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Abstract. The computation of the radiative transfer equation is expensive mainly due
to two stiff terms: the transport term and the collision operator. The stiffness in the
former comes from the fact that particles (such as photons) travel at the speed of light,
while that in the latter is due to the strong scattering in the optically thick region.
We study the fully implicit scheme for this equation to account for the stiffness. The
main challenge in the implicit treatment is the coupling between the spacial and an-
gular coordinates that requires the large size of the to-be-inverted matrix, which is
also ill-conditioned and not necessarily symmetric. Our main idea is to utilize the
spectral structure of the ill-conditioned matrix to construct a pre-conditioner, which,
along with an exquisite split of the spatial and angular dependence, significantly im-
prove the condition number and allows a matrix-free treatment. We also design a fast
solver to compute this pre-conditioner explicitly in advance. Our method is shown
to be efficient in both diffusive and free streaming limit, and the computational cost
is comparable to the state-of-the-art method. Various examples including anisotropic
scattering and two-dimensional problems are provided to validate the effectiveness of
our method.
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1 Introduction

The linear transport equation describes the physical process of interaction of radiation
with background material such as radiative transfer, neutron transport, and etc. It of-
ten contains a diffusive scaling that accounts for the strong scattering effect and leads
to diffusion equations. On the contrary, when the scattering is weak, the propagation
of radiation is almost a free transport with the speed of light, which is named as free
streaming limit. In practice, the material usually contains both strong and weak scatter-
ing regimes, and thereby it is desirable to design a numerical method that is uniformly
accurate in both cases without resolving the small scales.

Asymptotic preserving (AP) schemes arise to serve this purpose. As the name states,
it preserves the asymptotic limit at the discrete level. More specifically, such method,
when applied to certain equations with small parameters, should automatically become
a stable solver for the corresponding limit equations without resolving the mesh size
and time step. In the context of steady neutron transport, AP scheme was first studied
by Larsen and Morel [21] and then Jin and Levermore [14], and Klar [17]. A rigorous
convergence analysis was subsequently carried out by Golse, Jin and Levermore [11].
For time-dependent transport problem, a decomposition of the distribution function is
often performed, either via a macro-micro decomposition [20] or an even-odd decompo-
sition [15, 16]. Upon such decomposition, the stiff and non-stiff terms get separate off
and an implicit-explicit scheme is applied to treat two terms respectively. The idea was
later extended to a higher order implementation by Boscarino et al. [5]. Another related
approach is termed the unified gas kinetic scheme framework, which was first proposed
by Mieussens for linear transport equation [22] and recently modified by Sun et al. to
deal with nonlinear problem [27].

Nevertheless, most AP schemes mentioned above, still suffer from a restrictive
parabolic CFL condition that comes from the diffusion limit. Additionally, they are de-
signed for diffusive scaling and thus may fail to capture the free streaming limit at which
the radiation travels at the speed of light. Therefore, a fully implicit method is desired
to remedy both problems. However, the main challenge that prevents researchers from
directly applying the fully implicit method is the inversion of a large size of matrix due
to the high dimension and the coupling between the spatial and angular coordinates.
Even worse, this matrix is often ill-conditioned in some regimes and makes the inversion
impractical.

Constant efforts have been made in the past few decades towards developing efficient
implicit solver, both deterministic and stochastic. Here we only mention a few revolu-
tionary works but an exhaustive bibliography is out of reach. For deterministic method,
the current state-of-the-art is the Krylov iterative method for the discrete-ordinate sys-
tem preconditioned by diffusion synthetic acceleration (DSA) [19, 30]. Besides the ray-
effects [23] that generates by the discrete ordinate method, this preconditioned Krylov
iteration has a drawback, mainly due to the complication of the method. Since each
time iteration includes a sub-iterations of sweeps and diffusion solvers for DSA pre-
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conditioner, it is very complicated to extend to nonlinear case. For stochastic method,
the most widely used one is the implicit Monte Carlo (IMC) method [7]. But it is expen-
sive because accurate solutions require an adequate sampling of points in phase space,
and it also suffers from unavoidable fluctuations. Parallel to these two approaches is the
development of moment method, which approximates the solution in terms of spherical
harmonics. The foundation of this approximation was laid in [18, 26], and later an ex-
plosion of new developments emerges in two sub areas: one emphasis on the derivation
of an approximation of the moment system such as [4, 9, 25, 28] and the other focuses
primarily on designing applicable numerical methods such as [8, 12], to name just a few.

In this paper, we develop a highly efficient implicit solver for the linear transport
equation that is uniformly accurate across different regimes: diffusive and free stream-
ing. The main idea is to build a pre-conditioner based on the spectral structure of the
collision, which is the main source of ill-conditioning. Then we reformulate the original
system using an even-odd decomposition such that the resulting matrix to be inverted,
upon discretization, is symmetric and positive definite, and thereby the conjugate gradi-
ent method can be used. This method is amenable to parallelization, and can be easily
extended to anisotropic scattering.

In the following, we recall two state-of-the-art schemes that motivates our idea and
will be compared to some extent with our newly designed scheme. To begin with, we
summarize the typical equations we consider. In slab geometry, the radiation intensity
f (t,x,µ) solves the following dimensionless equation:

∂t f +
µ

ε
∂x f =

σ

ε2
(ρ− f ), (1.1)

where σ(x) is the scattering cross-section and ε is the Knudsen number. µ is the cosine of
the angle between a particle’s direction of flight and the x-axis. Here the external source

and absorption effect are neglected for simplicity. ρ= 〈 f 〉= 1
2

∫ 1
−1 f dµ denotes the density.

