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Abstract. The peridynamic (PD) theory is a reformulation of the classical theory of
continuum solid mechanics and is particularly suitable for the representation of dis-
continuities in displacement fields and the description of cracks and their evolution
in materials, which the classical partial differential equation (PDE) models tend to fail
to apply. However, the PD models yield numerical methods with dense stiffness ma-
trices which requires O(N2) memory and O(N3) computational complexity where N
is the number of spatial unknowns. Consequently, the PD models are deemed to be
computationally very expensive especially for problems in multiple space dimensions.

State-based PD models, which were developed lately, can be treated as a great im-
provement of the previous bond-based PD models. The state-based PD models have
more complicated structures than the bond-based PD models. In this paper we de-
velop a fast collocation method for a state-based linear PD model by exploring the
structure of the stiffness matrix of the numerical method. The method has an O(N)
memory requirement and computational complexity of O(N logN) per Krylov sub-
space iteration. Numerical methods are presented to show the utility of the method.
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1 Introduction

The classical theory of continuum solid mechanics assumes that all internal forces act lo-
cally and yields mathematical models that are expressed in terms of partial differential
equations (PDEs). While they have been very successful for problems with smooth dis-
placement fields, these models tend to have difficulties to describe problems with evolv-
ing discontinuities, due to their differentiability assumption on displacement fields. The
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peridynamic (PD) theory [17] is a reformulation of the classical theory of continuum solid
mechanics, and yields nonlocal mathematical formulations that are based on long-range
interactions. Constitutive models in the PD theory depend on finite deformation vec-
tors, instead of deformation gradients in classical constitutive models. Consequently, PD
models are particularly suitable for the representation of discontinuities in displacement
fields and the description of cracks and their evolution in materials. They have been suc-
cessfully applied to applications such as failure and damage in composite laminates [13],
crack propagation and branching [10], crack nucleation [20], phase transformations in
solids [4], impact damage [16, 18], polycrystal fracture [9], crystal plasticity [21], damage
in concrete [8], and geomaterial fragmentation [11].

Because the PD models provide better modeling capability than classical integer-
order PDE models do especially for problems with discontinuous displacement fields,
different numerical methods have been developed for these models with different com-
putational expenses, memory requirements, and implementation effort as well as ac-
curacy, convergence, and stability [6]. For instance, collocation methods and meshfree
methods apply directly to the strong form of the PD models and are relatively simple to
implement [14, 15, 18], while Galerkin finite element methods apply to the weak form of
the PD models and enjoy high convergence rates [2,13,23,24]. It is worth mentioning that
in [24] the authors established a framework to develop robust asymptotically compatible
schemes for nonlocal models and their local limits.

However, the PD models present numerical difficulties that were not encountered in
classical integer-order PDE models. Recall that the numerical methods for integer-order
PDE models generate sparse stiffness matrices which have an optimal-order memory
requirement of O(N) where N is the number of spatial unknowns. The matrix-vector
multiplication has a computational complexity of O(N). Hence, the computational com-
plexity of any Krylov subspace iterative solver depends only on the number of iterations.
In contrast, the numerical methods for the PD models yield dense stiffness matrices. Con-
sequently, the numerical methods for PD models have O(N2) memory requirement. Di-
rect solvers have been widely used in the numerical simulation of PD models, which
have O(N3) computational complexity to invert the coefficient matrices. On the other
hand, the matrix-vector multiplication by the stiffness matrices have O(N2) computa-
tional complexity. Furthermore, the evaluation and assembly of the stiffness matrices
require the evaluation of O(N2) entries, which can be very expensive and often consti-
tute a very large portion of simulation times! In summary, the significantly increased
computational complexity and memory requirement of the PD models over those for the
classical integer-order PDE models render the numerical simulation of the PD models
computationally very expensive, especially for problems in multiple space dimensions.

We previously developed fast and accurate numerical methods for bond-based linear
PD models in one and two space dimensions. These fast methods reduce the memory
requirement from O(N2) to the optimal-order memory requirement of O(N) and com-
putational complexity from O(N2) to O(N logN) per Krylov subspace iteration, which
were achieved without resorting to any lossy compression, but rather by exploring the
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structure of the stiffness matrices of the numerical methods [22, 25–28].

However, it was later realized that the bond-based PD models may sometimes over-
simplify the problem and so limit their applications. Subsequently, state-based PD mod-
els were developed to improve the original bond-based PD models [7,12,19]. Mathemat-
ically, state-based PD models have more complicated structures and consequently, the
computational complexity of numerical discretizations of the state-based PD models is
further increased and the previous developments of the fast numerical methods for the
bond-based PD models fail to work.

