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Abstract. In this paper, we analyse the stochastic collocation method for a linear
Schrödinger equation with random inputs, where the randomness appears in the po-
tential and initial data and is assumed to be dependent on a random variable. We
focus on the convergence rate with respect to the number of collocation points. Based
on the interpolation theories, the convergence rate depends on the regularity of the
solution with respect to the random variable. Hence, we investigate the dependence
of the stochastic regularity of the solution on that of the random potential and initial
data. We provide sufficient conditions on the random potential and initial data to en-
sure the smoothness of the solution and the spectral convergence. Finally, numerical
results are presented to support our analysis.
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1 Introduction

The linear Schrödinger equation describes the motion of electrons in the external field,
which has been studied both theoretically [17, 39] and numerically [8, 19]. Recently, the
linear Schrödinger equation with a random potential [1, 30] has attracted a great deal of
attention. The randomness may arise from disordered structures like amorphous solids,
random alloys and non-crystalline systems, thermal fluctuation or randomly distributed
impurities [2, 12, 13, 15, 21, 22, 25]. The random Schrödinger operators have been inten-
sively studied in a theoretical way [5,6,14,23,24]. In addition, Schrödinger equations with
random initial data are investigated recently [26]. However, the numerical literatures on
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them are not so abundant [7]. Indeed, this kind of problems belongs to uncertainty
quantification (UQ) for PDEs with random inputs, where randomness could appear in
initial conditions, boundary conditions, coefficients of the equations, etc. There have
been quite a few numerical methods developed for UQ in recent years. Among them,
the stochastic collocation method and the stochastic Galerkin method [28, 34–38] are
two of most popular methods, both of which make use of the polynomial approxima-
tion theory. They have been successfully applied to many physical and engineering
problems [16, 18, 20, 31, 40]. Convergence analyses on both methods for different kinds
of differential equations have also been established [3, 4, 27, 29, 32, 41]. For the linear
Schrödinger equation, Wu and Huang applied the stochastic Galerkin method to the
Schrödinger equation with a periodic potential and a random external potential [33].
Nevertheless, to the best of our knowledge, there is not any convergence result on both
methods for the linear Schrödinger equation with a random potential.

In this paper, we focus on the convergence analysis on the stochastic collocation
method for the Schrödinger equation with a random potential and random initial data.
Since the stochastic collocation method makes use of the polynomial approximation the-
ory, the convergence rate of the stochastic method w.r.t. the number of collocation points
relies on the regularity of the solution w.r.t. the random variable, which in turn depends
on the smoothness of the potential and initial data w.r.t. the random variable. We first
study the stochastic regularity for the Schrödinger equation where the spatial variable
x∈Rd. To study the stochastic regularity, we will make use of some well-posedness re-
sults on the Schrödinger equation in the deterministic case, for which there have been
numerous results [17, 39]. The results given by Yajima [39] will be fully utilized. The
well-posedness of the random Schrödinger equation will be established and two cases
of sufficient conditions to ensure the stochastic regularity will be presented. As a usual
practice in numerical computations for the Schrödinger equation, we compute it in a
truncated domain. Hence we then consider the Schrödinger equation in a bounded do-
main and provide sufficient conditions on the random potential and initial data to ensure
the spectral convergence of the stochastic collocations. The more smoothly the potential
and initial data depend on the random variable, the faster the convergence rate will be.
It turns out that the stochastic collocation method is a solid method when the magnitude
of the randomness is within an appropriate range.

The outline of this paper is as follows. In Section 2, the well-posedness result in the
deterministic case by Yajima is reviewed. In Section 3, we study the stochastic regular-
ity of the random linear Schrödinger equation. Then the time splitting based stochastic
collocation method and its corresponding convergence results are presented in Section 4.
We give some numerical results in Section 5 to support our analyses. Finally, a conclusion
is given in Section 6.

Throughout this paper, the analysis will be performed for the case where the random
variable y ∈R for simplicity. However, similar analyses can be extended to the high-
dimensional cases using tensor-product rule in the parametric space, see e.g., [3].
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2 Well-posedness in the deterministic case

In this section, we will review some results on the well-posedness of the solution to a
deterministic linear Schrödinger equation presented by Yajima, which are inspiring for
our subsequent analysis. For detailed proofs of them, please refer to [39].

Consider the initial value problem for the time dependent Schrödinger equation: i
∂u
∂t

=−1
2

∆xu+V(t,x)u, t∈ [−T,T]= IT, x∈Rn,

u|t=s =u0(x),
(2.1)

where V(t,x) is a real-valued function.
By Duhamel’s principle, the solution of (2.1) is related to the following integral equa-

tion:

u(t)=U0(t−s)u0−i
∫ t

s
U0(t−τ)V(τ)u(τ)dτ, (2.2)

where U0(t)= exp(it∆/2) is the free propagator and V(t) is the multiplication operator
by V(t,x). For an interval I and m,r≥1, we denote by Lm,r(I) the Banach space of Lm(Rn)-
valued r-summable functions over I:

Lm,r(I)=

{
u :
[∫

I

(∫
Rn
|u(t,x)|mdx

)r/m
dt
]1/r

=‖u‖m,r <∞

}
. (2.3)

For real numbers p≥1, α≥1, β>1, T>0 satisfying 0≤1/α<1−n/2p, we introduce the
following space:

M(p,α,β,T)=Lp,α(IT)+L∞,β(IT). (2.4)

We say V ∈M(p,α,β,T) if there exists V1 ∈ Lp,α(IT), V2 ∈ L∞,β(IT) such that V =V1+V2.
The norm ofM(p,α,β,T) is defined as

‖V‖M(p,α,β,T)= inf{‖V1‖p,α+‖V2‖∞,β : V=V1+V2}. (2.5)

Then we have the following theorem:

Theorem 2.1. If V∈M(p,α,β,T) and q= 2p
p−1 , θ=4p/n. Then:

1. Eq. (2.2) has a unique solution u∈C(IT,L2(Rn))
⋂

Lq,θ(IT), for every u0∈L2(Rn) and
s∈ IT.

2. ‖u(t)‖2=‖u0‖2, ∀t∈ IT.