In the zero limit of ε, one has:

∂tρ−∂x

(

1

3σ
∂xρ

)

=0, (1.2)

which is termed the diffusion limit. In planar geometry, the equation rewrites as

∂t f +
Ω

ε
·∇x f =

σ

ε2
(ρ− f ), (1.3)

where Ω is the angular variable representing the two direction-of-flight; Ω=(ξ,η), −1≤
ξ,η≤1 and η2+ξ2 =1. Here

ρ=
1

2π

∫

|Ω|=1
f dΩ

and the corresponding diffusion limit is

ρt−∇·
(

1

2σ
∇ρ

)

=0. (1.4)
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1.1 Preconditioned Krylov method

The preconditioned Krylov method is similar to SN source iteration (SI) with diffusion
synthetic acceleration (DSA), but outperformed SI in computing diffusive problems with
discontinuous material properties. We first recall SI with DSA to put it in the context [2].
Consider a semi-discrete version of (1.1)

f n+1+
µ∆t

ε
∂x f n+1− σ∆t

ε2
(ρn+1− f n+1)= f n, (1.5)

where both the convection and scattering terms are treated implicitly, which results in an
inversion of a large linear system. Due to the sparsity of the system, SI solves it iteratively
that resembles the Richardson iteration. Denote

L=1+
µ∆t

ε
∂x+

σ∆t

ε2
, P= 〈·〉 , (1.6)

as two operators. Given f n and ρn the solution at time tn, let f (l) be the approximation of
f n+1 after l iterations, then it solves

L f (l+1)=
σ∆t

ε2
P f (l)+ f n, (1.7)

which is the main iteration in SI. When ε is small, the convergence of f (l) is rather slow;

this is because the decreasing rate of the error
δ f (l+1)

δ f (l)
(where δ f (l)= f − f (l) and f denotes

the exact solution to (1.5)) is close to one. Then DSA helps to accelerate the convergence.
Specifically, consider the equation for δ f (l):

L(δ f (l+1))=
σ∆t

ε2
P(δ f (l+1))+

σ∆t

ε2

(

ρ(l+1)−ρ(l)
)

,

here ρ(l)=P( f (l)) and δρ(l)=P(δ f (l)). This equation is as hard to solve as (1.5) and the
key idea is to use a diffusive approximation

δρ(l+1)−∆t

3
∂x

(

1

σ
∂xδρ(l+1)

)

=
σ∆t

ε2

(

ρ(l+1)−ρ(l)
)

,

which is much easier to compute. Then SI with DSA can be summarized as follows.























f (l+
1
2 )=

σ∆t

ε2
L−1ρ(l)+L−1 f n,

δρ(l+
1
2 )=

σ∆t

ε2
(1+∆tD)−1

(

ρ(l+
1
2 )−ρ(l)

)

,

ρ(l+1)=ρ(l+
1
2 )+δρ(l+

1
2 ),

(1.8)

where δρ(l+
1
2 )= ρ−ρ(l+

1
2 ) and ρ is again the exact solution to (1.5) and D=−∂x(

1
3σ ∂x) is

the diffusion operator.
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As DSA requires the diffusion solver to be consistent with the transport solver, which
can be very expensive and deficient in heterogeneous multi-dimensional media [3], a
Krylov method is developed with DSA as a preconditioner. The idea is to use more
advanced iterative technique than Richardson iteration to solve

(

L− σ∆t

ε2
P
)

f n+1= f n. (1.9)

As mentioned above, the condition number of the corresponding discretization matrix of
L− σ∆t

ε2 P can be very big when ε is small, and thus a preconditioner is needed. A good

choice [30] would be to first multiply (1.9) by the operator PL−1, which leads to

(

I− σ∆t

ε2
PL−1

)

ρn+1=PL−1 f n. (1.10)

Then an operator including a diffusion is expected to further precondition the above
system. Note from a manipulation of the equations in (1.8) and a comparison with (1.7),
a reasonable pre-conditioner is I+ σ∆t

ε2 D−1. Multiply it with (1.10), one has

(

I+ σ∆t

ε2
D−1

)(

1− σ∆t

ε2
PL−1

)

ρn+1=

(

I+ σ∆t

ε2
D−1

)

PL−1 f n, (1.11)

whose discrete version can now be solved by Krylov method such as GMRES. Precondi-
tioned Krylov method has been applied to linear transport equation in various contexts,
please refer to [1, 6, 10] for an extensive study.

1.2 Asymptotic preserving scheme via even-odd decomposition

Another class of methods aim at capturing the diffusion limit as ε vanishes without re-
solving the mesh size. This is the spirit of so-called asymptotic preserving method. Var-
ious asymptotic preserving methods have been proposed for transport equation with
diffusive scaling, and here we only recall the method proposed by Jin, Pareschi and
Toscani [15] based on an even-odd decomposition as it motives our new method. De-
fine an even and an odd part of f by:

fE=
1

2
( f (t,x,µ)+ f (t,x,−µ)) , fO=

1

2ε
( f (t,x,µ)− f (t,x,−µ)) , (1.12)

then (1.1) splits into











∂t fE+µ∂x fO=
σ

ε2
(ρ− fE),

∂t fO+αµ∂x fE =− σ

ε2
fO+

1

ε2
(1−αε2)µ∂x fE,

(1.13)
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where α=min{1, 1
ε2}. In this setting, two scales–1

ε and 1
ε2 –in the original system has been

unified to one scale in (1.13) such that the non-stiff terms can now be treated explicitly
while the stiff terms are treated implicitly.

The rest of paper is organized as follows. In the next section, we explain at large the
challenges in the implicit method and elucidate our idea—constructing a preconditioning
matrix—by analyzing the spectral structure of the matrix that will be inverted. Detailed
pseudo code is also provided. Section 3 is devoted to checking some properties of our
scheme, especially the computational cost, asymptotic preservation and unconditionally
stability. In Section 4 we present several numerical examples to illustrate the efficiency,
accuracy, and AP properties of the schemes. Finally, the paper is concluded in Section 5.

