose the parameter 0< θ<1 and the tolerance ε.

2. Solve (2.1) on πh0
to get the discrete solution (λh0 ,uh0).

3. Compute the error estimator ηhl
(uh0 ,κ) for κ∈πh0

. Let l←0.

4. While ηhl
(uhl ,πhl

)2
> ε

a. Mark the subset π̂hl
⊂πhl

by the marking strategy

∑
κ∈π̂hl

ηhl
(uhl ,κ)>θ ∑

κ∈πhl

ηhl
(uhl ,κ).

b. Refine π̂hl
to get the new mesh πhl+1

.

c. Solve (2.1) on πhl+1
to get the discrete solution (λhl+1 ,uhl+1).

d. Compute the error estimator ηhl
(uhl+1 ,κ) for κ∈πhl+1

.

e. l← l+1.

Combining the multigrid discretization Algorithm 3.1 with Algorithm 4.1, we end up
with the adaptive multigrid scheme as follows.

Algorithm 4.2. Adaptive Multigrid Scheme.

1. Choose the parameter 0< θ<1 and the integers M and l0.
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2. Solve (2.1) on πh0
to get the discrete solution (λh0 ,uh0). Set l←0.

3. For l=1,··· ,M

a. Compute the error estimator ηhl
(uhl ,κ) for κ∈πhl

.

b. Mark the subset π̂hl
⊂πhl

by the marking strategy

∑
κ∈π̂hl

ηhl
(uhl ,κ)>θ ∑

κ∈πhl

ηhl
(uhl ,κ).

c. Refine π̂hl
to get the new mesh πhl+1

.

d. Solve uhl+1∈Uhl+1
such that ‖uhl+1‖a =1 and

a(uhl+1 ,v)−λhl b(uhl+1 ,v)=b(uhl ,v), ∀v∈Uhl+1
.

e. Compute λhl+1 by the Rayleigh quotient

λhl+1 =
a(uhl+1 ,uhl+1)

b(uhl+1 ,uhl+1)
.

5 Numerical experiments

We present some numerical results for two elastic eigenvalue problems: (1) on the L-
shaped domain, and (2) with discontinuous Lamé parameters. For each problem, we
first compare the adaptive scheme Algorithm 4.1 and the classical finite element method
on uniformly refined meshes, which shows that the adaptive algorithm is more efficient
for low regularity eigenfunctions. Then we compare Algorithm 4.2 and Algorithm 4.1.

Example 5.1. Consider the elastic eigenvalue problem (2.1) on the L-shaped domain Ω=
[0,1]×[0,1]\[1/2,1]×[1/2,1] with density ρ≡ 1 and Lamé constants µ=λ≡ 1. We solve
this problem by Algorithm 4.1 and compare with the results on uniformly refined meshes.
The size of the initial mesh is h≈0.1. With the tolerance ε=0.001, Algorithm 4.1 ends up
with 18 iterations of refinement. For comparison, we refine the initial mesh uniformly 5
times.

In order to show the convergence order, we assume that the rate of convergence (with
respect to the degree of freedom) among the last two refinements, namely, l=17 and l=18
for Algorithm 4.1 and among l=4 and l=5 for the uniform refinements, has reached the
optimal. That is, we assume the errors of the last two iterations of adaptive refinement
decay with rate 1, and those of uniform refinements decay with order 2/3. Under this as-
sumption, we compute the limit of the eigenvalue as l goes to infinity using the computed
eigenvalues and the degrees of freedom of the last two refinements. More precisely, de-
note by λl the computed eigenvalue, by Nl the degrees of freedom, by r the optimal decay



B. Gong et al. / Commun. Comput. Phys., 27 (2020), pp. 251-273 267

6 7 8 9 10 11 12 13 14
ln(DoF)

-7

-6

-5

-4

-3

-2

-1

0

1

ln
(λ

nu
m

. -λ
re

f.
)

Figure 1: The difference between the first numerical eigenvalue and the reference value on the L-shaped region
computed by Algorithm 4.1 and uniformly refined meshes. The circles and crosses stand for the results by using
the adaptive scheme and uniformly refined meshes, respectively.

order, and by λ∗ the limit, and assume that the errors at (l−1)-th and l-th refinements
have exactly the same rate of decay. Set

λl−1−λ∗
λl−λ∗

=
N−r

l−1

N−r
l

,

which gives us the reference value λ∗

λ∗=λl+

(
N−r

l−1

N−r
l

−1

)−1

(λl−λl−1).

We show in Table 1 the smallest eigenvalue, degrees of freedom and convergence
orders of Algorithm 4.1 and of uniformly refined meshes. It is clear that the rate of con-
vergence with respect to the degrees of freedom is 1 for the adaptive algorithm and 2/3
for the uniform refinements. Note that these rates correspond to the O(h2) and O(h4/3),
respectively. In Fig. 1 we show the log-log plot of the errors against the degrees of free-
dom. It can be seen that the adaptive algorithm produces smaller error after the 5th
iteration. The result indicates that the adaptive refinement uses much less degrees of
freedom when similar accuracy is achieved. In Fig. 2 we show the initial mesh and the
adaptive mesh at l=7. We see that the mesh is denser near the corner at (1/2,1/2), where
the regularity of the first eigenfunction is low.
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Table 1: The first elastic eigenvalue on the L-shaped domain using Algorithm 4.1 and uniformly refined meshes.

l adaptive DoF order l uniform DoF order

2 55.4925 858 1.0177 1 55.1915 866 -

5 54.6566 3360 0.9233 2 54.6574 3618 0.7323

8 54.4506 12032 0.9189 3 54.4759 14786 0.7029

12 54.3845 62490 0.8526 4 54.4103 59778 0.6772

15 54.3726 203194 1.0182 5 54.3851 240386 0.6667

ref. 54.3676 ref. 54.3686
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Figure 2: The meshes of Example 5.1, where the left is the initial mesh, and the right is the adaptive mesh at
l=7.