In this paper we develop a fast collocation method for a state-based linear PD model
in one space dimension by exploring the structure of the stiffness matrix of the numer-
ical method. The rest of the paper is organized as follows. In Section 2 we discuss the
state-based peridynamic model to be considered in this paper. In Section 3 we carry out
a collocation discretization of the state-based peridynamic model. In Section 4 we an-
alyze the structure of the stiffness matrix of the collocation scheme and develop a fast
conjugate gradient algorithm with efficient storage. In Section 5 we carry out numerical
experiments to investigate the performance of the fast numerical method which shows
the utility of the method. Finally, we summarize the conclusion and future extension of
this work in Section 6.

2 A state-based linear peridynamic model

In this section we go over a state-based linear PD model in one space dimension, which
is to be considered in this paper. We follow the presentations in [7, 12, 14, 15, 19] in the
exposition of the model.

2.1 Bond-based and state-based PD models

The original bond-based PD formulation replaces the divergence of the stress field term
in the classical conservation of momentum equation with a weakly singular integral op-
erator. The integral operators relates pairwise forces or bonds between material particles
in a continuum body possibly with discontinuous displacement fields. A bond-based PD
equation of motion is of the form

ρutt=
∫

H
f
(

u(x′,t)−u(x,t),x′−x
)

dx′+b(x,t), (2.1)

where ρ is the mass density, u is the displacement field, x is the position vector in the
reference configuration, x′ is the position vector of some neighboring material location
with respect to x, and b is the body force density field. H is the horizon which is typically
a ball of radius δ with center x.

It was subsequently discovered that bond-based PD models may sometimes oversim-
plify the problem by assuming that any pair of particles interacts with each other only
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through a central force potential that is independent of all other local conditions. Conse-
quently, for an isotropic linear material there will always be an effective Poisson’s ratio
of 1/4.

The subsequently developed state-based PD models have improved upon the original
bond-based PD models through the use of peridynamic force-vector states. These force-
vector states handle the constitutive behavior of the material allowing neighboring mate-
rial points to interact with each other in any fashion desired, not just pairwise [7, 12, 19].
The resulting state-based PD equation of motion can be expressed as

ρutt=
∫

H

{

T[x,t]〈x′−x〉−T[x′ ,t]〈x−x′〉
}

dx′+b(x,t), (2.2)

where all the definitions for (2.1) hold, and T denotes the force state field, which maps
vectors to vectors but is not necessarily linear or continuous. The angle brackets 〈·〉 in-
dicate the vector on which the state operates. T maps a deformation-vector state into a
force-vector state for each material point within the horizon H. T[x,t]〈¸〉 denotes the force
state at x and t, mapping the bond ξ=x′−x to force per unit volume squared.

2.2 A one-dimensional state-based linear PD model

In this paper we consider the one-dimensional state-based linear PD model. As the goal
of this paper is to develop a fast numerical method through the study of the structure of
its stiffness matrix, we consider the following PD model

ρutt−
1

δ2

∫ x+δ

x−δ

{

T[x′,t]〈x−x′〉−T[x,t]〈x′−x〉
}

dx′= f (x,t), x∈ (a,b). (2.3)

A linearized linear PD solid constitutive model with force state is of the form

T[x,t]〈x′−x〉 :=α ω(|x′−x|)(x′−x)θlin(x,t)

+
β

2
ω(|x′−x|)

(

u(x′,t)−u(x,t)
)

, (2.4)

where α=α(G,K,m) and β= β(G,m) are constants that depend on the shear modulus G,
the bulk modulus K, and the weighted volume m which is defined by

m :=
∫ δ

−δ
ω(|ζ|)|ζ|2dζ, (2.5)

with ω being an influence function. θlin(x,t) is the linearized nonlocal dilatation which is
defined by

θlin(x,t) :=
1

m

∫ x+δ

x−δ
ω(|x′−x|)(x′−x)(u(x′,t)−u(x,t))dx′, (2.6)

for x∈ [a−δ,b+δ].
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We use the expression (2.4) and its symmetric analogue with the order of x and x′

interchanged to obtain

T[x′,t]〈x−x′〉−T[x,t]〈x′−x〉

=−α ω(|x′−x|)(x′−x)
(

θlin(x,t)+θlin(x′,t)
)

−βω(|x′−x|)
(

u(x′,t)−u(x,t)
)

. (2.7)

We substitute this expression for the integrand in (2.3) to rewrite the one-dimensional
state-based model (2.3) as follows























































ρutt−
1

δ2

∫ x+δ

x−δ

[

α ω(|x′−x|)(x′−x)
(

θlin(x,t)+θlin(x′,t)
)

+βω(|x′−x|)
(

u(x′,t)−u(x,t)
)

]

dx′= f (x,t), x∈ [a,b],

θlin(x,t)=
1

m

∫ x+δ

x−δ
ω(|x′−x|)(x′−x)(u(x′,t)−u(x,t))dx′ , x∈ [a−δ,b+δ],

u(x,0)=u0(x), ut(x,0)=u1(x), x∈ [a,b],

u(x,t)= g(x,t), x∈ [a−2δ,a]∪[b,b+2δ],
(2.8)

where g is the prescribed nonlocal Dirichlet boundary data on the nonlocal boundary
[a−2δ,a]∪[b,b+2δ].