2 Numerical scheme

Since our purpose is to capture both the diffusion and free streaming limit of (1.1) (or
(1.3)) without the parabolic CFL constraint, we will take the fully implicit time discretiza-
tion. However, as mentioned above, this amounts to invert a large scale matrix whose
condition number is not necessarily acceptable. Below, we will first explain our main
idea in

• utilizing the spectral structure of the collision operator to construct the precondi-
tioner for the ill-conditioned matrix;

• reducing the size of the matrix by separating the spatial dimension from the angular
dimension and building the sparsity structure into a matrix-free form.

Then a detailed algorithm is given in the next subsection. The idea is presented for the
isotropic collision case and the anisotropic treatment will be demonstrated in Section 2.3.

2.1 Challenges

Recall the fully implicit semi-discretization of the equation in one dimension:

f n+1− f n

∆t
+

µ

ε
∂x f n+1=

σ

ε2
(ρn+1− f n+1), (2.1)

where f n = f (tn,x,µ). Here because of the convection, the stiff parts are asymmetric. To
make it symmetric, we define an even-odd parity of the solution by:

fE=
1

2
( f (t,x,µ)+ f (t,x,−µ)) , fO=

1

2
( f (t,x,µ)− f (t,x,−µ)) , (2.2)

then the Eq. (2.1) splits:














f n+1
E − f n

E

∆t
+

1

ε
µ∂x f n+1

O =
σ

ε2
(ρn+1− f n+1

E ),

f n+1
O − f n

O

∆t
+

1

ε
µ∂x f n+1

E =− σ

ε2
f n+1
O .

(2.3)
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Notice that the even-odd decomposition we used here is different from (1.12) as our pur-
pose is to symmetrize the convection operator, not to separate the macro and micro parts
of the solution. With easy calculation, one could show that the reformation (2.3) is equiv-
alent to:














f n+1
O =

ε2

ε2+σ∆t

(

f n
O−

∆t

ε
µ∂x f n+1

E

)

,

−∂x

(

ε2µ2∆t

ε2+σ∆t
∂x f n+1

E

)

+

(

ε2

∆t
+σ

)

f n+1
E −σρn+1=

ε2

∆t

[

f n
E −∂x

(

εµ∆t

ε2+σ∆t
f n
O

)]

.

(2.4)

Here we note that the fE gets updated first in the second equation, and then we update
f O from the first equation.

To compute the second equation in (2.4), however, is rather challenging. In a more
compact form, it writes as:

(A+B) f =b, (2.5)

with the operators are defined:

A=− ε2∆t

ε2+∆t
µ2∂2

x, B=1+
ε2

∆t
−P and b=

ε2

∆t

(

f n
E −

ε∆t

ε2+∆t
µ∂x f n

O

)

. (2.6)

We also used σ≡1 and P f = 〈 f 〉 for the conciseness of the notation. Under the finite dif-
ference framework, upon discretization, the two operators A and B will be represented
using two matrices, denoted as A and B, and it is the following two properties of the
matrices that make the problem difficult:

• The size of the system is huge. In the simplest 1D case, suppose we use an Nv-point
quadrature for velocity and Nx grid points in space per direction, then f is a vector
of length NxNv, and the two matrices A and B are both of size (Nx×Nv)2. Inverting
them takes tremendous amount of computation. The situation is much worse for
the 3D case, in which the matrices are of size (N3

x×N2
v )

2 at the least. In a stereotype
computation, Nx∼109. Not to mention the computation of the inverse, storing these
matrices itself requires the memory that exceeds what is affordable.

• The matrices are ill-conditioned. In kinetic regime when ε=O(1) is relatively big,
the matrix A+B is well-conditioned, but the condition number grows drastically to
infinity in the diffusive regime as ε→0. Roughly speaking, the eigenvalues of A are
very small–the ε2∆t term attenuate the effects of µ2k2 (k = 1,··· ,Nx), and thus the
spectrum of the system is dominated by the eigenvalues of B. Realizing that 1−P
has a nontrivial null space with a big spectrum gap–the smallest eigenvalue of B is
of ε2 order while all others are of O(1), A+B produces a condition number of size
O(1/ε2) that grows to infinity with shrinking ε.

All efficient numerical algorithms, including the ones reviewed in the introduction,
need to deal with the two difficulties listed above in one way or another. In the following
subsection we explore the structure hidden inside the two matrices, and fully make use
of these properties to tackle the difficulties listed above.
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2.2 Ideas

In this section we explore the matrix structure, rely on which one could hope for better
algorithms. Despite the size of the system and the ill-conditioning of the matrices, there
are certain properties of A and B that might simplify the problem.

• The matrices are symmetric positive definite and block-wisely sparse.

– Both A and B are symmetric.

– Both A and B are positive definite. The eigenvalues of B is either 1+ ε2

∆t or ε2

∆t
and since A is an elliptic operator, the positivity of A is out of question.

– Both A and B are block-wisely sparse. In particular, A is sparse in both coordi-
nates while B is dense in µ but sparse in x coordinate. We can actually write
down its explicit expression:

A=Ax⊗diag{µ2
k}, B= INx ⊗Bµ. (2.7)

Here ⊗ denotes the Kronecker product, and we have used the notation Ax for

the discretization of ε2∆t
ε2+∆t

∂2
x, Bµ=(INv+

ε2

∆t −P) and the subindex for I indicate
the size of this identity matrix. P corresponds to the averaging operator P and
is a dense but low rank matrix.

• The matrices have a very clear pre-determined spectrum. Though A+B is ill-
conditioned for small ε, the dominating part B has a very clear eigenspace struc-

ture. It reduces the constant vector by ε2

∆t < 1 in magnitude and magnifies all the

vectors in the perpendicular space by 1+ ε2

∆t >1. Specifically, we can write down the
following eigendecomposition for Bµ:

Bµ=
ε2

∆t
eet+

(

1+
ε2

∆t

)

∑
i≥2

viv
t
i . (2.8)

Here we have used the notation e = 1√
Nv
[1,··· ,1]t and R

Nv = span{e,vi , for i ≥ 2},

where e and all vi are orthonormal, meaning that X=[e,v2,··· ,vNv ] forms a unitary
matrix.