The proof of this theorem can be found on pp. 419-424 of [39]. In addition, the proof
relies on the lemmas we will subsequently introduce.
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By Q and S we denote the integral operators

(Qu)(t)=
∫ t

0
U0(t−s)V(s)u(s)ds, (2.6a)

(Su)(t)=
∫ t

0
U0(t−s)u(s)ds. (2.6b)

Then
(Qu)(t)=(SVu)(t). (2.7)

And we introduce the following Banach spaces. Let I=[−a,a] and ` be a parameter with
0≤n(1/2−1/`)<1:

H(a,`)=C(I,L2(Rn))
⋂

L`,θ(I), θ=
4`

n(`−2)
,

H∗(a,`)=L1(I,L2(Rn))+L`′,θ′(I), `′=
`

`−1
, θ′=

θ

θ−1
,

Y(a,`)={u : u∈C(I,H2(Rn)), u̇∈H(a,`)}, u̇=∂u/∂t,

Y∗(a,`)={u : u∈C(I,L2(Rn)), u̇∈H∗(a,`)},

with the norms

‖u‖H(a,`)=‖u‖2,∞+‖u‖`,θ ,

‖u‖H∗(a,`)= inf{‖u1‖2,1+‖u2‖`′,θ′ : u=u1+u2},
‖u‖Y(a,`)=sup

t∈I
‖u(t)‖H2+‖u̇‖H(a,`),

‖u‖Y∗(a,`)=‖u(t)‖2,∞+‖u̇‖H∗(a,`).

Then we have a lemma for the free propagator U0 and the integral operator S.

Lemma 2.1. Let 0≤n(1/2−1/`)<1. Then

‖U0(·) f ‖H(a,`)≤C‖ f ‖2, f ∈L2(Rn), (2.8a)

‖Su‖H(a,`)≤C‖u‖H∗(a,`), u∈H∗(a,`), (2.8b)

‖Su‖Y(a,`)≤C(1+a)‖u‖Y∗(a,`), u∈Y∗(a,`). (2.8c)

Here the constant C>0 is independent of a, u and f .

The proof of this lemma is presented on pp. 419–420 in [39].
Let q= 2p

p−1 and

H(a)=H(a,q), H∗(a)=H∗(a,q), Y(a)=Y(a,q), Y∗(a)=Y∗(a,q).
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Lemma 2.2. Let V∈M(p,α,β,a). Then

‖Vu‖H∗(a)≤ (2a)γ‖V‖M‖u‖H(a), 2a<1, (2.9)

with γ=min(1−1/β,1−n/2p−1/α).

The proof of this lemma is proposed on pp. 420-421 in [39].

Lemma 2.3. Suppose Vε∈M(p,α,β,T) (ε>0) and that

lim
ε→0
‖Vε−V‖M(p,α,β,T)=0.

Suppose also that
lim
ε→0
‖u0ε−u0‖2=0.

Let uε∈H(T) and u∈H(T) be the solutions of

uε(t)=U0(t−s)u0ε−i
∫ t

s
U0(t−τ)Vε(τ)uε(τ)dτ, (2.10)

and (2.2) respectively. Then
lim
ε→0
‖uε−u‖H(T)=0. (2.11)

The proof of this lemma is on pp. 422–423 in [39].

Lemma 2.4. Suppose that u∈H(T) satisfies

u(t)=U0(t)u0−iSVu(t), u0∈H2(Rn), (2.12)

and Vu∈Y∗(T). Then u∈Y(T) and it satisfies (2.1) and

d
dt

S f (t)=U0(t) f (0)+S ḟ (t), f =Vu. (2.13)

The proof of this lemma can be seen on pp. 421 in [39].

Remark 2.1. The proof of Lemma 2.4 is based on the fact that U0(t)u0 ∈Y(T) for u0 ∈
H2(Rn) and (

−i
d
dt

+H0

)
S f (t)=−i f (t), f ∈C∞(I1,C∞

0 (Rn)), (2.14)

where I1=(−a,a) and H0=− 1
2 ∆x.

Lemma 2.5. Let V∈C1(IT,L∞(Rn)) and u0∈H2(Rn). Then the solution u∈H(T) of (2.2)
belongs to Y(T) and it satisfies (2.1),

iu̇(t)=H(t)u(t), H(t)=H0+V(t)=−1
2

∆x+V(t), u̇=∂u/∂t.

The proof of this lemma is presented on pp. 423–424 in [39].
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3 Schrödinger equation with a random potential

We consider the linear Schrödinger equation with a random potential and random initial
data  i

∂u
∂t

=−1
2

∆xu+V(t,x,y)u, t∈ IT =[−T,T], x∈Rn, y∈Γ,

u|t=s =u0(x,y),
(3.1)

where y is a random variable with a density function ρ(y). And we assume Γ⊂R1.
By Duhamel’s principle, we consider the following integral equation: for ρ-a.e. y∈Γ,

u(t,y)=U0(t−s)u0(y)−i
∫ t

s
U0(t−τ)V(τ,y)u(τ,y)dτ. (3.2)

We also define space

Lp
ρ(Γ,H)=

{
u(y) : ||u||Lp

ρ (Γ,H)=

(∫
Γ
||u(y)||pHρ(y)dy

)1/p

<∞

}
, (3.3)

where H is some function space.

3.1 Well-posedness

Theorem 3.1. Assume that for ρ-a.e. y ∈ Γ, V(t,x,y) ∈M(p,α,β,T) and there exists a
constant C such that ‖u0(·,y)‖2 ≤ C. Then for Eq. (3.2), there exists a unique solution
u∈L2

ρ(Γ,L∞(IT,L2(Rn))).

Proof. Since V(t,x,y)∈M(p,α,β,T) for ρ-a.e. in y∈ Γ, by Theorem 2.1, for ρ-a.e. y∈ Γ
there exists a unique u(·,·,y)∈C(IT,L2(Rn)) for u0(·,y)∈L2(Rn). Moreover, ‖u(t,·,y)‖2

2=
‖u0(·,y)‖2

2 for any t∈ IT.
Integrating w.r.t. ρ(y)dy, we have

‖u‖L2
ρ(Γ,L∞(IT ,L2(Rn)))=‖u0‖L2

ρ(Γ,L2(Rn))≤C. (3.4)

Finally, it’s easy to see that u∈L2
ρ(Γ,L∞(IT,L2(Rn))).

3.2 Stochastic regularity

We want to investigate the Hk-regularity of u w.r.t. y. Assume that the weak derivative
of V w.r.t y exists. Taking the partial derivative of u w.r.t. y in (3.2), we have

∂yu(t)=U0(t−s)u0y−i
∫ t

s
U0(t−τ)V(τ)∂yu(τ)dτ−i

∫ t

s
U0(t−τ)∂yV(τ)u(τ)dτ, (3.5)

where u0y =∂yu0. We focus here on the case where the starting time s=0.
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Remark 3.1. If we take the partial derivative of u w.r.t. y in (3.1), we have i
∂

∂t
∂yu=−1

2
∆x∂yu+V∂yu+∂yVu, t∈ IT, x∈Rn, y∈Γ,

∂yu
∣∣
t=s =∂yu0(x,y).