3 A collocation discretization of the state-based linear PD model

We previously developed fast Galerkin and collocation methods that are discretized on
uniform or gridded meshes for the PD models in one space dimension by directly prov-
ing that the stiffness matrix of the numerical schemes are of Toeplitz or Toeplitz-like
structures [22, 26]. We proved that the stiffness matrix of the collocation method of the
two-dimensional bond-based linear PD model is of block-Toeplitz-Toeplitz-block type by
exploring the tensor product and translation invariance property of the PD model [28].
Consequently, we develop lossless fast numerical methods, without resorting to any lossy
compression, but rather by utilize the matrix structures of these fast methods. Numerical
experiments show the strength of these fast methods.

However, the integral operator in the state-based PD model (2.8) involves an inter-
nal integral operator θlin. Consequently, the computational complexity of numerical dis-
cretizations of the PD model (2.8) is further increased and the previous developments
of the fast numerical methods for the bond-based PD model fail to work. To simplify
our analysis and focus on the key points in developing a fast method, we consider the
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following static state-state PD model instead of (2.8) as







































−
∫ x+δ

x−δ

[

α ω(|x′−x|)(x′−x)θlin(x′)

+βω(|x′−x|)
(

u(x′)−u(x)
)

]

dx′= f (x), x∈ [a,b],

θlin(x)=
1

m

∫ x+δ

x−δ
ω(|x′−x|)(x′−x)u(x′)dx′, x∈ [a−δ,b+δ],

u(x)= g(x), x∈ [a−2δ,a]∪[b,b+2δ].

(3.1)

Here we have used the relations

∫ x+δ

x−δ
ω(|x′−x|)(x′−x)θlin(x)dx′≡0,

∫ x+δ

x−δ
ω(|x′−x|)(x′−x)u(x)dx′≡0.

(3.2)

Let h :=(b−a)/(N+1) be the mesh size for some positive integer N and

l :=

⌈

δ

h

⌉

, (3.3)

where ⌈·⌉ is the ceiling of δ/h. Then we define an equidistant spatial partition over the
interval [a−2δ,b+2δ]

xi := a+ih, i=−2l,−l+1,··· ,N+2l+1. (3.4)

We note that the nodes {xi}
N
i=1 are the interior nodes where we need to seek the numerical

approximations ui to u(xi) for i=1,2,··· ,N. On the other hand, the nodes {xi}
0
i=−2l and

{xi}
N+2l+1
i=N+1 are the boundary nodes on [a−2δ,a]∪[b,b+2δ] where we enforce ui=g(xi) for

i=−2l,−2l+1,··· ,0 or i=N+1,··· ,N+2l+1.
Let ψ be the standard hat function that is defined by

ψ(ζ)=

{

1−|ζ|, ζ∈ [−1,1],

0, elsewhere.
(3.5)

Let {φi}
N+2l+1
i=−2l be the set of hat functions defined by

φi(x)=ψ
(
∣

∣

∣

x−xi

h

∣

∣

∣

)

. (3.6)

Then the true solution u can be approximated by the trial function uh that is expressed
in the form of

uh(x)=
N

∑
j=1

ujφj(x)+

(

0

∑
j=−2l

+
N+2l+1

∑
j=N+1

)

g(xj)φj(x). (3.7)
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If we replace u by uh in the second equation of (3.1) and enforce the resulting equation
on the collocation points {xi}

N+l
i=−l+1 to obtain the following set of equations

θi := θlin(xi)

=
1

m

∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)

(

N

∑
j=1

ujφj(x′)+

(

0

∑
j=−2l

+
N+2l+1

∑
j=N+1

)

g(xj)φj(x′)

)

dx′

=
1

m

N

∑
j=1

uj

∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′

+
1

m

(

0

∑
j=−2l

+
N+2l+1

∑
j=N+1

)

g(xj)
∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′. (3.8)

Let u := [u1,··· ,uN ]
T, Θ := [θ−l+1,··· ,θN+l]

T and GN+2l := [G−l+1,··· ,GN+l]
T

be N-dimensional and (N+2l)-dimensional vectors, respectively, and AN+2l,N =
[ai,j]−l+1≤i≤N+l,1≤j≤N be an (N+2l)-by-N matrix where Gi and ai,j are defined by

ai,j =
∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′,

Gi =

(

0

∑
j=−2l

+
N+l+1

∑
j=N+1

)

g(xj)
∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′,

−l+1≤ i≤N+l; 1≤ j≤N.