These properties hold true regardless of the discretization of the operator A or the
quadrature of B. Only slight changes need to be made to account for different quadra-
tures. If we denote (µ1,µ2,···µNv) the quadrature points and (w1,w2,···wNv) the corre-
sponding weights, then Bµ simply write as:

Bµ=
ε2

∆t

√
w
−1

v1vt
1

√
w+

(

1+
ε2

∆t

)

∑
i≥2

√
w
−1

viv
t
i

√
w, (2.9)
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where
√

w = diag(
√

w1,
√

w2,··· ,√wNv) and
√

w
−1

is the inverse of
√

w. Here R
Nv =

span{vj} for 1≤ j≤Nv with v1 =[
√

w1,··· ,√wNv ]
t, and vj, 1≤ j≤Nv are orthogonal with

respect to matrix w=diag(w1,···wNv), i.e., vt
i wvj=δij. In fact, when we consider mid point

rule on a uniform mesh, wi=
1

Nv
for all i and (2.9) boils down to (2.8).

It is easy to see that the first property suggests possible employment of fast algorithms
such as conjugate gradient (CG) and the sparsity certainly should be utilized for matrix-
free type algorithm designing, so that one could avoid storing all matrices inversion. The
second property mainly explores the condition number of the system and should be used
for preconditioning designing.

Remark 2.1. The previous two numerical methods in the introduction partially used
these good properties. The unconditioned Krylov iteration method used the block-wisely
sparse property of A and B but moves the P term to the right hand side, therefore suffer-
ing from slow convergence rate in the diffusion regime due to the canceling of I and P in
the spectrum. The even-odd parity decomposition explicitly uses the eigenvalue struc-
ture of B and directly write the odd part as the O(ε) term, but since A term gets treated
explicitly, the method could not overcome the parabolic scaling, meaning ∆t is controlled
by ∆x2.

2.3 Numerical method

Seen as above, we make use of the spectrum information to design pre-conditioner and
use the positive-definite symmetric property as well as the sparsity of the matrices for
computation speed-up. Unfortunately typically once a pre-conditioner is involved, the
sparsity would be lost, making fast solvers unapproachable. We propose here to perform
the computation in a matrix-free fashion and thus the number of flops are not increased,
as will be explained in details below.

Since there is only one vector that gets mapped with a small eigenvalue, the strategy
in designing the pre-conditioner is simply to pull this vector back by ∆t

ε2 in magnitude.

For the isotropic term, simply put, the pre-conditioner we use is B
−1, and we leave the

anisotropic cases for later. With it, the system (2.5) becomes:

(B−1
A+I) f =B

−1b. (2.10)

The benefits are immediate. As seen in (2.8) there are only two types of eigenvalues

for B, they are either as small as ε2

∆t or order 1 as 1+ ε2

∆t . Considering the fact that A has
ε2∆t in its coefficients, we know roughly that the eigenvalues for B−1

A+I are all of O(1),
ensuring a relatively small condition number.

Numerically it is a bad idea to invert B
−1

A+I directly due to its large size, but
since B

−1
A+I is symmetric positive definite, it is natural to adopt the conjugate gradient

method, which transforms inversion into multiplication till convergence, and the small
condition number guarantees the speed of convergence. A fast matrix-vector multiplica-
tion is therefore called for.
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This is, however, not straightforward since matrix B
−1 is not as sparse as B in the

original formulation, and if we do a naive multiplication, a large portion of computation
effort will be needed, which degrades the advantage of using conjugate gradient method.
To deal with this problem, we once again use the special structure of B−1

µ and explore the
low-rank decomposition. Specifically, let g(x,µ) be a function depends on both x and µ.
Then upon discretization, B−1

µ g can be directly expressed by, as shown in (2.8):

B
−1
µ g=

∆t

ε2
eetg+

1

1+ ε2

∆t

(

g−eet g
)

(2.11)

for a fixed x, and then B
−1g is to apply the equation above for every x. The multiplication

with A is cheap due to sparsity.

Remark 2.2. As explained above, if a different set of quadrature is used, (2.11) generalizes
to

B
−1
µ g=

∆t

ε2

√
w
−1

v1vt
1

√
wg+

1

1+ ε2

∆t

(

g−
√

w
−1

v1vt
1

√
wg

)

, (2.12)

where v1 and
√

w are defined as in (2.9).

We summarize the algorithm below in Algorithm 1.

Algorithm 1: Outline of the main algorithm.

Data: Initial data: f (t=0,x,v), final time T
Result: f (tn,x,v) for all time steps tn.
Discretization: ∆t, ∆v, ∆x;

Initialization: t=0, fE(0,x,v)= 1
2 ( f (0,x,v)+ f (0,x,−v)), fO = f − fE;

Matrix Preparation: Ax, e;
while t<T do

Set b as in (2.6);
Compute fE using (2.5), call function ABinverse;
Compute fO using (2.4) directly;
Set t= t+∆t;

end

Algorithm 2: Function ABinverse: solving (A+B) f =b.

Data: Initial data: b.
Result: f .
Set bmod=B

−1
v b using (2.8);

Compute B
−1(A+B) f =B

−1b using CG, in which we call function ABproduct;
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Algorithm 3: Function ABproduct: computing f =B
−1(A+B)b.