(3.6)

By Duhamel’s principle, the integral equation related to Eq. (3.6) is just Eq. (3.5).

3.2.1 Bounded case

Theorem 3.2. Assume that there exists a constant C>0, such that for ρ-a.e. y∈Γ,

• V(t,x,y)∈M(p,α,β,T)

• ∂yV(t,x,y)∈M(p,α,β,T)

• ‖V(·,·,y)‖M(p,α,β,T)≤C

• ‖∂yV(·,·,y)‖M(p,α,β,T)≤C

• ‖u0(·,y)‖2≤C

• ‖∂yu0(·,y)‖2≤C

Then for Eq. (3.5), there exists a unique solution ∂yu ∈ L2
ρ(Γ,L∞(IT,L2(Rn))), i.e., u ∈

H1
ρ(Γ,L∞(IT,L2(Rn))).

Proof. By Theorem 3.1, we have u∈L2
ρ(Γ,L∞(IT,L2(Rn))).

We proceed to show that theH(T) norm of u(·,·,y) is bounded in Γ.
The proof is based on that in [39]. For ρ-a.e.y∈Γ, we can construct the global solution

u(·,·,y)∈H(T) in the following way. By Lemma 2.2, if a is sufficiently small, Q is a con-
traction on H(a) and hence there exists a local solution u∈H(a). Then using a standard
continuation procedure for the solution of linear integral equations, the global solution
u∈H(T) can be constructed.

Since for ρ-a.e.y∈ Γ, ‖V(·,·,y)‖M(p,α,β,T)≤C, there exists a constant 0< A1 <
1
2 such

that when 1
2 A1≤ a≤A1,

‖Q‖B(H(a))≤
1
2

, ρ−a.e. y∈Γ, (3.7a)

‖(1+iQ)−1‖B(H(a))≤2, ρ−a.e.y∈Γ, (3.7b)

where B(H(a)) is the set of bounded linear mapping from H(a) to itself. By Lemma
2.1, there exists another constant A2 such that ‖U0(t)u0(·,y)‖H(T)≤A2‖u0(·,y)‖2 and we
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assume A2 > 1 here without loss of generosity. We choose a∈ [ 1
2 A1,A1] and let L= b T

a c.
Then for ρ-a.e. y∈Γ,

‖u‖H(T)≤
L−1

∑
j=−L+1

‖uIBj(t)‖H(T)+‖uI[−T,(−L+1)a](t)‖H(T)

+‖uI[(L−1)a,T](t)‖H(T)≤2
L+1

∑
j=1

2j Aj
2‖u0‖2

≤C

∣∣∣∣∣2L+3AL+2
2 −4A2

2A2−1

∣∣∣∣∣≤C

∣∣∣∣∣2L̃+3AL̃+2
2 −4A2

2A2−1

∣∣∣∣∣, (3.8)

where IB is the indicator function of set B, Bj =[(j−1)a,(j+1)a], L̃= b 2T
A1
c. Take j>0 for

example, the second inequality above is due to

‖uIBj(t)‖H(T)=‖(1+iQja)−1U0(t− ja)u(ja)IBj(t)‖H(T)

≤2‖U0(t− ja)u(ja)IBj(t))‖H(T)

≤2A2‖u(ja)‖2≤2A2‖uIBj−1(t)‖H(T)

≤···≤2j+1Aj+1
2 ‖u0‖2, (3.9)

where Qja is a shifted operator of Q, Qjau(t)=
∫ t

jaU0(t−τ)V(τ)u(τ)dτ. Hence the H(T)
norm of u(·,·,y) is bounded in Γ.

For ∂yu, by Lemmas 2.1 and 2.2, since we have ∂yu0 ∈ L2(Rn) and ∂yV(t,x,y) ∈
M(p,α,β,T) for ρ-a.e.y ∈ Γ, then U0(t)∂yu0 ∈H(T) and (Qyu)(t) ∈H(T). Then using
the same continuation procedure, we can construct the unique solution of Eq. (3.5),
∂yu(·,·,y)∈H(T), a.e.y∈Γ.

Since for ρ-a.e. y ∈ Γ, ‖∂yV(·,·,y)‖M(p,α,β,T) ≤ C and ‖∂yu0(·,y)‖2 ≤ C, then
‖U0(t)∂yu0‖H(T) and ‖(S∂yVu)(t)‖H(T) is bounded in Γ. Repeating the above proof, we
know that theH(T) norm of ∂yu is bounded in Γ.

In particular, u∈H1
ρ(Γ,L∞(IT,L2(Rn))).

For ∂k
yu, from Eq. (3.2), we have

∂k
yu(t)=U0(t−s)∂k

yu0−i
∫ t

0
U0(t−τ)V(τ)∂k

yu(τ)dτ−i
∫ t

s
U0(t−τ) f (τ)dτ, (3.10)

where f =∑k
j=1(

k
j)∂

j
yV∂

k−j
y u. For stochastic regularity of higher order, we have

Theorem 3.3. Assume that there exists a constant C>0 and for ρ-a.e. y∈Γ,

• V(t,x,y)∈M(p,α,β,T)

• ∂
j
yV(t,x,y)∈M(p,α,β,T), j=1,··· ,k
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• ‖V(·,·,y)‖M(p,α,β,T)≤C

• ‖∂j
yV(·,·,y)‖M(p,α,β,T)≤C, j=1,··· ,k

• ‖∂j
yu0(·,y)‖2≤C, j=0,1,··· ,k

Then u∈Hk
ρ(Γ,L∞(IT,L2(Rn))).

This theorem can be proved using induction.

Remark 3.2. In Theorem 3.3, we would prove an upper bound C(T,k) on the Hk-norm of
u using induction. The upper bound C(T,k) is dependent on k and T. It could blow up
as k→∞. And it could also blow up as T→∞.