(3.9)

Then the collocation scheme (3.8) can be written into a matrix form

1

m
AN+2l,Nu+

1

m
GN+2l =Θ. (3.10)

Next we turn to the first equation in the PD model (3.1). Let θlin
h be a piecewise linear

approximation of θlin defined by

θlin
h (x) :=

N+l

∑
j=−l+1

θjφj(x). (3.11)

We then replace θlin(x) by θlin
h (x) and u(x) by uh(x) in the first equation in the PD model

(3.1), and enforce the resulting equation at the collocation points {xi}
N
i=1 to arrive at the

following set of equations for 1≤ i≤N

−
∫ xi+δ

xi−δ

[

αω(|x′−xi|)(x′−xi)
N+l

∑
j=−l+1

θjφj(x′)

+βω(|x′−xi|)

(

N

∑
j=1

ujφj(x′) +

(

0

∑
j=−2l

+
N+2l+1

∑
j=N+1

)

g(xj)φj(x′)−ui

)]

dx′



N. Du, X. Guo and H. Wang / Commun. Comput. Phys., 27 (2020), pp. 274-291 281

=−α
N+l

∑
j=−l+1

θj

[

∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′

]

+β
N

∑
j=1

uj

[

∫ xi+δ

xi−δ
ω(|x′−xi|)

(

δi,j−φj(x′)
)

dx′
]

−β

(

0

∑
j=−2l

+
N+2l+1

∑
j=N+1

)

g(xj)
∫ xi+δ

xi−δ
ω(|x′−xi|)φj(x′)dx′

= fi := f (xi). (3.12)

Let AN,N+2l=[ai,j]1≤i≤N,−l+1≤j≤N+l be an N-by-(N+2l) matrix, in which all the entries
ai,j are still defined by (3.9) with 1 ≤ i ≤ N and −l+1 ≤ j ≤ N+l. Furthermore, we let

f :=[ f1,··· , fN ]
T, ĜN :=[Ĝ1,··· ,ĜN ]

T be two N-dimensional vectors, B=[bi,j] be an N-by-N

matrix, where Ĝi and bi,j are defined by

Ĝi=

(

0

∑
j=−2l

+
N+l+1

∑
j=N+1

)

g(xj)
∫ xi+δ

xi−δ
ω(|x′−xi|)φj(x′)dx′,

bi,j=
∫ xi+δ

xi−δ
ω(|x′−xi|)

(

δi,j−φj(x′)
)

dx′, 1≤ i, j≤N. (3.13)

We can express the set of equations in (3.12) in the following matrix form

−αAN,N+2lΘ+βBu−βĜN = f. (3.14)

We insert (3.10) into (3.14) to obtain the following linear system for u

Au= f+βĜN+
α

m
AN,N+2lGN+2l, (3.15)

where

A :=βB−
α

m
AN,N+2lAN+2l,N. (3.16)

It is clear that the linear system (3.15) has a full stiffness matrix, which require O(N2) of
storage and O(N3) of computations to invert. To develop a fast numerical method with
efficient storage we will analyze the structure of the stiffness matrix A in the next section.

4 A fast Krylov subspace method

In this section we develop a fast Krylov subspace method for the linear system (3.15).
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4.1 Structure of the stiffness matrix A

The main result of this subsection is the following theorem

Theorem 4.1. The stiffness matrix A in (3.16) can be expressed as

A :=βB+
α

m

(

AN+2l,N

)T
AN+2l,N. (4.1)

Here the matrix B is a symmetric and positive-definite, irreducible and diagonally dominant,
banded Toeplitz matrix with half band-width l+1, the matrix AN+2l,N is a banded Toeplitz matrix
with half band-width l+1, and so A is a symmetric and positive-definite matrix.

We will prove the theorem by first proving several lemmas. To do so, we begin by
introducing the following expanded matrix

AN+2l,N+2l :=[ai,j]−l+1≤i,j≤N+l, (4.2)

with ai,j being defined in (3.9) for −l+1≤ i, j≤N+l.

Lemma 4.1. The matrices AN+2l,N and AN,N+2l are the submatrices of the matrix AN+2l,N+2l

with the following embedding

AN+2l,N+2l =
[

A
(L)
N+2l,l,AN+2l,N,A

(R)
N+2l,l

]

=









A
(T)
l,N+2l

AN,N+2l

A
(B)
l,N+2l









, (4.3)

where the submatrices A
(L)
N+2l,l, A

(R)
N+2l,l, A

(T)
l,N+2l and A

(B)
l,N+2l are defined by

A
(L)
N+2l,l :=[ai,j]−l+1≤i≤N+l,−l+1≤j≤0,

A
(R)
N+2l,l :=[ai,j]−l+1≤i≤N+l,N+1≤j≤N+l,

A
(T)
l,N+2l :=[ai,j]−l+1≤i≤0,−l+1≤j≤N+l,

A
(B)
l,N+2l :=[ai,j]N+1≤i≤N+l,−l+1≤j≤N+l.