Data: Initial data: b.
Result: f =B

−1(A+B)b.
Compute b1=A·b;

Compute b2=B
−1 ·b1 using (2.11);

Compute f =b2+b;

Note that in Algorithm 2, CG is called which requires the matrix product of B−1(A+
B). But it is not applied directly. Through the entire computation we do not store any
of the matrices, and all the computation is done in the matrix-free fashion. It is also
worth mentioning that construction of A can be done with great generality as neither the
computation of our pre-conditioner nor the fast matrix-vector multiplication technique
here depends on the specific form of spatial discretization. In the examples we will show
later, we use center difference for spatial derivatives and mid-point rule on a uniform gird
for the averaging operator in µ. But other quadrature rule such as Gaussian quadrature
used in SN approximations [2] and various spatial discretization such as discontinuous
Galerkin method [24] or discontinuous finite-element method [29] can be easily adapted.
Now, it is important to point out that our algorithm, majorly solving the preconditioned
system (2.10), only requires a three simple matrix-vector multiplications, two with B

−1

and one with A
−1, in each iteration, whereas in the previous method (1.11), quite a few

operations are needed: a diffusion solver, a transport sweep and an average calculation,
not to mentioned some of them are needed more than twice. Therefore the main benefit
of our method is its simplicity.

Remark 2.3. We would like to point out that the even-odd decomposition is not an indis-
pensable part of our scheme. Indeed, the above idea of constructing and computing the
pre-conditioner can be applied directly to the original system (2.1) without symmetriza-
tion technique via the even-odd parity. Rewrite (2.1) in a compact form

(C+B) f n+1=d, (2.13)

where C = εµ∂x, B is the same as (2.6), and d = ε2

∆t f n. Here we again assume σ ≡ 1 for
simplicity. Then it boils down to invert the discretization matrix C+B, which can be done
similarly using the previous framework expect changing conjugate gradient method to
Generalized Minimal Residual method (GMRES).

Remark 2.4. Our scheme is easily extended to second order. As a center difference is
used for the spatial derivative, we only need to upgrade our time discretization to second
order. This is done by replacing (2.1) with

3 f n+1−4 f n+ f n−1

2∆t
+

1

ε
µ·∂x f n+1=

σ

ε2
(ρn+1− f n+1). (2.14)
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Then the rest steps are the same as that described in Section 2.3 except varying a few
constants.

2.4 Anisotropic scattering

In this subsection, we generalize the above framework to the anisotropic scattering. In
one dimensional slab geometry, the transport equation takes the form

∂t f +
µ

ε
∂x f =

σ0(x)

2ε2

∫ 1

−1
σ(µ·µ′)( f (µ′)− f (µ))dµ′ , (2.15)

where
1

2

∫ 1

−1
σ(µ·µ′)dµ′=1.

In this case, the diffusion limit is

ρt+
1

2

∫ 1

−1
µ∂x

(

Q−1

(

µ∂xρ

σ0(x)

))

dµ=0, (2.16)

where

Q( f )=
1

2

∫ 1

−1
σ(µ·µ′) f (µ′)dµ′− f (µ)

is the linear collision operator. The main idea of the numerical scheme follows that in
Section 2.2, and here we present a non-symmetric version as mentioned in Remark 2.3, a
reformulation to symmetric form is similar to (2.4) and we leave it to the reader.

Denote

Pσ f =
1

2

∫ 1

−1
σ(µ·µ′) f (µ′)dµ′, (2.17)

and assume σ0(x)≡1 for simplicity, then the semi-discrete scheme reads

(Bσ+C) f n+1=b. (2.18)

Here B
σ and C are the discretization matrices for operator 1+ ε2

∆t −Pσ and εµ∂x , respec-

tively, and b= ε2

∆t f n. Write

B
σ= INx ⊗B

σ
µ and B

σ
µ=

(

1+
ε2

∆t

)

INv−P
σ
µ,

where P
σ
µ is the corresponding matrix for Pσ with fixed x. Then the spectral structure of

B
σ
µ is similar to Bµ in (2.8) and we summarize as follows:

• The matrix P
σ
µ is low rank as it depends on the inner product of µ and µ′. Denote

its eigenvalues ξ1 > ξ2> ···> ξk, k≪Nv, and corresponding eigenvectors v1,··· ,vk.
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• The largest eigenvalue of P
σ
µ is ξ1 = 1, and corresponding eigenvector is e =

1√
Nv
[1,··· ,1]t.

• Denote the eigenvalues of B
µ
σ as λ1 ≤λ2 ··· ≤λNv . Then λ1 =

ε2

∆t and λk+1 =λk+2 =

···λNv =1+ ε2

∆t . The eigenvector corresponding to λ1 is e. Other eigenvalues depend
on the form of σ(µ·µ′).

• The eigenvectors vj, j= k+1,···Nv corresponding to the eigenvalues λj = 1+ ε2

∆t all

satisfy P
µ
σvj =0.

Therefore, for any vector g of size Nv, first find its projection to the first k eigenvectors v1,

··· , vk. That is, write g=∑
Nv
i=1civi, and find c1, ··· , ck. Then, we have

B
σ
µg=

k

∑
i=1

ckλkvk+

(

1+
ε2

∆t

)

(

g−
k

∑
i=1

ckvk

)

, (2.19)

and

(Bσ
µ)

−1g=
k

∑
i=1

ckλ−1
k vk+

1

1+ ε2

∆t

(

g−
k

∑
i=1

ckvk

)

. (2.20)

Since k≪ Nv, the computation (2.19) and (2.20) are cheap. In fact, in most applications,
the scattering σ(µ·µ′) has special structures such that v2, ··· , vk are easy to find out. Then
what is left is to precondition (2.18) as

(Bσ)−1(Bσ+C) f n+1=b, (2.21)

and solve the resulting linear system using GMRES.

3 Properties

We study the numerical properties of our scheme in this section. We will concentrate on
the equation with isotropic collision operator and the extension to the anisotropic case is
straightforward, which we will omit from here.