Example 5.2. Using the same parameters as Example 5.1, we solve the eigenvalue prob-
lem using Algorithm 4.1 and Algorithm 4.2. The eigenvalues, degrees of freedom and
CPU time are shown in Table 2. The tolerance in Algorithm 4.1 is ε=0.005 and the total
number of iterations in Algorithm 4.2 is 14.

We can see that the eigenvalues computed by Algorithm 4.1 and Algorithm 4.2 are
very close to each other. As for the CPU time, Algorithm 4.2 saves about one fifth of
Algorithm 4.1 indicating that the adaptive multigrid method is more efficient (see Fig. 3).

Table 2: The CPU time of elastic eigenvalue problem on L-shaped domain using Algorithm 4.1 and Algorithm 4.2.

l Alg. 4.1 DoF CPU time Alg. 4.2 DoF CPU time

2 55.4925 858 0.0887 55.4925 858 0.0700

5 54.6566 3360 0.2646 54.6566 3360 0.2336

8 54.4506 12032 0.9228 54.4506 12032 0.8044

11 54.3914 41696 3.3549 54.3914 41696 2.9364

14 54.3750 137938 11.9087 54.3750 137938 9.8909
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Figure 3: The CPU time on the L-shaped domain using Algorithm 4.1 and Algorithm 4.2. The circles and
crosses stand for the results by using Algorithm 4.2 and Algorithm 4.1, respectively.

Example 5.3. The discontinuity of the Lamé parameters also leads to low regularity
eigenfunctions. We consider another elastic eigenvalue problem with Lamé parameters
being piecewise constant. Specifically, let the domain be the unit square Ω=[0,1]×[0,1],
ρ≡1, λ≡0, and µ=50 on the top right corner Ω1=(1/2,1]×(1/2,1], µ=1 on Ω\Ω1.

In Table 3 we show the computed eigenvalues, reference values, degrees of freedom,
and convergence orders of Algorithm 4.1 and uniformly refined meshes. Here the size of
initial mesh is h≈ 0.1, and the tolerance ε= 0.005. For Algorithm 4.1, the total iterations
of refinements is l =23, and the reference eigenvalues are computed in the same way as
in Example 5.1. On the other hand, 5 times of uniform refinements are carried out. Due
to the lack of knowledge of the regularity according to the first eigenfunction, we set the
reference value for this method as the one for Algorithm 4.1. The log-log plot of the error

Table 3: The first elastic eigenvalue for discontinuous Lamé parameters using Algorithm 4.1 and uniformly
refined mesh.

l Algo. 1 DoF order l uniform DoF order

3 47.1501 1206 0.9611 1 47.0355 1218 -

7 46.5728 4648 0.8333 2 46.5948 5026 0.7844

12 46.4249 21114 0.9126 3 46.4525 20418 0.7674

17 46.3904 92660 0.9204 4 46.4060 82306 0.7533

21 46.3825 295460 0.9588 5 46.3879 330498 0.7509

ref. 46.3788 ref. 46.3788
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Figure 4: The difference between the first numerical eigenvalue and the reference value of the elastic eigenvalue
problem with discontinuous Lamé parameters computed by Algorithm 4.1 and uniformly refined meshes. The
circles and crosses stand for the results by using adaptively and uniformly refined meshes respectively.
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Figure 5: The meshes of Example 5.3, where the left is the initial mesh, and the right is the adaptive mesh at
l=12.

against the degrees of freedom is shown in Fig. 4. The adaptive mesh at l=12 is shown
in Fig. 5.

It can be seen that the convergence order of Algorithm 4.1 is close to the optimal order
1. In contrast, the uniform refinements leads to a low convergence order of approximately
0.7. In addition, from Fig. 4 we notice that the adaptive algorithm becomes more accurate
after the 5th refinement. Fig. 5 shows that the adaptive method correctly catches the low
regularity of the first eigenfunction across the line segments where the Lamé constants
have a jump.
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Example 5.4. We solve the same problem as in Example 5.3 and compare the numerical
results of Algorithm 4.1 and Algorithm 4.2. We set ε= 0.01 in Algorithm 4.1. We show
the computed eigenvalues, degrees of freedom and CPU time in Table 4 and Fig. 6. Sim-
ilar results as Example 5.2 are observed. Algorithm 4.2 uses less computation time than
Algorithm 4.1, which again confirms that the multigrid scheme is more efficient.

Table 4: The CPU time with discontinuous Lamé parameters using Algorithm 4.1 and Algorithm 4.2.

l Algorithm 1 DoF CPU time Algorithm 2 DoF CPU time

5 46.7261 2432 0.2038 46.7261 2432 0.1699

9 46.4829 8732 0.6621 46.4829 8732 0.5658

13 46.4140 28910 2.2211 46.4140 28910 1.8812

17 46.3904 92660 7.4117 46.3904 92660 6.1783

21 46.3825 295460 25.3496 46.3825 295460 20.5734
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Figure 6: The CPU time for discontinuous Lamé parameters using Algorithm 4.1 and Algorithm 4.2. The circles
and crosses stand for the results by using Algorithm 4.2 and Algorithm 4.1, respectively.
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