3.2.2 Singular case

We can see that in the proof of Theorem 3.1, we have u∈L∞
ρ (Γ,L∞(IT,L2(Rn))) and in that

of Theorem 3.2, we have theH(T)-norm of u is bounded in Γ. Thus it could admit that V
has singularities in y. However, it turns out that we strengthen the space-time regularity
to ensure the well-posedness of (3.5). We first need the following lemmas which are
analogous to Lemmas 2.3 and 2.5 respectively:

Lemma 3.1. Suppose for ρ-a.e. y∈Γ, Vε,Vyε∈M(p,α,β,T) (ε>0) and

lim
ε→0
‖Vε(·,·,y)−V(·,·,y)‖M(p,α,β,T)=0, (3.11a)

lim
ε→0

∥∥∥Vyε(·,·,y)−
∂V
∂y

(·,·,y)
∥∥∥
M(p,α,β,T)

=0. (3.11b)

Suppose also that

lim
ε→0
‖u0ε(·,y)−u0(·,y)‖2=0, (3.12a)

lim
ε→0

∥∥∥∂u0ε

∂y
(·,y)− ∂u0

∂y
(·,y)

∥∥∥
2
=0. (3.12b)

Let uε(·,·,y)∈H(T) and u(·,·,y)∈H(T) be the solutions of

uε(t)=U0(t−s)u0ε−i
∫ t

s
U0(t−τ)Vε(τ)uε(τ)dτ, (3.13)

and (3.2) respectively. Moreover, let wε(·,·,y)∈H(T) and ∂yu(·,·,y)∈H(T) be the solu-
tions of

wε(t)=U0(t−s)∂yu0ε−i
∫ t

s
U0(t−τ)Vε(τ)wε(τ)dτ

−i
∫ t

s
U0(t−τ)Vyε(τ)uε(τ)dτ (3.14)

and (3.5) respectively. Then a.s.

lim
ε→0
‖wε(·,·,y)−∂yu(·,·,y)‖H(T)=0. (3.15)
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Proof. It’s sufficient to consider the case where s=0 and T>0 small for ρ-a.e. y∈Γ.
By Lemma 2.3,

lim
ε→0
‖uε(·,·,y)−u(·,·,y)‖H(T)=0. (3.16)

Now we denote Qε=SVε and Qyε=SVyε. By Lemma 2.2, it’s easy to see that almost surely

lim
ε→0
‖Qε−Q‖B(H(T))=0, (3.17a)

lim
ε→0
‖Qyε−Qy‖B(H(T))=0, (3.17b)

where B(H(T)) is the space of linear bounded operators onH(T). Thus

wε(t,·,y)=(1+iQε)
−1(U0(t−s)∂yu0ε−iQyεuε(t,·,y))

−→∂yu(t,·,y)=(1+iQ)−1(U0(t)∂yu0−iQyu(t,·,y))

inH(T) a.s..

Lemma 3.2. Let V(·,·,y)∈C1(IT,L∞(Rn)), Vy(·,·,y)∈C1(IT,L∞(Rn)) and u0(·,y)∈H2(Rn),
w0(·,y)= ∂u0

∂y (·,y)∈H2(Rn) for ρ-a.e. y∈Γ. Let u be the solution of (3.2). Then the solution
w(·,·,y)∈H(T) of

w(t)=U0(t−s)w0−i
∫ t

s
U0(t−τ)V(τ)w(τ)dτ

−i
∫ t

s
U0(t−τ)Vy(τ)u(τ)dτ (3.18)

belongs to Y(T) and it satisfies

iẇ(t,y)=H(t,y)w(t,y)+Vy(t,y)u(t,y), H(t,y)=H0+V(t,y). (3.19)

Proof. It still suffices to show for T>0 small for each y∈Γ.
For ρ-a.e. y∈Γ, let vh(t,y)=(w(t+h,y)−w(t,y))/h, with h 6=0 small and |t|<T. Then

vh(t,y) satisfies
vh(t,y)= fh(t,y)−i(Qvh)(t,y), (3.20)

where

fh(t,y)=(U0(t+h)−U0(t))w0/h−ih−1U0(t+h)
∫ h

0
U0(−τ)(Vw)(τ,y)dτ

−i
∫ t

0
U0(t−τ){(V(τ+h,y)−V(τ,y))/h}w(τ+h,y)dτ

−i
∫ t

0
U0(t−τ)Vy(τ,y){(u(τ+h,y)−u(τ,y))/h}dτ

−ih−1U0(t+h)
∫ h

0
U0(−τ)(Vyu)(τ,y)dτ

−i
∫ t

0
U0(t−τ){(Vy(τ+h,y)−Vy(τ,y))/h}u(τ+h,y)dτ. (3.21)
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Lemma 2.5 tells us that u∈Y(T) a.s.. Moreover, since u0 ∈ H2(Rn), ∂u0
∂y ∈ H2(Rn) and

w∈H(T) a.s., it can be seen by Lemma 2.1 that

fh(t,y)→ f (t,y)=−i[U0(t)Vyu(0,y)+SVyu̇(t,y)+SV̇yu(t,y)
+U0(t)(H0+V(0))w0(y)+SV̇w(t,y)] in Hloc(T). (3.22)

Then we have

vh(t,y)=(1+iQ)−1 fh(t,y)→ (1+iQ)−1 f (t,y) in Hloc(T). (3.23)

This proves that ẇ(t,y)∈H(T) and

iẇ(t,y)=U0(t)Vyu(0,y)+SVyu̇(t,y)+SV̇yu(t,y)
+U0(t)(H0+V(0))w0(y)+SV̇w(t,y)+SVẇ(t,y). (3.24)

Thus Vw∈Y∗(T) a.s.. Lemmas 2.1 and 2.4 imply that w∈Y(T) with u∈Y(T), u0∈H2(Rn)
and w0∈H2(Rn) a.s.. And Eq. (2.14) indicates (3.19).

Now we are ready to present the following theorem on stochastic regularity:

Theorem 3.4. Assume that for ρ-a.e. y∈Γ,

• V(·,·,y)∈M(p,α,β,T),

• ∂V
∂y ∈L2

ρ(Γ,L2(IT,L∞(Rn))),

• u0∈L∞
ρ (Γ,L2(Rn)),

• ∂u0
∂y ∈L2

ρ(Γ,L2(Rn))

then the integral equation (3.2) admits a unique solution u∈H1
ρ(Γ,L∞(IT,L2(Rn))).

Proof. It’s sufficient to consider the well-posedness of (3.5).
Since ∂V

∂y ∈ L2
ρ(Γ,L2(IT,L∞(Rn))), we know that ∂V

∂y ∈ L2(IT,L∞(Rn)) a.s. and we can

choose β̃=min(β,2) such that V(·,·,y), ∂V
∂y ∈M(p,α, β̃,T) for ρ-a.e. y∈Γ. We still denote β̃

as β. By the above discussion, it’s easy to see that (3.5) admits a unique solution w(·,·,y)∈
C(IT,L2(Rn)) for ρ-a.e. y∈Γ and we let w0=∂yu0.