3.1 Condition number of B−1(A+B)

In the isotropic scattering case, it is easily seen that B
−1 only has two eigenvalues, ∆t

ε2

and ∆t
∆t+ε2 . Since A is the discretization of − ε2∆t

ε2+∆t
µ2∂2

x, its spectrum is roughly given by
(depending on the boundary too):

ε2∆t

ε2+∆t
µ2k2 with k=0,1,··· ,Nx−1. (3.1)

Then the smallest possible and the biggest possible eigenvalues of B−1
A are:
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• biggest: ∆t
ε2 · ε2∆t2

ε2+∆t2 (Nx−1)2,

• smallest: 0.

Therefore, the condition number of B−1(A+B) is

κB−1(A+B)≃
1+ ∆t

ε2 · ε2∆t2

ε2+∆t2 (Nx−1)2

1
∼1+

∆t

ε2+∆t2
, (3.2)

which is O(1) for both small and big ε. Compare this to the condition number of A+B

κA+B=
1+ ε2

∆t +
ε2∆t

ε2+∆t
µ2(Nx−1)2

ε2

∆t

∼O
(

∆t

ε2

)

, (3.3)

we see clearly that the pre-conditioner plays an important role in the diffusive regime.

3.2 Computational cost

We first analyze the computational cost per each time step. Assume that we are given
f n
E and f n

O, we calculate the flops it takes to update for f n+1
E and f n+1

O . As can be seen in

Algorithm 1, b is computed using (2.6) and f n+1
O is computed using (2.4), both of which

require O(Nx) flops of computation per angular grid and thus O(Nx Nv) flops of compu-
tation in total. To compute f n+1

E , the scheme calls Algorithm 2, in which bmod requires

NxNv flops, and conjugate gradient is used for f n+1
E . Denote Tol the tolerance set for the

method, the number of iteration needed for CG is:

Niter≥
logTol

log
(√

κ−1√
κ+1

) , (3.4)

where κ is the condition number for matrix B
−1(A+B). With the results above, the matrix

is well-conditioned with κ ∼ 1, and thus the required iteration is small. For example, if
we set Tol=1e−10 and ∆t=1e−3, then:

Niter&
logTol

log
( 1

2 ∆t3

2+ 1
2 ∆t3

)&
logTol

3log∆t
=

10

9
. (3.5)

In each iteration in the conjugate gradient (CG) method, the matrix multiplication of
B
−1(A+B) needs to be applied three times. Notice that our scheme is matrix free (as

shown in Algorithm 3), that is, we perform A product first, which requires O(NxNv)
flops, and then perform B

−1 product, which also requires the same amount of flops. Thus
in total, each iteration in the CG method requires O(Nx Nv) flops. Multiplied by O(1)
iterations required by the CG method, f n+1

E is computed using O(Nx Nv) flops.
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It is very important to compare the computational cost of our scheme with the state-
of-the-art preconditioned Krylov method. The major computational burden in both
schemes come from the iteration in solving the linear system. That is

B
−1(A+B) f =B

−1b (3.6)

in our scheme, and

(

I+
σ∆t

ε2
D
−1

)(

I− σ∆t

ε2
PL

−1

)

ρ=

(

I+
σ∆t

ε2
D
−1

)

PL
−1 f (3.7)

in the preconditioned Krylov method, where we recall

A=
ε2∆t

ε2+∆t
∂2

x⊗diag{µ2
k}, B= INx⊗

(

INv+
ε2

∆t
−P

)

,

and

D=∂x

(

1

3σ
∂x

)

, L=

(

INx+
σ∆t

ε2

)

⊗INv +
∆t

ε
∂x⊗diag{µk}.

Although it seems from the expression that (3.6) is more expensive than (3.7) as (3.6)
iterates for f , a NxNv vector and (3.7) iterates for ρ, a vector of size Nx, the truth is that
the computational cost are comparable. Indeed, for any iterative method, the major cost
comes from the matrix-vector multiplication, and the number of iterations needed. If we
assume that the number of matrix-vector multiplications are the same for both methods
per iteration, then from the above calculation, our method needs O(Nx Nv) flops and it
is the same with (3.7). In fact, the matrix-vector multiplication in (3.7) is accomplished
via a sequence of operations, including a sweep for each velocity L

−1ρ (O(Nx Nv) flops),
averaging PL

−1ρ (O(Nx) flops), and a diffusion solver (O(Nx) flops), and thus O(Nx Nv)
flops in total. The number of iterations relies on the condition number of the matrix to
be inverted (if conjugate gradient method is used) and then the calculation in Section 3.1
guarantees the fast convergence of our method. Therefore, within the loop of iteration in
solving the linear system, (3.6) and (3.7) are at the same order of computational cost. And
the preconditioned Krylov method needs an extra outer loop to iterate between ρ and f
whereas ours does not.

3.3 Asymptotic preservation

Now we check the asymptotic preservation property for the scheme (2.1). First taking the
average of (2.1), one has

ρn+1−ρn

∆t
+

1

ε

〈

µ∂x f n+1
〉

=0. (3.8)
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Notice that

f n+1=ρn+1− εµ

σ
∂x f n+1− ε2

σ∆t
( f n+1− f n).

Plugging it into (3.8) leads to

ρn+1−ρn

∆t
+∂x

(

1

3σ
∂xρn+1

)

=O(ε), (3.9)

which, upon sending ε to zero, is a semi-discrete implicit solver for the diffusion limit.

3.4 Stability

Next, we prove the stability of our scheme (2.1). The result is summarized as follows.

Theorem 3.1. The scheme (2.1) is unconditionally stable.