(4.4)

In particular, the matrix product AN,N+2lAN+2l,N is a submatrix of
(

AN+2l,N+2l

)2
.

Proof. (4.3) can be verified directly. In addition, we get

(

AN+2l,N+2l

)2
=









A
(T)
l,N+2l

AN,N+2l

A
(B)
l,N+2l









[

A
(L)
N+2l,l,AN+2l,N,A

(R)
N+2l,l

]











A
(T)
l,N+2lA

(L)
N+2l,l A

(T)
l,N+2lAN+2l,N A

(T)
l,N+2lA

(R)
N+2l,l

AN,N+2lA
(L)
N+2l,l AN,N+2lAN+2l,N AN,N+2lA

(R)
N+2l,l

A
(B)
l,N+2lA

(L)
N+2l,l A

(B)
l,N+2lAN+2l,N A

(B)
l,N+2lA

(R)
N+2l,l











, (4.5)
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where the matrix block in the center is the matrix product of AN,N+2l and AN+2l,N.

Lemma 4.2. The matrix AN+2l,N+2l is a skew symmetric, banded Toeplitz matrix with half band-
width l+1.

Proof. We prove the lemma in three steps.

1. We prove that ai,j = ai′ ,j′ for any −l+1≤ i, j,i′ , j′≤N+l satisfying i′−i= j′− j. In this
case, we have xi′−xi = xj′−xj. Then we let ξ = x′−xi and conclude from (3.6) and
(3.9) that

ai,j =
∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φj(x′)dx′

=
∫ δ

−δ
ω(|ξ|) ξ φj(xi+ξ)dξ

=
∫ δ

−δ
ω(|ξ|) ξ ψ

(

1−
∣

∣

∣

xi+ξ−xj

h

∣

∣

∣

)

dξ

=
∫ δ

−δ
ω(|ξ|) ξ ψ

(

1−
∣

∣

∣

xi′+ξ−xj′

h

∣

∣

∣

)

dξ

=
∫ δ

−δ
ω(|ξ|) ξ φj′(xi′+ξ)dξ= ai′ ,j′ . (4.6)

We conclude that the matrix AN+2l,N+2l is a Toeplitz matrix.

2. We prove that ai,j=0 for |i− j|> l. In fact, by (3.9) and the fact that the support of φj

is (xj−h,xj+h), we clearly have ai,j=0 if |i− j|> l. Therefore, the matrix AN+2l,N+2l

is a band matrix with half band-width l+1.

3. We prove that ai,i+k =−ai,i−k, and then ai,j =−aj,i. As a matter of fact, by Step 2, if
k> l, we have ai,i+k =−ai,i−k =0. If k≤ l, we let ξ= x′−xi and η=−ξ in (3.9) to get

ai,i+k =
∫ xi+δ

xi−δ
ω(|x′−xi|)(x′−xi)φi+k(x′)dx′

=
∫ δ

−δ
ω(|ξ|) ξ φi+k(xi+ξ)dξ

=
∫ δ

−δ
ω(|ξ|) ξ ψ

(

1−
∣

∣

∣

ξ

h
−k
∣

∣

∣

)

dξ

=−
∫ δ

−δ
ω(|η|) η ψ

(

1−
∣

∣

∣

η

h
+k
∣

∣

∣

)

dη

=−
∫ δ

−δ
ω(|η|) η φi−k(xi+η)dη=−ai,i−k . (4.7)

Without loss of generality, we let j= i+k. As the matrix AN+2l,N+2l is Toeplitz by
Step 1, we have

ai,j = ai,i+k =−ai,i−k =−ai+k,i =−aj,i, (4.8)

which shows that the matrix AN+2l,N+2l is skew symmetric.
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The proof is completed.

We conclude from the skew symmetric property of the matrix AN+2l,N+2l that

AN,N+2l =−AT
N+2l,N, (4.9)

thus we insert this equation into (3.16) to obtain (4.1).

It remains to prove the properties of B, which will be carried out in the following
lemma.

Lemma 4.3. The matrix B is a symmetric and positive-definite, irreducible and diagonally domi-
nant, banded Toeplitz matrix with half band-width l+1.