To show that u is H1 w.r.t. y, we first approximate V(·,·,y)=V1+V2∈Lp,α+L∞,β by Vε

and ∂V
∂y , u0 by Vyε, u0ε. We take φ(x)∈C∞

0 (Rn) and χ(t)∈C∞
0 (R) such that

φ(x),χ(t)≥0 and
∫

φ(x)dx=
∫

χ(t)dt=1, (3.25)
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and define

Vε(t,x,y)=
∫

V1(t+εs,x+εz,y)χ(s)φ(z)dsdz+
∫

V2(t+εs,x,y)χ(s)ds, (3.26a)

Vyε(t,x,y)=
∫

∂V
∂y

(t+εs,x,y)χ(s)ds, (3.26b)

u0ε(x,y)=
∫

u0(x+εz,y)φ(z)dz, (3.26c)

where we extended Vj(t,x,y), ∂V
∂y (t,x,y) outside IT×Rn×Ω as Vj(t,x,y) ≡ 0, j = 1,2,

∂V
∂y (t,x,y)≡0. Then

Vε(·,·,y)∈C1(IT,L∞(Rn)), lim
ε→0

∥∥∥Vε(·,·,y)−V(·,·,y)
∥∥∥
M

=0, (3.27a)

Vyε(·,·,y)∈C1(IT,L∞(Rn)), lim
ε→0

∥∥∥Vyε(·,·,y)−
∂V
∂y

(·,·,y)
∥∥∥
M

=0, (3.27b)

Vyε(·,·,y)∈L2(IT,L∞(Rn)), lim
ε→0

∥∥∥Vyε(·,·,y)−
∂V
∂y

(·,·,y)
∥∥∥

∞,2
=0, (3.27c)

u0ε(·,y)∈H2(Rn), lim
ε→0
‖u0ε(·,y)−u0(·,y)‖2=0, (3.27d)

w0ε(·,y)=
∂u0ε

∂y
(·,y)∈H2(Rn), lim

ε→0

∥∥∥∂u0ε

∂y
(·,y)− ∂u0

∂y
(·,y)

∥∥∥
2
=0. (3.27e)

Then Lemma 2.3, 3.1 and 3.2 imply that the solution uε of (3.13) and wε ∈Y(T) of (3.14)
satisfy

‖uε(·,·,y)−u(·,·,y)‖H(T)→0, (3.28a)

i
d
dt

wε =(H0+Vε(t,y))wε+Vyεuε(t,y), (3.28b)

‖wε(·,·,y)−w(·,·,y)‖H(T)→0. (3.28c)

Since H0+Vε(t,y) is self-adjoint in the space H2(Rn), we see from (3.28b) and Young’s
inequality that

d
dt
‖wε(t,y)‖2

2≤C‖wε(t,y)‖2
2+C‖Vyεuε(t,y)‖2

2. (3.29)

Note that in the proof of Theorem 3.1, we have u∈L∞
ρ (Γ,L∞(IT,L2(Rn)). Using Gronwall’s

inequality and let ε→0, we have

‖w(t)‖2
2≤C(T)

(
‖w0‖2

2+
∥∥∥∂V

∂y

∥∥∥2

∞,2
‖u‖2

2,∞

)
, ∀t∈ IT, (3.30)

where C(T) is a constant dependent on T. Then taking the supremum in t over IT and
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integrating w.r.t. ρ(y)dy. We have

‖w‖2
L2

ρ(Γ,L∞(IT ,L2(Rn)))

≤C(T)
(
‖w0‖2

L2(Rn)⊗L2
ρ(Γ)

+
∥∥∥∂V

∂y

∥∥∥2

L2
ρ(Γ,L2(IT ,L∞(Rn)))

‖u‖2
L∞

ρ (Γ,L∞(IT ,L2(Rn)))

)
. (3.31)

Hence u∈H1
ρ(Γ,L∞(IT,L2(Rn))).

Theorem 3.5. Assume that for ρ-a.e. y∈Γ,

• V(·,·,y)∈M(p,α,β,T),

• ∂(j)V
∂y(j) ∈L∞

ρ (Γ,L2(IT,L∞(Rn))), j=1,··· ,k−1,

• ∂(k)V
∂y(k)
∈L2

ρ(Γ,L2(IT,L∞(Rn))),

• u0∈L∞
ρ (Γ,L2(Rn)),

• ∂(j)u0
∂y(j) ∈L2

ρ(Γ,L2(Rn)), ∀j=1,··· ,k,

Then (3.2) has a unique solution u∈Hk
ρ(Γ,L∞(IT,L2(Rn))).

The proof can be done by induction.

Remark 3.3. Similarly, in Theorem 3.5, an upper bound C(T,k) on the Hk-norm of u
would be given. It is also dependent on k and T. It could blow up as k→∞. And it may
also blow up as T→∞.

Remark 3.4. The above stochastic regularity analysis is performed for the linear
Schrödinger equation. To consider such an analysis for the Schrödinger equation with
a nonlinear potential, well-posedness results on the nonlinear Schrödinger equation in
the deterministic case are needed, e.g., [10, 11], etc. The techniques can be totally differ-
ent and much harder. And stricter conditions may be needed to ensure the regularity.
But it is a topic worthwhile for subsequent researches.

4 Time splitting based stochastic collocation method and
convergence results

As a usual practice of numerical computations, we compute the Schrödinger equation on
a truncated bounded domain. For simplicity, we consider the 1-dimensional Schrödinger
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equation on an interval [a,b] with periodic boundary conditions:

i
∂u
∂t

=−∂2u
∂x2 +V(x,y)u, t>0, x∈ [a,b], y∈Γ,

u|t=0=u0(x,y),
u(t,a,y)=u(t,b,y),
∂u
∂x

(t,a,y)=
∂u
∂x

(t,b,y),

(4.1)

where y is still a random variable with a density function ρ(y) and y∈Γ⊂R.

4.1 Time splitting based stochastic collocation method

We combine the time splitting method [8] and the stochastic collocation method.
Given the density function ρ(y) of y, we can find its corresponding orthogonal poly-

nomial. Assume that {yn}N
n=0 are the roots of orthogonal polynomial of order N+1. For

each yn, using the time splitting method, we solve

i
∂u
∂t

=−∂2u
∂x2 +V(x,yn)u, t>0, x∈ [a,b],

u|t=0=u0(x,yn),
u(t,a,y)=u(t,b,y),
∂u
∂x

(t,a,y)=
∂u
∂x

(t,b,y).