Proof. Multiply the Eq. (2.1) by f n+1, and integrate with respect to x and v, we have

1

2

[

|||( f n+1)2|||−|||( f n)2|||+|||( f n+1− f n)2|||
]

=
σ∆t

ε2

(

|||ρn+1 f n+1|||−|||( f n+1)2|||
)

. (3.10)

Here we use |||·||| to denote the integration with respect to both x and v and the equality
a(a−b)= 1

2

[

a2−b2+(a−b)2
]

. Considering |||ρn+1 f n+1|||= ‖(ρn+1)2‖, with ‖·‖ denoting
integration only on x, and by Cauchy-Schwartz inequality, we have:

|||ρn+1 f n+1|||≤ |||( f n+1)2|||, (3.11)

making the right hand side negative. Therefore,

|||( f n+1)2|||≤ |||( f n)2||| (3.12)

regardless of the choice of ∆t and thus unconditional stability is guaranteed.

4 Numerical examples

In this section, we present several numerical examples using our AP scheme described
in Algorithm 1-3. Here we use uniform mesh for both spatial and angular discretization.
Periodic boundary condition is adopted in both directions.
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4.1 Condition number comparison

We check the effectiveness of the preconditioner by comparing the condition number of
A+B and B

−1
A+I with different ε. It can be seen from Table 1, for very small ε, the

condition number is extremely big and the pre-conditioner B−1 drastically decreased the
condition number. For moderate ε, the pre-conditioner is less effective. As seen in Table 2,
the condition number of A+B is of O(1) already and the pre-conditioner does not make
much difference.

4.2 Computational cost comparison

In this subsection we compare the computational cost for updating fE by only one time
step. We update fE by both directly inverting the matrix and using CG method. In Table 4
we show the ratio of the time used. With Nx=200 and Nv=20, the time it takes by directly
inverting the matrix is 130 more than utilizing the CG method. Note that here we only
report the saving from the online computation, assuming the computer could store the
matrix. In practice, one also needs to consider the memory cost for directly inverting the
matrix. The new AP solver, on the other hand, is a matrix-free method, and there is no
need to store matrices.

Table 1: Condition number for A+B and B−1A+I with ε=10−5.

Condition number for A+B.

Nv=10 Nv=20 Nv=30

Nx=20 1.59e8 1.59e8 1.59e8

Nx=40 8.12e7 8.12e7 8.12e7

Nx=60 5.46e7 5.46e7 5.46e7

Nx=80 4.11e7 4.11e7 4.11e7

Nx=100 3.30e7 3.30e7 3.30e7

Condition number for B−1
A+I.

Nv=10 Nv=20 Nv=30

15.88 16.14 16.19

31.50 32.04 32.14

47.12 47.94 48.09

62.74 63.84 64.05

78.37 79.75 80.00

Table 2: Condition number for A+B and B−1A+I with ε=1.

Condition number for A+B.

Nv=10 Nv=20 Nv=30

Nx=60 1.36 1.40 1.42

Nx=100 1.36 1.40 1.42

Condition number for B−1
A+I.

Nv=10 Nv=20 Nv=30

1.36 1.40 1.41

1.36 1.40 1.41

Table 3: Condition number for A+B and B−1A+I with ε=10−3.

Condition number for A+B.

Nv=10 Nv=20 Nv=30

Nx=60 5.52e3 5.53e3 5.53e3

Nx=100 3.41e3 3.42e3 3.42e3

Condition number for B−1
A+I.

Nv=10 Nv=20 Nv=30

46.95 47.75 47.90

77.62 78.94 79.19
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Table 4: Computational cost ratio between directly inverting the matrix, and utilizing the conjugate gradient
method.

Computational Cost tinverse/tcg.

ε=1 ε=0.1 ε=0.01

Nx =50 1.5733 2.6637 3.1782

Nx =100 54.3670 3.0818 4.4672

Nx =150 38.2581 13.1954 6.2918

Nx =200 130.6267 12.1222 10.9596

4.3 One dimensional problem with isotropic scattering

In this section, we test the efficiency of our numerical schemes in slab geometry. The
examples are similar to those in [13]. Here x∈ [0,2]. In all examples, ∆t is chosen to be
∆x/3 when using our scheme.

4.3.1 Example I

We consider the following initial condition

f (0,x,µ)=

{

2, 0.8< x<1.2,
0, otherwise,

(4.1)

and isotropic scattering with vanishing cross section (see the left figure of Fig. 1)

σ(x)=100(x−1)4 . (4.2)

For ε= 1, we compare the solution using our scheme with the solution from an explicit
solver. And the profile of ρ at time tmax=1 is displayed in the left figure of Fig. 2. Here we
choose Nx =200 and Nv =100. In the diffusion scaling, we choose ε=10−3 and compare
our solution with the solution of the diffusion limit (1.2) at time tmax = 0.1, as shown in
the right figure of Fig. 2. Good agreement are observed for both kinetic and diffusion
regimes. Moreover, near the center of the computational domain where the scattering
effect is extremely weak, our scheme successfully pick up the correct profile of density in
the free streaming limit.

4.3.2 Example II

Initial condition is the same as in (4.1) and we consider striped cross section

σ(x)=

{

0.02, x∈ [0.35,0.65]∪[1.35,1.65],
1, x∈ [0,0.35)∪(0.65,1.35)∪(1.65,1],

(4.3)

so that the particles will transport from high scattering regime to low scattering regime
and vice versa. Again we compute our solution for both ε=1 and ε=10−3. In the former
case, the solution is compared with the one using explicit solver, while in the later case, it
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Figure 1: Scattering cross section σ for one dimensional examples. Left: vanishing cross-section (4.2). Right:
striped cross-section (4.3).
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Figure 2: Example I. Here Nx = 200, Nv = 100. Left: ε= 1, we compare the density ρ using our scheme (blue

dashed curve) with the solution using explicit solver (black solid curve) at tmax=1. Right: ε=10−3, we compare
the density ρ using our scheme (blue dashed curve) with the solution to the diffusion limit (black solid curve)
at tmax =0.1.

is compared with the one using diffusion solver. The results are gathered in Fig. 3. This
example validates the efficiency of our scheme in computing the transport equation with
discontinuous cross-section, which is often the case in many real materials.