Proof. We can prove that the matrix B is a symmetric and positive-definite, banded
Toeplitz matrix with half band-width l+1 as we did in Lemma 4.2. It remains to show
that B is irreducible weak diagonal dominant. From (3.13) we have

bi,i=
∫ xi+δ

xi−δ
ω(|x′−xi|)

(

1−φi(x′)
)

dx′,

bi,j=−
∫ xi+δ

xi−δ
ω(|x′−xi|)φj(x′)dx′, j 6= i.

(4.10)

It is clear that bi,i>0 and bi,j ≤0 for i 6= j, so that

bi,i−
N

∑
j=1,j 6=i

|bi,j|=bi,i+
N

∑
j=1,j 6=i

bi,j

=
∫ xi+δ

xi−δ
ω(|x′−xi|)

(

1−φi(x′)
)

dx′

−
N

∑
j=1,j 6=i

∫ xi+δ

xi−δ
ω(|x′−xi|)φj(x′)dx′

=
∫ xi+δ

xi−δ
ω(|x′−xi|)dx′−

N

∑
j=1

∫ xi+δ

xi−δ
ω(|x′−xi|)φj(x′)dx′

=
∫ xi+δ

xi−δ
ω(|x′−xi|)

(

1−
N

∑
j=1

φj(x′)
)

dx′. (4.11)

Note that the set of all the hat functions form a partition of unity. In particular, we have

∑
|j−i|≤l

φj(x)=1, x∈ [x1,xN ],

∑
|j−i|≤l

φj(x)<1, x∈ [x0,x1]
⋃

[xN ,xN+1].
(4.12)
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We combine (4.11) and (4.12) to get

bi,i−
N

∑
j=1,j 6=i

|bi,j|

{

>0, 1≤ i≤ l or N−l≤ i≤N,

=0, l< i<N−l.
(4.13)

We conclude from (4.10) that bi,i+1 is nonzero for i=1,2,··· ,N−1. As B is symmetric, we
conclude that B is irreducible.

We combine Lemmas 4.1, 4.2 and 4.3 to finish the proof of the theorem.

4.2 Efficient storage and fast matrix-vector multiplication

The main result of this subsection is the following theorem

Theorem 4.2. The stiffness matrix A can be stored in O(N) memories. Furthermore, For any
v∈R

N , the matrix-vector multiplication Av can be carried out in O(N logN) computations.

Proof. By the decomposition (4.1) in Theorem 4.1, to store A we need only to store the
matrices B and AN+2l,N which are banded Toeplitz matrices with half bandwidth l+1
again by Theorem 4.1. Hence, we need only to store ak := ai,i+k and bk := bi,i+k for k =
0,1,··· ,l, as B is a symmetric Toeplitz matrix with half bandwidth l+1 and AN+2l,N+2l is a
skew-symmetric Toeplitz matrix with half bandwidth l+1 while AN+2l,N is a submatrix of
AN+2l,N+2l. Hence, we need to store 2(l+1)+3 (for α, β and m) =2l+5=O(N) memories
asymptotically.

We now turn to the computational complexity of Av. By the decomposition (4.1) in

Theorem 4.1, it suffices to show that both Bv and
(

AN+2l,N

)T
AN+2l,Nv can be performed

in O(N logN) computations.
We begin by proving the former. Note that the Toeplitz matrix B can be embedded

into a 2N×2N circulant matrix C [1]

C=

[

B B̃
B̃ B

]

, (4.14)

where B̃ is an auxiliary matrix. It is known that the circulant matrix C can be decomposed
in terms of discrete Fourier transform [1, 3]

C=F−1
2N diag(F2Nc) F2N , (4.15)

where c is the first column vector of C and F2N is the 2N×2N discrete Fourier transform
matrix. It is well known that the matrix-vector multiplication F2Nv2N for any v2N ∈R

2N

can be carried out in O(2N log(2N))=O(N log N) operations via fast Fourier transform
(FFT). (4.15) shows that Cv2N can be evaluated in O(N logN) operations.

On the other hand, for any v∈R
N , we define v2N :=

[

vT,0T
]T

∈R
2N to get

Cv2N =

[

B B̃
B̃ B

][

v
0

]

=

[

Bv
B̃v

]

. (4.16)
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Bu can be obtained by collecting the top half vector of Cv2N and so can be evaluated in
O(N logN) computations.

We are now in a position to consider an efficient evaluation of AT
N+2l,NAN+2l,Nv,

which we can accomplish in the following steps:

1. Expand the vector v∈R
N into a vector vN+2l ∈R

N+2l

vN+2l :=





0
−v
0



, (4.17)

where each 0 is an l-dimensional zero vector.