(4.2)

We choose spatial step ∆x=(b−a)/M, where M is an even number and time step ∆t>0.
And we let xj = a+ j∆x, tm =m∆t and Um

j (yn) be the approximation of u(tm,xj,yn).
From tm to tm+1, we solve (4.2) in the following two steps:

Um+1/2
j (yn)=

1
M

M/2−1

∑
`=M/2

e−i∆tµ2
`/2Ûm

` (yn)eiµ`(xj−a), j=0,1,··· ,M−1, (4.3a)

Um+1
j (yn)= e−iV(xj,yn)∆tUm+1/2

j (yn), (4.3b)

where µ`=2π`/(b−a),

Ûm
` (yn)=

M−1

∑
j=0

Um
j (yn)e−iµ`(xj−a), `=−M

2
,··· , M

2
−1, (4.4a)

U0
j (yn)=u0(xj,yn), j=0,1,··· ,M. (4.4b)

Let um
I (x,yn) be the trigonometric interpolation using {(xj,Um

j (yn))}M
j=0

um
I (x,yn)=

1
M

M/2

∑
`=−M/2

Ûm
` (yn)eiµ`(x−a), (4.5)
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where Ûm
` (yn) is defined as above. And let INum

I (x,y) be the Lagrange interpolation using
{(yn,um

I (x,yn))}N
n=0

INum
I (x,y)=

N

∑
n=0

um
I (x,yn)pn(y), (4.6)

where

pn(y)=
(y−y0)···(y−yn−1)(y−yn+1)···(y−yN)

(yn−y0)···(yn−yn−1)(yn−yn+1)···(yn−yN)
. (4.7)

Then INum
I (x,y) is our numerical approximation.

4.2 Convergence analysis

Since the convergence of the stochastic collocation method is closely related to the regu-
larity of the solution of Eq. (4.1), u(x,y), w.r.t. y, we still need to first analyse the regu-
larity of u(x,y) w.r.t. y. We assume the derivative of u w.r.t. y exists. We give sufficient
conditions to ensure the integrability of the derivative of u w.r.t. ρ(y)dy.

Theorem 4.1. Assume there exists a constant C>0 such that

• For ρ-a.e. y∈Γ, max
a≤x≤b

∂k
y|V(x,y)|≤C, k=1,··· ,K−1,

•
∫

Γ max
a≤x≤b

|∂K
y V(x,y)|2ρ(y)dy≤C,

• For ρ-a.e. y∈Γ,
∫ b

a |u0(x,y)|2dx≤C,

•
∫

Γ

∫ b
a |∂

k
yu0(x,y)|2dxρ(y)dy≤C, k=1,··· ,K.

We have ∂K
y u(T,x,y)∈L2

ρ(Γ), a.e.x∈ [a,b] and

∫
Γ

∫ b

a
|∂K

y u(T,x,y)|2ρ(y)dxdy≤C(T,K). (4.8)

Proof. First we have

ū∂tu=
i
2

ū∂2
xu−iūVu. (4.9)

Taking the conjugate of (4.9) and adding it with (4.9), we integrate it w.r.t x on [a,b]. And
we have

∂t

∫ b

a
|u(t,x,y)|2dx=0. (4.10)

By the assumption on the initial data, we have∫ b

a
|u(t,x,y)|2dx=

∫ b

a
|u0(x,y)|2dx≤C, ρ−a.e. y∈Γ, 0≤ t≤T, (4.11)
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i.e., u(t,·,·)∈L∞(Γ,L2([a,b])), 0≤ t≤T. We proceed to show that∫ b

a
|∂k

yu(t,x,y)|2dx≤C(T,k) fk(y), k=0,1,··· ,K−1, 0≤ t≤T, (4.12)

where fk(y) is integrable w.r.t. ρ(y)dy. We proceed by induction on k. We have proved
the case where k=0. Assume that it holds for `≤ k−1. For k, we have ∂k

yu satisfying

i∂t∂
k
yu=−1

2
∂2

x∂k
yu+V∂k

yu+
k

∑
`=1

(
k
`

)
∂`yV∂k−`

y u. (4.13)

Repeating the above deduction, we have

∂t

∫ b

a
|∂k

yu(t,x,y)|2dx=−
∫ b

a
2Re

(
i∂k

yū
k

∑
`=1

(
k
`

)
∂`yV∂k−`

y u
)

dx. (4.14)

By Young’s inequality and Hölder’s inequality, we have

∂t

∫ b

a
|∂k

yu(t,x,y)|2dx≤
∫ b

a
|∂k

yu(t,x,y)|2dx+
∫ b

a

∣∣∣ k

∑
`=1

(
k
`

)
∂`yV∂k−`

y u
∣∣∣2dx

≤
∫ b

a
|∂k

yu(t,x,y)|2dx+C(k)
k

∑
`=1

max
x∈[a,b]

∂`yV2
∫ b

a
|∂k−`

y u|2dx. (4.15)

By Gronwall’s inequality, we have∫ b

a
|∂k

yu(t,x,y)|2dx

≤C(T,k)
(∫ b

a
|∂k

yu0|2dx+
k

∑
`=1

max
x∈[a,b]

∂`yV2
∫ T

0

∫ b

a
|∂k−`

y u(s,x,y)|2dxds
)

. (4.16)

By induction, we have∫ b

a
|∂k

yu(t,x,y)|2dx≤C(T,k)
(∫ b

a
|∂k

yu0|2dx+
k

∑
`=1

max
x∈[a,b]

∂`yV2 fk−`(y)
)

. (4.17)

And by the assumptions on ∂k
yu0 and ∂`yV, `=1,··· ,k, we have∫ b

a
|∂k

yu(t,x,y)|2dx≤C(T,k) fk(y), 0≤ t≤T, (4.18)

where fk(y) is integrable w.r.t. ρ(y)dy. For ∂K
y u, repeating the above deduction, we have∫ b

a
|∂K

y u(t,x,y)|2dx

≤C(T,K)
(∫ b

a
|∂K

y u0|2dx+
K−1

∑
k=1

fk(y)+ max
x∈[a,b]

∂K
y V2

∫ T

0

∫ b

a
|u(t,x,y)|2dxdt

)
. (4.19)
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Note that
∫ b

a |u(t,x,y)|2dx≤C for ρ-a.e. y∈Γ. Integrating both sides of the above inequality
w.r.t. ρ(y)dy, we have∫

Γ

∫ b

a
|∂K

y u(t,x,y)|2ρ(y)dxdy≤C(T,K)+C(T,K)
∫

Γ
max
x∈[a,b]

∂K
y V2ρ(y)dy. (4.20)

By our assumptions on ∂K
y V, we have

∫
Γ

∫ b

a
|∂K

y u(t,x,y)|2ρ(y)dxdy≤C(T,K). (4.21)

In particular, ∫
Γ

∫ b

a
|∂K

y u(T,x,y)|2ρ(y)dxdy≤C(T,K). (4.22)

Moreover, by Tonelli theorem, ∂K
y u(T,x,y)∈L2

ρ(Γ) for a.e.x∈ [a,b].