4.3.3 Example III

Here we consider anisotropic scattering cross section

σ(x,µ,µ′)=σ0(x)
(

1+µ·µ′) (4.4)
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Figure 3: Example II. Here Nx =200, Nv =100. Left: ε=1, we compare the density ρ using our scheme (blue

dashed curve) with the solution using explicit solver (black solid curve) at tmax=1. Right: ε=10−3, we compare
the density ρ using our scheme (blue dashed curve) with the solution to the diffusion limit (black solid curve)
at tmax =0.1.
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Figure 4: Example III: anisotropic case. Here Nx =200, Nv =100. Left: ε=1, we compare the density ρ using
our scheme (blue dashed curve) with the solution using explicit solver (black solid curve) at tmax = 1. Right:

ε= 10−3, we compare the density ρ using our scheme (blue dashed curve) with the solution to the diffusion
limit (black solid curve) at tmax =0.1.

with σ0(x) taking the form of (4.3). For this special choice of σ, the diffusion limit (2.16)
reduces to

ρt+
1

2
∂x

(

1

σ0
∂xρ

)

=0. (4.5)

Also, the eigenvalues of Bσ
µ are λ1 =

ε2

∆t , λ2 = 1+ ε2

∆t − 1
3 , and corresponding normalized

eigenvectors are v1=e and v2=
µ√
µtµ

. And the rest eigenvalues are all equal to 1+ ε2

∆t . Then

for any vector g=∑
Nv
i=1civi, notice that Pσ

µg= c1v1+
1
3 c2v2, and v1 is orthogonal to v2, we

have, c1 = vt
1P

σ
µg and c2 =3vT

2 P
σ
µg. Since P

σ
µ is low rank, the matrix-vector multiplication
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P
σ
µg is cheap. Once c1 and c2 are computed, we can use the formula (2.20) with k= 2 to

compute the inverse of Bσ
µ and the rest steps are the same as isotropic ones.

To illustrate, Fig. 4 on the left compares our solution with the solution using explicit
scheme, and on the right compares with the solution to the diffusion limit. Here ∆x=0.01
and ∆v=0.02.

4.4 Two-dimensional problems

Finally we test our scheme in planar geometry.

4.4.1 Example V

Consider smooth initial condition

f (0,x,y,ξ,η)=1+e−40(x−0.5)2−40(y−0.5)2
, 0≤ x,y≤1, (4.6)

and uniform cross section σ(x,y) ≡ 1. Here we check the asymptotic property of our
scheme by computing the l2 distance between f and ρ, namely

| f −ρ|2 =
√

∑
i

∑
j

| f (xi,vj)−ρ(xi)|2∆x∆µ (4.7)

with various ε along time, and the results are collected in Fig. 5 left. As expected, this
error decreases with ε. And Fig. 5 on the right further confirms the asymptotic property
by comparing the density using our kinetic solver with that using a diffusion solver

|ρk−ρd|2=
√

∑
i

|ρk(xi)−ρd(xi)|2∆x. (4.8)

4.4.2 Example VI

Initial data is the same as in (4.6) and scattering cross-section takes the following form

σ(x,y)=

{

0.02, (x,y)∈ [0.25,0.35]×[0.25,0.35]∪[0.65,0.75]×[0.65,0.75],
1, elsewhere,

(4.9)

which again contains both strong and weak scattering regimes (see Fig. 6) on the upper
left. For ε=1e−4, we compare the solution using our scheme with the solution to the dif-
fusion limit at time tmax=0.1, which is displayed in Fig. 6 with good agreement. And we
also compare our solution with the solution using explicit solver the transport equation
for ε=1 at time tmax =0.1, and collect the result in Fig. 7, where again good agreement is
observed.
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Figure 5: Example V. Left: l2 distance between f and ρ (4.7) versus time using our kinetic solver. Right: l2

distance between ρk, the density of the kinetic and ρd, the density to the diffusion equation. The error saturates
at the last point of computation.
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Figure 6: Example VI. Upper Left: Cross section (4.9). Upper right: solution with our kinetic solver. Lower
left : solution to the diffusion limit (1.4). Lower right: difference between the two. Here Nx=Ny=80, Nv=10

and ε=10−4.



Q. Li and L. Wang / Commun. Comput. Phys., 22 (2017), pp. 157-181 179

Figure 7: Example VI. Left: solution with our AP solver. Middle: solution with the explicit kinetic solver. Right:
difference between the two. Here Nx =Ny=80, Nv =10 and ε=1.

5 Conclusions

In this paper, we designed a fast solver for the fully implicit treatment of the linear trans-
port equation. When the scattering effect is strong, this equation exhibits diffusive scal-
ing such that both the convection and collision become stiff. On the other hand, when
the scattering is very weak, the photon dynamics will be dominated by a free transport
at the speed of light. In either case, numerically solving the equation requires a special
care to deal with the stiffness. The fully implicit time discretization we considered here
effectively treat the stiffness without resolving the mesh size, but at the cost of generating
a large algebraic system that needs to invert, which is also ill-conditioned and not nec-
essarily symmetric. We propose an efficient pre-conditioner which significantly improve
and condition number and allows matrix-free treatment. The key ingredient is to use the
spectral structure for the collision operator, which is also the source of ill-conditioning,
to compute the pre-conditioner. We also reformulate the system via an even-odd parity
so that the resulting linear system is symmetric and positive definite that can be inverted
using conjugate gradient method with ease. An asymmetric version is also available and
can be inverted through Krylov method such as GMRES. A major benefit of our new
method is that it does not depend on the specific form of spatial or angular discretiza-
tion, therefore it can be used with great generality. In the near future, we will generalize
this method to nonlinear transport equation.
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