2. By (4.5) and (4.9) we get

(

AN+2l,N+2l

)2
vN+2l

=











A
(T)
l,N+2lA

(L)
N+2l,l A

(T)
l,N+2lAN+2l,N A

(T)
l,N+2lA

(R)
N+2l,l

AN,N+2lA
(L)
N+2l,l AN,N+2lAN+2l,N AN,N+2lA

(R)
N+2l,l

A
(B)
l,N+2lA

(L)
N+2l,l A

(B)
l,N+2lAN+2l,N A

(B)
l,N+2lA

(R)
N+2l,l















0
−v
0





=











−A
(T)
l,N+2lAN+2l,Nv

−AN,N+2lAN+2l,Nv

−A
(B)
l,N+2lAN+2l,Nv











=











−A
(T)
l,N+2lAN+2l,Nv

AT
N+2l,NAN+2l,Nv

−A
(B)
l,N+2lAN+2l,Nv











. (4.18)

3. In other words, to compute AT
N+2l,NAN+2l,Nv efficiently, we need only to compute

(

AN+2l,N+2l

)2
vN+2l. As AN+2l,N+2l is a banded Toeplitz matrix, we can calculate

AN+2l,N+2lvN+2l in O((N+2l)log(N+2l))=O(N log N) operations via FFT as we
did for Bv.

4. Then we compute
(

AN+2l,N+2l

)2
vN+2l = AN+2l,N+2l

(

AN+2l,N+2lvN+2l

)

in
O(N logN) operations via FFT.

5. Remove the first and last l entries of the vector
(

AN+2l,N+2l

)2
vN+2l to obtain the

vector AT
N+2l,NAN+2l,Nv.

We thus finish the proof of the theorem.

5 Numerical experiments

We conduct several numerical experiments in this Section to study the performance of the
fast conjugate gradient (FCG) algorithm based on the fast matrix-vector multiplication
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developed in Theorem 4.2. The Gaussian elimination (Gauss) method (3.15) is adopted
as a comparison with our fast collocation scheme. For the FCG solver, we set the stopping
criterion

∥

∥r(k)
∥

∥

2

‖r(0)
∥

∥

2

≤10−8. (5.1)

These methods were implemented using Intel Visual Fortran 2013 on a ThinkPad T440p
Laptop.

5.1 Example 1: A static problem with manufactured solution

We consider a static state-based PD model (3.1), and the manufactured solution is set to
be u(x)=x2(1−x)2 when x∈(0,1) and u(x)=0 elsewhere. In addition, we let (a,b)=(0,1),
δ=1/16, α=β= 1, the influence function ω(x)≡1, and the loading term f (x) is calculated
accordingly.

We present the CPU time consumption (CPU), l2 errors, and convergence rates (Rate)
of Gauss and FCG solvers in Table 1. For the FCG solver, we also present the number of
iterations (Itr).

Table 1: Numerical results of Example 1.

Gauss FCG

N CPU ‖u−uh‖l2 Rate CPU Itr ‖u−uh‖l2 Rate

26 0.000s 3.88e-4 - 0.000s 14 3.88e-4 -

27 0.016s 9.81e-5 1.984 0.000s 14 9.81e-5 1.984

28 0.016s 2.46e-5 1.996 0.000s 14 2.46e-5 1.996

29 0.140s 6.16e-6 1.998 0.016s 14 6.16e-6 1.998

210 4.087s 1.54e-6 2.000 0.031s 14 1.54e-6 2.000

211 67.97s 3.86e-7 1.996 0.047s 14 3.86e-7 1.996

212 747.2s 9.64e-8 2.001 0.109s 14 9.64e-8 2.001

213 6769s 2.41e-8 2.000 0.328s 14 2.41e-8 2.000

214 - - - 0.796s 14 6.02e-9 2.001

We first note that the FCG and Gauss solvers of the collocation scheme (3.15) generate
numerical solutions with almost identical accuracy and the same second-order conver-
gence rate. We then note that the FCG solver has a significantly reduced CPU time over
Gauss solver. For instance, as the mesh size h is refined from 2−12 to 2−13, the CPU time
consumed by Gauss increases from 747.2 seconds to around 6769 seconds. This coincides
with the fact that each time h is refined by half, the number of grid points is doubled and
the overall computational work for solving the linear system (3.15) by Gaussian increases
8 times asymptotically. Gaussian elimination at h=2−14 would be on the order of several
hours of CPU time. Hence we stopped the Gauss simulation at h = 2−13. Meanwhile,
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we continue to push the FCG solver to finer mesh h= 2−14, which consumes only 0.796
second to perform the computation.

5.2 Example 2: A static problem without an analytical solution

We then manage to solve a static state-based PD model (3.1) with a different influence
function ω(x)= 1

1+x2 . We choose the same data (a,b)=(0,1), δ=1/16, and α=β=1 as in
Example 1. The source term is chosen to be f (x)=1.