Remark 4.1. In Theorem 4.1, the constant C(T,K) may blow up as k→∞. Also, this
constant C(T,K) could blow up as T→∞.

We then consider the convergence analysis. We define the mean error

emean(tm)=E[|u(tm)− INum
I |], (4.23)

and the mean square error

ems(tm)=M[|u(tm)− INum
I |], (4.24)

where

E[ f ]=
∫ b

a

∫
Γ

f (x,y)ρ(y)dydx, (4.25a)

M[ f ]=
(∫ b

a

∫
Γ

f (x,y)2ρ(y)dydx
)1/2

. (4.25b)

Lemma 4.1. Assume a given function f (y) satisfies f ∈Hk(−1,1) and let IN f be its in-
terpolation polynomial associated with the N+1 Gauss, Gauss-Radau or Gauss-Lobatto
points. Then for k≤N the following estimate holds

‖ f− IN f ‖L2(−1,1)≤CN−k‖ f (k)‖L2(−1,1). (4.26)

Remark 4.2. The above lemma is an estimate for the Gauss-Legendre interpolation error
whose proof can be found in Section 5.6 of [9]. Estimates for other common density func-
tions ρ are also presented in [9], such as the normal distribution, exponential distribution,
etc.
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By the above interpolation theorem, we have

Theorem 4.2. Assume y is a random variable uniformly distributed on [−1,1]. Under the
assumption of 4.1, we have∫ b

a

∫
Γ
(u(T)− INu(T))2ρ(y)dydx≤ C(T,K)

N2K . (4.27)

Proof. By Theorem 4.1, ∂K
y u(T,x,y)∈L2

ρ(Γ) for a.e.x∈ [a,b]. Hence by Lemma 4.1,(∫
Γ
(u(T)− INu(T))2ρ(y)dy

)
≤CN−2K

(∫
Γ
|∂K

y u|2ρ(y)dy
)

. (4.28)

Integrating both sides w.r.t. x, we have∫ b

a

∫
Γ
(u(T)− INu(T))2ρ(y)dydx≤CN−2K

∫
Γ

∫ b

a
|∂K

y u(T,x,y)|2ρ(y)dxdy≤ C(T,K)
N2K . (4.29)

Thus, we complete the proof.

For the time splitting method, from [8], we have

Theorem 4.3. Assume for ρ-a.e. y∈Γ,

• V(x,y) is C∞ in x and (b−a)-periodic,

• there exists constant EL1+L2(T)>0 irrelevant to x, y such that∥∥∥ ∂L1+L2

∂xL1 ∂L2
t

u
∥∥∥

C([0,T];L2(a,b))
≤EL1+L2(T),

• there exists constant FL >0 irrelevant to x, y such that

||∂L
xV||L∞(a,b)≤FL.

Then we have

‖u(tm,·,y)−um
I (·,y)‖2≤C(T,L)

T
∆t

∆xL+D(T)T∆t, 0≤ tm≤T, ρ−a.e. y∈Γ. (4.30)

Remark 4.3. In Theorem 4.3, the constant C(T,L) in the final error estimate is related to
the regularity of u w.r.t. t and x and the regularity of V w.r.t. x in the domain [0,T]×[a,b]
up to the order L and hence it can be dependent on T and L. Similarly, the constant D(T)
is related to the regularity of u w.r.t. t and x and the regularity of V w.r.t. x in the domain
[0,T]×[a,b] up to the order 2 and so it can be dependent on T.

Combining the above two theorem, we have
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Theorem 4.4. Under the assumptions of Theorems 4.2 and 4.3, we have

emean(tm)≤
C(T,K)

NK +C(T,L)
T
∆t

∆xL+D(T)T∆t, 0≤ tm≤T, (4.31a)

ems(tm)≤
C(T,K)

NK +C(T,L)
T
∆t

∆xL+D(T)T∆t, 0≤ tm≤T. (4.31b)

Proof. For the means square error,

ems(tm)≤M[u− INu](tm)+M[INu(tm)− INum
I ]. (4.32)

By Theorem of 4.2, we have

M[u− INu](tm)≤
(∫ b

a
CN−2K|u(tm)|2HK

ρ (Γ)
dx
)1/2

=C(T,K)N−K. (4.33)

By the orthonormality of the interpolation basis polynomial, we have

M[INu(tm)− INum
I ]≤

(
N

∑
j=0

Aj||u(tm,x,yj)−um
I (x,yj)||2L2([a,b])

)1/2

, (4.34)

where Aj≥0 is the weight of Gauss quadrature and ∑N
j=0 Aj=1. By Theorem 4.3, we have

||u(tm,x,yj)−um
I (x,yj)||L2([a,b])≤C(T,L)

T
∆t

∆xL+D(T)T∆t, j=0,1,··· ,N. (4.35)

Hence

M[INu(tm)− INum
I ]≤C(T,L)

T
∆t

∆xL+D(T)T∆t. (4.36)

And we obtain the estimate for ems.
For the mean error, by Hölder’s inequality

emean(tm)
2≤ (b−a)ems(tm)

2, (4.37)

and we obtain the estimate for it.

We also consider the error estimate of statistical moments. We define the error of the
first moment

e1m(tm)=‖E[u(tm,x)]−E[INum
I (x)]‖L1([a,b]) (4.38)

and the error of the second moment

e2m(tm)=‖(E[|u(tm,x)|2])1/2−(E[|INum
I (x)|2])1/2‖L2([a,b]). (4.39)
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Theorem 4.5. Under the assumption of Theorem 4.4, we have

e1m(tm)≤
C(T,K)

NK +C(T,L)
T
∆t

∆xL+D(T)T∆t, 0≤ tm≤T, (4.40a)

e2m(tm)≤
C(T,K)

NK +C(T,L)
T
∆t

∆xL+D(T)T∆t, 0≤ tm≤T. (4.40b)

Proof. Just note that

e1m(tm)≤ emean(tm), (4.41a)
e2m(tm)≤ ems(tm), (4.41b)

and we can prove the theorem.

Remark 4.4. In Theorems 4.4 and 4.5, the constant C(T,K) is related to the regularity of
u or |u|2 w.r.t. y in the domain [0,T]×[a,b] up to the order K. In Theorem 4.1, we give
an upper bound for the L2

ρ(Γ,[a,b])-norm of ∂K
y u(T) and the bound C(T,K) increases as

T grows according to the proof of Theorem 4.1. However, if the true regularity of u or
|u|2 w.r.t. y in the domain [0,T]×[a,b] is independent of T, the error originating from the
stochastic collocation method will be independent of T. Our numerical experiment will
show this phenomenon.

As for the constants C(T,L) and D(T), as is stated, they are related to the regularity
of u or |u|2 w.r.t. t and x and the regularity of V w.r.t. x in the domain [0,T]×[a,b]. Their
dependence on T is problem-dependent as well.

Remark 4.5. As in Section 3, the analysis in this section is limited to the linear case.
Extension to the nonlinear case is not straightforward. New techniques may be needed
and it is much harder. We have not really investigated this problem and it is a topic for
our subsequent research.

5 Numerical experiments

We consider the Schrödinger equation on [−π,π]. And we give 3 numerical examples to
support our convergence analysis and 1 numerical example to study the dependence of
errors on different final times T.

Example 5.1. Consider the potential

V(x,y)=
1
2

G(y)8x2 (5.1)

and initial data

u0(x,y)=
G(y)
π1/4 exp

(
−1

2
G(y)4x2

)
, (5.2)
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(a) emean (b) ems

(c) e1m (d) e2m

Figure 1: Convergence of Example 5.1.

where G(y) can be G1(y)= 1
2 exp(y3/5)+1 and G2(y)= 1

2 exp(y8/5)+1. And y is a random
variable uniformly distributed on [0,1]. By Theorems 4.4 and 4.5, we know that the con-
vergence is at least of order 1 when G=G1 and at least of order 2 when G=G2. And we
can take

u(t,x,y)=
G(y)
π1/4 exp

(
−1

2
G(y)4x2

)
exp

(
− i

2
G(y)4t

)
(5.3)

as the reference solution.
We consider the convergence w.r.t. the number of collocation point N at T=0.5. And

the step sizes are ∆t=5e−7,∆x=π/512. The convergence is shown in Fig. 1.

We can see that when G = G1, the convergence order of all the 4 types of errors is
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Figure 2: Convergence of Example 5.2.

slightly better than 1 and when G=G2, the convergence order is better than 2, which is
consistent with our analysis. For emean, the convergence order is 1 order better than our
estimate, which implies our estimate may not be sharp. But we can still see that the more
smoothly V and u0 are dependent on y, the faster is the convergence of the stochastic
collocation method.

Example 5.2. Consider the potential

V(x,y)=2log(1+y)(1−x2)2 (5.4)

and the initial data

u0(x,y)=
(

10
π

)1/4

exp(−5x2). (5.5)

Here y is still uniformly distributed on [0,1]. Since V is C∞ in y, we expect spectral
convergence.

We consider error at T = 0.5. And the reference solution is computed using meshes
∆t= 5e−7,∆x=π/2048 and collocation point N = 100. The step sizes for the numerical
solution are ∆t=1e−6, ∆x=π/1024. The results are shown in Fig. 2.

Example 5.3. Consider the potential

V(x,y)= e−y cos
(1

2
x
)

, (5.6)
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Figure 3: Convergence of Example 5.3.

and initial data

u0(x,y)=
(

10
π

)1/4

exp(−5x2). (5.7)

Here y is subject to beta distribution Beta(2,2). Since V is still C∞ in y, we still expect
spectral convergence.

We consider errors at T = 0.5. The reference solution is computed using ∆t= 5e−7,
∆x=π/2048 and collocation point N=100. And the step sizes for the numerical solution
are ∆t=1e−6,∆x=π/1024. The results are shown in Fig. 3.

In both Examples 5.2 and 5.3, we observe spectral convergence. And in Example 5.3,
the convergence is even faster since the beta distribution Beta(2,2) is more concentrated
than the uniform distribution.

Example 5.4. We again consider the harmonic potential and initial data in Example 5.1.
And we choose G(y)=G1(y) here. We consider errors at different final times T=0.1,0.5,1.
And the step sizes are still ∆t= 5e−7, ∆x=π/512. The convergence of errors w.r.t. the
number of collocation points at different final times is shown in Fig. 4.

We can clearly observe the long-time effect for errors emean(T), ems(T) and e1m(T) in
Fig. 4, which means the errors grow as T grows. As for the error e2m(T), it is almost
the same for T = 0.1,0.5,1. We can see from the reference solution (5.3) that the density
‖u(T,·,y)‖2 does not depend on T and hence e2m(T) does not change as T varies.
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(a) emean (b) ems

(c) e1m (d) e2m

Figure 4: errors at different final times T in Example 5.4.

6 Conclusions

In this work, we present the convergence analysis on the stochastic collocation methods
for the Schrödinger equation with random inputs. We analyse the convergence rate w.r.t.
the number of collocation points.

We first study the regularity of the solution to the random Schrödinger equation
where x∈Rd w.r.t. the random variable. We utilize the well-posedness results in the de-
terministic case and present two cases of regularity results in the random case. It can be
seen that the smoothness of the potential and initial data w.r.t. the random variable is the
main factor in determining the stochastic regularity of the solution. And the stochastic
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regularity is also closely associated with the space-time smoothness of the potential and
initial data. To accommodate some singularities for the random variables, the space-time
regularities should be strengthened.

We then study the random Schrödinger equation on a bounded interval. We present
the time splitting based stochastic collocation method. Based on the interpolation theo-
ries and convergence results of the time splitting method, we give the convergence anal-
ysis of the time splitting based stochastic collocation method and provide sufficient con-
ditions to ensure spectral convergence. Our numerical experiments show that spectral
convergence can be observed under appropriate conditions. In conclusion, the stochastic
collocation method is a solid method when the magnitude of the randomness is within
an appropriate range.

In the future, such analyses can be extended to the nonlinear cases. And to achieve
uniform convergence w.r.t. ε for the random Schrödinger equation in the semiclassical
regime, new sampling method should be developed. Moreover, the modeling and algo-
rithm design of highly random physical phenomena should be considered.
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