As the true solution to this example is not known, we use the numerical solution
solved by Gauss on the fine mesh N=213 =8,192 as a reference solution to compute the
l2 errors and the convergence rates. We present the CPU time consumption (CPU) of the
two solvers, the l2 errors and convergence rates (Rate), the number of iterations (Itr) of
FCG solver in Table 2.

Table 2: Numerical results for Example 2.

Gauss FCG

N CPU CPU Itr ‖u−uh‖l2 Rate

26 0.000s 0.000s 28 1.56e-4 -

27 0.000s 0.000s 34 3.63e-5 2.104

28 0.016s 0.016s 32 1.34e-5 1.438

29 0.140s 0.016s 27 7.50e-6 0.837

210 4.087s 0.047s 26 4.01e-6 0.903

211 67.53s 0.062s 24 1.85e-6 1.116

212 709.7s 0.203s 22 6.44e-7 1.522

213 6602s 0.437s 18 - -

214 - 0.967s 17 - -

215 - 2.075s 17 - -

216 - 4.586s 16 - -

217 - 12.50s 16 - -

218 - 34.48s 15 - -

219 - 75.74s 14 - -

220 - 160.2s 13 - -

Again we stopped the Gauss simulation at h = 2−13 and continue to push the FCG
solver to finer meshes. We notice that in this example, the FCG solver succeeds to con-
verge by acceptable CPU time consumption, for instance, using only 160.2 second for the
finest mesh with N = 220 = 1,048,576 nodes. We also observed that the Gauss and FCG
solvers generate almost the same numerical solutions and the FCG solver shows great
efficiency over Gauss, as in Example 1. We also find roughly the first-order convergence
rate from Table 2. The drop of convergence rate to first order is most possibly due to the
lack of regularity of the exact solution nearby the boundaries resulting from not carefully



N. Du, X. Guo and H. Wang / Commun. Comput. Phys., 27 (2020), pp. 274-291 289

chosen Dirichlet boundary condition. Further theoretical analysis and research will be
considered in a future work.

5.3 Example 3: A dynamic state-based PD problem

Finally we consider to solve a dynamic state-based PD model (2.8), and we apply the
Crank–Nicolson scheme for this non-static model.

Let ρ=1, the influence function ω(x)≡1, and the exact solution here is set to be

u(x,t)= x2(1−x)2sint.

Then in the domain 0< x<1, 0< t≤1, the initial condition can be calculated as

u(x,0)=0, ut(x,0)= x2(1−x)2,

and the source term has the form can be fixed accordingly. For this showing example,
we let the number of time steps M be the same as the number of spacial meshes N, and
δ = 1/16, α = β = 1, The CPU time consumption, l2 errors, and the convergence rates
of the Gauss and FCG solvers are listed in Table 3. It can be seen clearly that the FCG
method maintains the same convergence rate as the traditional Gaussian method, but
saves a great quantity of computation time. For example, when N = M= 10, the Gauss
method takes 3853 seconds, while the FCG requires only 4.531 seconds, which is 1/850
of the former. It is worth noting that this advantage will become more apparent as N and
M increase.

Table 3: Numerical results of Example 3.

Gauss FCG

N=M CPU ‖u−uh‖l2 Rate CPU ‖u−uh‖l2 Rate

25 0.000s 2.00e-4 - 0.000s 2.00e-4 -

26 0.016s 5.02e-5 1.994 0.016s 5.02e-5 1.994

27 0.234s 1.26e-5 1.996 0.063s 1.23e-5 2.027

28 3.391s 3.15e-6 1.997 0.234s 3.09e-6 1.997

29 71.16s 7.89e-7 1.999 0.969s 7.72e-7 1.998

210 3853 s 1.97e-7 1.999 4.531s 1.93e-7 1.999

211 - - - 21.53s 4.83e-8 2.000

212 - - - 100.5s 1.21e-8 2.000

6 Conclusion

In the present work, we develop a fast numerical algorithm for solving a state-based
peridynamic (PD) model. Physically, this kind of model describes realistic cracks and
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materials singularities precisely as many more number of degrees of freedom are used
within the horizon. Conventionally people restrict the number of degrees of freedom
to control the computational cost. Since it has significantly reduced the computational
complexity and memory requirement, our fast algorithm allows the use of more degrees
of freedom within the horizon. Numerically, the present fast algorithm can deal with
much more nodes in the horizon efficiently, which are usually expensive in computation
for other algorithms.

In principle we anticipate that the fast algorithm should work for more general nu-
merical schemes. However, the development requires quite a bit of research work, which
is under way. The extensions of the fast algorithm to more numerical schemes, the
asymptotic compatibility, and more realistic peridynamic models in multi-dimensions
will be considered in our future work.
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